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NORMAL BASES FOR NON-ARCHIMEDEAN
SPACES OF CONTINUOUS FUNCTIONS

Abstract

ANN VERDOODT

K is a complete non-archimedean valued field andMis a compact,
infinite, subset of K. C(M - K) is the Banach space of continu-
ous functions from M to K, equipped with the supremum norm .
Let (p,,(x)) be a sequence of polynomials, with degpn -- n. We
give necessary and sufficient conditions for (pn(x)) to be a normal
basis for C(M ~ K) . In the rest of the paper, Kcontains Qp, and
Vq is the closure of the set {aqn In = 0, 1, 2 . . . } where a and q are
two units of Zp, q not a root of unity. We give necessary and suffi-
cient conditions for a sequence of polynomials (rn (x)) (degrn = n)
to be a normal basis for C(Vq - K) . Furthermore, if we define
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and if (jn) is a sequence in NO, then we show that the sequence of
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1 . Introduction

forms a normal basis for C(V, - K) .

The main aim of this paper is to find normal bases for spaces of con-
tinuous functions . Therefore we start by recalling some definitions and
some previous results .

Let K be a non-archimedean valued field and suppose that K is com-
plete for its valuation ¡ .J . Take M C K compact, infinite, and let
C(M ~ K) be the Banach space of continuous functions from M to
K, equipped with the supremum norm .

Let E be a non-archimedean Banach space over a non-archimedean
valued field K. Let el, e2 . . . . be a finite or infinite sequence of elements
of E. We say that this sequence is orthogonal if lia l e l + - - - + akekil _
max{~~aje¡11 : i = 1, . . . , k} for all k in hY (or for all k that do not exceed
the length of the sequence) and for all al, . . . . Ok in K . If the sequence
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is infinité, it follows that

	

Z ai,ei

	

= max{ II aáei I I

	

: á = 1,2, . . .} for
i-r

all al, a2 , . . . in K for which lim aje¡ = 0.

	

An orthogoal sequence
i-00

el, e2, . . . is called orthonormal if ¡le¡¡¡ = 1 for all i .
This leads us to the following definition :

If E is a non-archimedean Banach space over a non-archimedean val-
ued field K, then a family (ei) of elements of E is a (ortho)normal basis
of E if the family (ei) is orthonormal and also a basis .
An equivalent formulation is

If E is a non-archimedean Banach space over a non-archimedean val-
ued field K, then a family (ei) of elements of E is a (ortho)normal basis
of E if each element x ofE has a unique representation x = Exiei where

i
xi E K and xi - 0 if i - oo, and if the norm of x is the supremurn of
the norms of xi .

In [6, chapter 5, 5.27 and 5.33] we find the following theorem which is
due to Y . Amice:

Theorem 1.
Let K be a non-archimedean valued field, complete with respect to its

norm I . I, and let M be a compact, infinite subset ofK.

Let (un) be an injective sequence in M.

Define po(x) = 1, pn(x) = (x - un-r)pn-1(x) for n > l, qn(x) _
rn (x)
Pn(Un)'

Then (qn(x)) forms a normal basis for C(M --> K) if and only if

Ilgnll =1 (dn) .
If (qn(x)) forms a normal basis for C(M --> K) and f is an element

of C(M -> K), then

00

f(x) = 1: angn(x) where an = pn(un)
n-0

We remark that there always exist sequences (qn(x)) such that Ilgnll = 1
for all n.

We will call a sequence of polynomials (pn(x)) a polynomial sequence
if Pn is exactly of degree n for all n .

After all there definitions, we now give a survey of the results in this
article.
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In Section 2 of this paper, K is a non-archimedean complete field, and
M is a compact, infinite subset of K. In Theorems 2 and 3 we will give
necessary and sufficient conditions for a polynomial sequence (pn(x)) to
be a normal basis for C(M , K).

In Sections 3, 4, 5 and 6 we consider the following situation : Zp is
the ring of p-adic integers, Qp the field of p-adic numbers, and K is a
non-archimedean valued field, K containing Qp, and we supppose that
K is complete for the valuation J .J, which extends the p-adic valuation .
Let a and q be two units of Zp, q not a root of unity. We define Vq to be
the closure of the set {ag' I n = 0, 1, 2, . . . } . A description of the set Vq
will be given in Section 3 (Lemmas 4 and 5) . In Section 4, Theorem 4,
we will give necessary and sufficient conditions for a polynomial sequence
(rn(x)) to be a normal basis for C(Vq --> K) .

If we put { x

	

= 1

	

{ x

	

- (y~_

	

1)(./(aq)-1) . . .(x/(ag-1)-1) if n > 10

	

n

	

(q--1) . . . (q-1)
and if (in) is a sequence in No, then we show in Theorem 5 of Section

5 that

and

forms a normal basis for C(Vq --> Qp) . The proof we

give here is only valid when we work with a discrete valuation .

In Section 6, Theorem 6 we show that

basis for C(Vq

	

> K), where the valuation of K does not Nave to be
discrete, as was the case in the previous section .
To prove this, we need the results of Section 5 .
S . Caenepeel ([3]) proved the following : Let (x) _ x(x-1) .

..
(x-n -1-1) if

n > 1, (ó) = 1 (the binomial polynomials), then for each s E N0, ((n)S)
forms a normal basis for C(Zp --> Qp), and each function f in C(7Zp -->
Qp) can be written as a uniformly convergent series

where

aós)

cx( s )m

a(s)n

00

.f (x) _

	

a(S)
(ñ)

s

n=0 n

k=0

(7i, . . . .7r)
~jti=m ; 1 <j i<m

(-1)n-k
(n)

s

f(k)a(8) k

(-1)r+m

C1
m
MJ

s

405

also forms a normal
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If (jn) is a sequence in No, then the sequence of polynomials ((x21n
also forms a normal basis of C(7Zp --> Qp) ([4, p . 158]) .
Now we can find an analogous result on the space C(Vq ---> K) : each

function f, element of C(Vq -+ K), can be written as a uniformly con-
vergent series

00

f(x) _ 1: b(s)

	

n

	

s

n=0
n

{

and we can give an expression for the coefficients bn(s) , which is analogous
to the expression in (1) . This result can be found in Proposition 1 of
Section 6 .
Acknowledgement. I want to thank Professor Van Hamme and

Professor Caenepeel for the advice and the help they gave me during the
preparation of this paper.

2 . Normal bases for C(M ---> K)

In this section, K, is a non-archimedean valued field, complete with
respect to his norm J . J, and M is a compact, infinite subset of K.

Before we generalize Amice's Theorem, we give a lemma .

Lemma 1 .
Let (un) be an injective sequence in M, and let qo(x) = 1 qn (x) _
(x-uo) . . .

(x-u,- ')

	

for n > 1, where Ilgnll = 1 for all n .(un-u0) . . .(u~ -u~_ i )
If p(x) is a polynomial in k[x] of degree n, then there exists an index

i, 0 < i < n, such that llpll = Ip(ui)I .

Proof.
n

There exist coefficients cj such that p(x) _ 1: cjgj (x) . Now suppose
j=o

that Ip(ui)l < IIpII for all i, 0 < i < n . This will lead to a contradiction .
Supposing that Ip(ui)I < Ilpll for all i, 0 <_ i <_ n, we will prove by

induction that le ¡ ¡ < Ilpll for 0 < i < n .
n

Now p(uo) = Ecjgj(u0) = co, so ¡col < IIpII .
j=0

n
Further, p(ul) _ E cjgj(ul) = co + cl, so ICo + cli < IIpll, and com-

j=0
bining this with the previous we find Icl I < IIpII .
Suppose we already have that Icil < IIpII for 0 < i < k < n .
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n

	

k-1

	

k-1
Thenp(uk)=1: cjgj(uk) _ rcjgj (uk)+Ck,SO ECJgj(uk)+Ck <

j=0 j=0

	

j=0
lipli . Since Icil < jipi¡ for 0 < i < k < n and since IIgj1I = 1, we find that

So we may conclude that Icil < jipi¡ for 0 <_ i _< n .
But then we have, since (qn(x)) forms a normal basis (Theorem 1),

Jipi¡ = máx {ICil} < IIpil which is clearly a contradiction .o<¡<n
Since Ip(uá)I < IIplI, we may conclude that there exists an index i, 0 <_

i < n, such that Ilpil = Ip(ui)l. a

Proceeding from the theorem of Amice, we can marke more normal
bases with the following theorem :

Theorem 2 .
Let (qn(x)) be a normal basis as found in Theorem 1 .

n
Define pn(x) = r-Cn;jgj(x), Cn ;j E K, Cn:n 7~ 0 .

j=0
Then (pn(x)) forms a normal basis for C(M - K) if and only if

Ilpn 11 = 1 and ICn ;n l = 1 for all n.

Proof..

Suppose that the sequence (pn(x)) forms a normal basis for C(M
K).

It is clear that the norm of pn must equal one . Since (qn(x)) forms a
normal basis, this implies that ICn ;II < 1 .

n
There exist coefficients dn ;j such that qn = r_ dn;jpj (x) and so we

j=o
have 1 = II~inII = máx {Idn;jl} SO Idn ; n 1 < 1 .O<j<n

n

	

n j

	

n n
lillrther, qn = E dn;jpj (x) = 1:dn ;j j:cj ;igti = Eqi r_ dn ;j Cj ;á and

j=o

	

j=o i=o

	

i=0 j=i
thiS implies dn;ncn;n = 1 .
Combining this with the fact that Idn ;nl <_ 1 and ICn ;n1 <_ 1, we con-

clude Idn;nl = 1 and ICn ;n1 = 1 .
We now preve the other implication .
Let k be an arbitrary element of N and let bo, b 1 , . . . . bk be arbitrary

elements of K. For the orthonormality of the sequence (pn(x)), we have
to show

I l bopo +

	

. . + bkpk l l = omax { I I bipi l l } = Omax { Ibi l }-
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If max {lbn ¡} = 0 there is nothing to prove.
0<n<k

If max {Ibnl} > 0, then put I = {nI0 < n < kl Ibn l = max {Ibjl}} .
0<n<k

	

0<j<k

There exists an N such that N= max{i E I} .

We have

	

k bnPn(x)<_

	

max {Ib.Pn(x)I}

	

<IbNI, and soI
n=0

	

0<n<k
k
E bnPn II < max {Ibnl}-
n=O O<n<k

Put E, bnPn (x) = E b.Pn(x) +

	

1:

	

bnPn(x) = f(x) + j(x), where
n=0 n=O n=N+1

we have 1If 11 < Omak{Ibnl}, 11f 11 < omnaxk{Ibnl} (strict inequality) .

N

	

N n

	

N N¡(X)

_ 1: bnPn(x) = E bn 1: Cn;7q(x) _1: qj(x)EbnCn;j
n=0

	

n=0 j=0

	

j=0 n=j
N-1 N

qj (x)1: bnCn ;j + gN(x)bNCN;N .
j=0 n=j

We distinguish two cases:
N-1 N

a)

	

E qj ~bnCn;j I < I bN
j=0 n=j

Since IqN (UN)bNCN;N I = IbNI, it follows that I f(UN) I = IbNI, and so

bnPnll = IbNI = Omnaxkllbnl}-
1n=0

N-1 ~N
b) I

	

qj G..bn Cn;j I = IbNI
j=0 n=,j

~ N

	

N
There exists an i, 0 < i < N-1, such that

	

Élqj (ui)E bnCn;j I =IbNI- -

	

j=0

	

n=i
(Lemma 1) .

Then we have I f(uj

	

=

~

k
E bnPnl = IbNI = max {Ibnl}-
n=0

	

0<n<k

A . VERDOODT

N-1 N
gj(u¡)rb.Cn;j = IbNI, and so

j=0 n=i

We conclude that the sequence (Pn(x)) is orthonormal.

By [6, p. 165, Lemma5 .1] andby Kaplansky's Theorem (see e.g . [6, p .
191, Theorem 5.28]) it follows that (Pn(x)) forms a basis of C(M -> K),
since the k linear span of the polynomials Pn(x) contains K[x] .



Theorem 3.
Let (pn(x)) be a polynomial sequence in K[x], which forms a normal

basis for C(M

	

K), and let (rn(x)) be a polynomial sequence in K[x]
n

such that rn (x) _ E en,jpj (x), en ;j E K.

	

Then the following are equiv-

alent:

Proof..

Definition.

Lemma 2.

Proof.

j=o
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i) (rn(x)) forms a normal basis for C(M -, K)
n) IIrnil - 1, len;nl = 1
iii) IenSjl C 1, Ien;nl = l.

i) <~=> ii) follows from Theorem 2, using the expression pn(x) =
n
1: Cn;jgj(x), and fi) <~=> iii) follows from the fact that (pn(x)) forms a
j=o
normal basis .

3 . The set VQ

From now on, Kis a non-archimedean valued field, K contains Qp, and
K is complete for the valuation J .¡, which extends the p-adic valuation .
The aim now is to find normal bases for the space C(VQ --> K) . There-

fore, we start by giving a description of the set Vq (Lemmas 4 and 5
below) .

If b is an element of ZP, b - 1 (mod p), x an element of 7G P , then we
put bx = 1im bn . The mapping : ZP --> ZP : x --> F is continuous .7

For more details, we refer the reader to [4, Section 32] .

Let a be an element of 7GP, ce - 1 (mod pr), a ~á 1 (mod pr+i) r > 1 .
If (p, r) 0 (2, 1), 0 E 7Gp\{0} then

C¢a - (mod pr+ordy /i)

caa ~i 1(mod pr+l+ordpp)
.

Let a = 1 + -yp', and let y = -yo + 'y,p + . . . , with -yo :~É 0, be the
Henseldevelopment of the p-adic integer -y ([4, Section 3]) .
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Then we llave

ap = (1 + ypr )p =

	

(P) (ypr )k = 1 +p,Ypr + . . . (^lpr)p
k=o

= 1 + -Yopr+1 . . . (remark : r + 1

	

rp),

and so ap - 1 (mod pr+1) , ap # 1 (mod pr+z) .

If we continue in this way, we find : aps - 1 (mod pr+s), aps	1 (mod
pr+l+s ) .

Now take k such that 2 < k < p - 1 .

k
ak = (1 + ypr)k =

	

(k) (ypr)j = 1 + krYpr + . . . ('Ypr)k .

k-y cannot be a multiple of p, since neither k or y is divisible by p .
So ak = 1 (mod pr) , ak # 1 (mod pr+1) .

Let n be an element of No. If we combine the previous results then we
find Can - 1 (mod pr+or,p n) , an # 1 (mod pr+l+ordy n) .

The lemma follows by continuity.

Lemma 3.
Let a be an element of 7G2, a - 3 (mod 4) . Define a natural number n

by a = 1 + 2 + 22E, E = so + El2 + E222 + . . . , Eo = El = . . . = En-1 = 1,
En = 0 .

If /3 E 7G2\{0}, ord2 /3 = 0 then

aQ-1(mod2)
aa

	

1(mod 4) .

If ,l E Z2\{0}, ord2 ,C3 = k > 1 then

Proof.

ao - 1(mod 2n+2+ord20 )
aa

	

1(mod 2n+3+ord2 /0)

a = 3 + 4E. Hence a2 = 1 + 23 (1 + E) (1 + 2E) .
Since E = Eo + El2 + E222 + . . . , Eo = El = . . . = En-1 = 1, En = 0,

ord2(1 + 2E) = 0, we llave a2 - 1 (mod 2n+3) , a2 ~á 1 (mod 2n+4) .



Then

aqr(qm)p_ 1

a2k+1 = (a2)2k - 1(mod 2'+3+k)
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1(mod 2n+4+k) by Lemma 2 (k > 1) .

So a2k - 1 (mod 2'-F2+k) a2k ~A 1 (mod 2n+3+k) (k > 1) .
In an analogous way as in the previous lemma, we show
If s E No, ord2 s = 0, then as - 1 (mod 2), as # 1 (mod 4) .
If s E No, ord2 s = k >_ 1, then as - 1 (mod 2n+2+ord2 s), as

	

1 (mod
2n+3+ord2 s) .

The lemma follows by continuity.

In the following lemma, m is the smallest integer such that qm - 1
(mod p) . (Remark : 1 < m < p - 1) .

Lemma 4.
Let qm - 1 (mod p'°), qm 1 (mod p'°+1).

If (p, ko) 0 (2, 1), then Vq =

	

U

	

{x E 7p I ix - agrl < p-ko} .O<r<m-1

Proof.
We take the m balls {x E 7Z p i I x - aqr I < p-'O}, 0 < r < m - 1 .
Every element agr(gm)n (0 _< r < m - 1, n E N) belongs to one of

these balls : l agr(qm)n - ag rl = I agrl I(gm)n - lI < p-ko (Lemma 2) .
Since VQ is the closure of {agnIn = 0, 1, 2 . . . . } _ {agr(gm)n10 <_ r _<

m - 1, n E N}, we have that

	

U

	

{x E 7Zp i ix - aqr 1 < p-k.} D VQ .o<r<m-1
The m halls {x E 7Gp i Ix-aqr 1 < p'0 } are pairwise disjoint : take r, s E

{0,1,� ,m-l}, r a s e.g . r > s, then I aqr - aqs I = laqs I qr-s _ 1 I = 1 .
We remark that it is impossible to take balls with a smaller radius :

Iagr - agrgml = I agrl 1 1 - qm 1 = p-k° .

Let r be fixed : {x E 7Gp i I x - aqr I < p-ko } .
We take the following p elements of VQ : agr(qm)O, agr(gm)1 . . .

Each of these elements belongs to {x E Zp i Ix - aqr

	

<_ p-ko} :
1agr(q')z - aqr l = Iagr l I (qm)z - 11 :5 p-ko by Lemma 2 (0 < i < p - 1) .
Furthermore, if i, j

	

E

	

{0, 1, . . . ,p - 1}, i

	

:,,~ j, soy i

	

> j, then
lag r (qm ) Z - agr(qm)'I = Iagr(qm)jj I(gm)Z-i - 1 1 = p-ko by Lemma 2
since0<i-j<p-1 .

So these p elements define p disjoint balls with radius p-(k°+ 1 ) which
cover {x E Zp I ix - agrl < p-ko} .
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We take {x E ZpI Ix - agr (qm)'I < p-(ko+1)}, i E {O,1, . . . , p
fixed .
Take the p elements agr(qm)i+jP , 0 <_ j < p - 1 .
These elements belong to {x E 7Gp i Ix -

agr(qm)ZI < p-(ko+1)} :

agr(qm)2+7P-agr(qm)a1 = lag r (gm ) Z I I (qm)jP- 11 < p-(ko+1) by Lemma
2 (0 < j < p - 1) .

Furthermore,

	

if j, k

	

E

	

{O,1, . . . , p - 1},

	

k

	

:~

	

j,

	

say k

	

>

	

j,

	

then
Iagr(qm)i+kp - agr(qm)í+iPl = Iagr(gm)i+;PI I (qm)(k-7)p - 11 = p-(kO+1)

by Lemma 2 since 0 < k - j < p - 1 . So these p elements define p
disjoint balls with radius p- (1,0+2) which cover {x E 7Zpl Ix-agr(qm)i1 <
p-(ko+1) } .

We can continue this way.
Suppose we have {x E Zp1 Ix - agr(qm)2O+i1P+" .+inP" I < p-(ko+n+1)},

¡o,ii, . . . . i n E {O,1, . . .,P - 1}, ¡o,ii, " . .,in fixed .
We take the p elements agr(qm)?O+i1P+'inP"+án+'P" +1 0 < in+1 < p-1 .
All these elements belong to {x E 7Gp 11x - agr(qm)ZO+21p+"'+inpn l <

p-(ko+n+1) } :

Iagr(gm)ZO+i1P+'
. .+inp"+in+1P'L+1 -agr (gm)''O+'a1P+- .+'i-P" I

= Iagr(gm)2O+x1P+-+inP"1 Iag r (gm )2n+1Pn+1 -
11 < p-(ko+n+1) .

Flrthermore, if j, k E {O,1, . . . , p - 1}, k qÉ j, say k > j, then

Iagr(qm)2O+"+' . .+inp"+kpn+1 - agr(gm)ZO+i1P+� +'inPn+iPn+1

= lagr(gm)io+i,p+
. . .+inpn+7Pn+l

I I (qm)(k-j)Pn+1 - 11 = p-(ko+n+1) .

So these p elements define p disjoint balls with radius p-(ko+n+2) which
cover {x E 7Gp I Ix - agr(qm)'iO+i1P+-- +inPn I < p-(ko+n+1)} .

Continuing this way, we find closed balls with radius tending to zero
and whose centers are elements of {aqn In = 0, 1, 2 . . . . }, and these balls
cover

	

U

	

{x E 7Zp I Ix - aqr I

	

<_ p-ko } .

	

So

	

U

	

{x E ZP I Ix -
0<r<m-1

	

O<r<m-1
aqr I < p-ko } is the closure of {aqn In = 0, 1, 2 . . . . }_ But this means that

Vq

	

o<rGn-1{x E Zpi Ix - agr1 < p-ko} .

Lemma 5 .
Let q - 3 (mod 4) .
Then Vq = {x E 7Z2I Ix - al <_ 2-(N+3) } U {x E Z2 I Ix - aql < 2-(N+3) }

where q = 1+2+22E, E = Eo+El2+E222 + . . . , EO = El = . . . = EN-1 = 1,
EN =O.



Proof:
Every element aqn belongs to {x E Z21 IX - al <_ 2- (N+3)} U {x E

Z2I IX - agl <_ 2-(N+3)} : l ago+2k - al = ¡al Ig2k - lI <_ 2-(N+3) and
lag l .+2/c - aqI = IaqI Iq2k - 11 :5 2-(N+3) by Lemma 3 (k E N) . Since Vq
is the closure of {agnln = 0, 1, 2 . . . . }, we have that {x E Z2I Ix - al <_
2-(N+3)} U {x E Z2I Ix - aqI <

2-(tv+3)}

	

Vq.

The balls {x E Z2I Ix-al <_ 2- (N+3)} and {x E Z2I Ix-aqI < 2-(N+3)}
are disjoint :

	

I aq - al = ¡al Iq - lI = 2-1 .

We remark that it is impossible to take balls with a smaller radius :
lag

2- al = ¡al Iq 2 -1I = 2- (N+3 ) and Iag1+2-aq I = Iagl Iq2- l1 = 2-(w+3)

(Lemma 3) .
F~om now on, we can prove the Lemma in an analogous way as Lemma

4 .

We will need these lemmas in the sequel .
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4. Normal bases for C(Vq ~ K)

We want to give a theorem analogous to Theorem 3, but with C(M -->
K) replaced by C(Vq -> K) .

Therefore, we need some notations .
We introduce the following :
[n]! = [n] [n - 1] . . . [1], [0]! = 1, where [n] = e

=11 if n > 1 .

[n] =

	

[nj!

	

if n > k, [n] = 0 if n < k .

(x - a) (n) = (x - a)(x - aq) . . . (x - aqn-1 ) if n > 1, (x - a)(°) = 1 .

x __ (x/a-1)(x/(a9)-1) . . .(x/(¢qk-1)-1)

	

x

Lemma 6.

i) [nk] =
[k-1]

+qk [n
k 1J

.

ii) [ n ] is a polynomial in q .

Proof..
i) follows immediately from the definition, ii) and iii) follow from i) .
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The polynomials

	

~

	

are the Gauss-polynomials .

We will need the following properties of these symbols :

[n]

	

_

	

x} if x = aqn,
~ [n]

	

<

aq'

	

_

	

[k]

	

= 1 and since { X

Definition.

The following properties are easily verified :

Lemma 7.

xn

is continuous .

(q - 1)ngn(n-1)/tan

	

so

	

(x ni (n
)

	

_ j(q - 1)nl .

If f : Vq -4 K then we define the operator Dq as follows :

(Dgf)(x) =
f (qx) - f(x)
x(q - 1)

D9xk = [k][k - 1] . . . [k - j + 1]xk-i

Dgxk = 0
Dq(x - y)(k) = [k][k - 1] . . . [k - j + 1](x - y)(k-j)

Dq(x - y)(k) = 0

Proof.
n

We know we can write xn as xn = r_ ak(x - a) (k) .

	

Since Dgxn =
k-o

[n] n-1 and if we apply the operator Dq k times and put x = a, we find
[n] [n - 1] . . . [n - k + 1]an-k = ak[k]! .

Lemma 7 and it's proof can also be found in [5, p . 121] .

Lemma 8 .
Take an injective sequence (un) in Vq and define

qn(x) =

	

(x -
u0) . . . (x - Un-1)

	

for n > 1
(un - uo) . . . (un - Un-1)

Proof.
Put M = Vq in Theorem 1 .

all n, k in N,for

(x_a) (-) _ x
!n!' - n

ifk>j
ifk<j
ifk>j>1,
if j > k .

Then (qn) forms a normal basis for C(Vq --> K) if and only if 11gn11 = 1
for all n .
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Corollary .

({ n }) forms a normal basis for C(Vq , K) .

Proof..

Put un = aqn .

Theorem 4.
Let (pn(x)) be a polynomial sequence in K[x] which forms a normal

basis for C(Vq --> K), and let (rn(x)) be a polynomial sequence such that
n

	

n
rn x) = r- Cn;jpj (x) = E bn;jxj , Cn ;j , bn;j E K> Cn :n z,~ 0 , bn:n

j=o j=o
Then the following are equivalent :

i) (rn(x)) forms a normal basis for C(Vq -> K) .

.
~ n

v)

	

r-bnj [k]
aj ~ <

	

1Ifkl!(q-1)kl> Ibn;nl

Proof.
i) !--> fi) ~=> iii) follows from Theorem 3, by putting M = Vq , fi) <--> iv)

and iii) <-:> v) follow from Lemma 7, by putting Pn(x) = {
n }

.

Some examples.

1) Put Pn(x) = {
qn

} .

Then the sequence (pn(x)) forms a normal basis of C(Vq --> K) :
apply iv) .

2) If the polynomial sequence (pn(x)) forms a normal basis of
n

C V ---> K

	

then so does

	

x

	

If

	

x

	

Cn;

	

,( q

	

)~

	

(pn(q ))

	

pn( ) _

	

7
j=o

	

{7
n qx

thenpn(gx)= r_ cn;j
j=o

	

~ 7 }
Use example i) and apply iii) .

3) If the sequence (pn(x)) forms a normal basis of C(Vq -> K), then
so does (pn(gkx)) where k is a fixed natural number : use Example
2) .

il) ¡ir,,¡¡ = 1, ICn;nl = 1 .
111) I Cn;7I 1, ICn;n1 = 1 .
iv) IIrnIl = 1, Ibn;nl - I[n]!(q-1)11
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4) If the sequence (p,,(x» forms a normal basis of C(V. - K), then
so does (p,,(gknx)), where (k,,) is a sequence in N : use Example
3) .

5) If the sequence (p,,(x)) forms a normal basis of C(Vq ---> K), then
so does (r, (x», where r, (x) = po(x) +p1(x)+ +p,,(x) : apply
iii) .

6) If the polynomial sequence (pn,(x)) forms a normal basis of
C(Vq ---> K), then so does ((q - 1)~D4p,(x)),>j, j E N, j fixed :
apply iii) .

To end this chapter, we give the valuation of Ibn ;n 1 =

	

1
I!n!

! (9-1)-I .

If n is different from zero then

	

1

	

-

	

1
'

	

I!n!!(q-1)nl

	

-

	

I(q~-1)(q~-1-1) . . . (q-1)I
and this leads us to the following lemma :

Lemma 9 .
Take m > 1, m the smallest integer such that qm - 1 (mod p) .

i) Ifqm - 1 (mod pr), qm á 1 (mod pr+1) (r > 1), and (p, r) :~ (2,1)
then

1 (qk - 1)(q"-1 - 1) . . . (q - l) j = p-!klm!r I [k/m]! 1

where [x] = max{k E 7GIk <_ x} .
ii) If q - 3 (mod 4), where

q=1+2+22 E,

E=Eo+El2+E222 + . . .,EO=El= . . . =EN-1=1 EN=0

then

I(q k - 1)(qk-1 - 1) . . . (q - 1)j
= 2-2k2-Nk/2I(k/2)!j

	

if k is even,
= 2(-kN-4k+N+2)/22-Nk/2I((k - 1)/2)!j if k is odd.

We remark that (see [4, Section 25.5J) lj!1 = p- '(j) with A(j) =

t

j = z 1yip2 ,
=o

si

j-sj
P-1

Proof..
i) Suppose qm - 1 (mod pr), qm

	

1 (mod pr+1) , r >_ 1, (p, r) :~ (2,1) .
First, take p :,A 2 .qk - 1 = qmj+s - 1 with 0 < s < m.



Then

NORMAL BASES

Then (q')j - 1 (mod pr+ordy j)
(q-)j ~á 1 (mod pr+1+ordy j) (Lemma

2), so (q-)j = 1 + G,pr+ordy j ordP a = 0 .
If s is different from zero, then qs = /.3 with Q = 00 -}- X3,p + X32p2 + . . .

with ~30 z,~ 0, ~30 =,/= 1, so q-j+s - 1 = (1 + apr+ordpi),3 - 1 = 0 +
a ,3pr+ordy j - 1 and thus q'j+s - 1 is a unit if s is different from zero .

I(q k - 1)(qk-1 - 1) . . . (q - 1)I = I ((q')' - 1) . . . (qm - 1) 1
= p-(r+ord y ,) , . , p-(r+ord y, 1)

If p is equal to 2 then m equals one and thus

ii) Suppose q - 3 (mod 4) . We use Lemma 3 .
If k is even then I(qk - 1)(q k- 1 - 1 ) . . . ( q - 1)1

= p-
r' h! 1= p

-
!k l-!r 1 [k/m]! 1 .

I(q k - 1)(qk-1 - 1) . . . (q - 1)1 = 2- (r+ordy k) . . . 2-(r+ordP 1)

=
2-rkIk!1=

2
-[k

/m!r1 [k/m]!1 .

= 2-k/22-(N+2+ord2 k)2-(N+2+ord2(k-2)) . . .2-(N+2+ord2 2)

= 2-k/22-(N+2)k/2Ik1 Ik - 21 . . . 121

= 2-2k2-Nk/2 1 (k/2)!1

and if k is odd I(qk - 1)(qk-1 - 1 ) . . . ( q - 1)1

= 2-(k+1)/22-(N+2+ord2(k-1))2-(N+2+ord2(k-3)) . . . 2 (N+2+ord22)

= 2-(k+1)/22-(N+2)(k-1)/22-(k-1)/2I«k
- 1)/2)!1

= 2(-Nk-4k+N+2)/21((k - 1)/2)!1 which proves the lemma .

5 . More bases for C(Vq , QP)

We want to make new normal bases, using the basis

417

Now, if E is a non-archimedean Banach space over a non-archimedean
valued field L, and E has a normal basis, then the norm of E satisfies the
following condition : for each element x of E there exists v in L such that
the norm of x is equal to ¡vi . Y . Amice Q2, p . 82]) calls this condition
(N) .
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So, if we want to make more normal bases for C(,, ---> Qp) we can use
the following result ([2, p . 82, Prop . 3 .1 .5]) :

Let E be a Banach space over a non-archimedean valued field L . If
L has a discrete valuation and if E satisfies condition (N), then for a
family (en) of E for which

	

en 11 < 1 for all n the following are equivalent :
i) (en) is a normal basis of E,

ii) (p(en)) is a basis of the vector space É.
where Eo = {x E El j1ell < l}, Eó = {x E El ¡¡el¡ < l}, E = Eo/Eó and
p is the canonical projection of Eo on É.

Since the valuation of L has to be discrete, we use this result to find
normal bases for C(VQ -> Qp) . We start with some lemmas .

Lemma 10.
i + j

	

_

	

n

	

2

	

] q-k(-j+n-k) .
n

	

1: [ k

	

[n-k
k=0

Proof.
If n is zero or i + j is strictly smaller then n, then the lemma surély

holds .
From now on we suppose i + j greater than n.

If

	

i + j

	

is

	

equal

	

to

	

n

	

then

	

i + j

	

is

	

equal

	

to

	

one

	

and
n

kó

	

2

	

]
q-k(-j+n-k)

	

_

k~-o

	

z

	

[n
-

z
] q-k(2-k)

	

= 1 Since
k

	

n -k

	

k

	

n-k[
the only term different from zero is the term where k equals i .
From now on we proceed by (double) induction .

LznjJ- in7 11J+qn[i+~-1] (byLemma6)

Z

	

- 1

	

q-k(-i+n-k)
kJ ~n-k-1

k-o~J

+qn

k
~

[ 2 ] [ j - 1 ] q-k(-7+l+n-k)
k n-k

(by the induction hypothesis)
-1

- ~nJgnj+n1 ~kJq_k(-7+n-k)C[nj kl 1,+[n_k]gn-k/

a
[

	

q-k(-j+n-k)

k-o

	

(by Lemma 6) .
k n-k



Lemma 11 .
Let q''n - 1 (mod pko), qm

	

1_ 1 (mod pko+ 1) with (p, ko) 7~ (2,1) .

If x, y E Vq , IX - y1 < p-(ko+t) then ~ {

n }s
- {

n

}'~ < 1/p, where

sEN,0<n<mpt .

Proof..
The lemma holds if s is equal to zero .
If qm - 1 (mod p k o), qm t 1 (mod pko+ 1 ) with (p, ko) =,A (2, l), we

then have Vq =

	

U

	

{x E 7Gp ~x - aqr < p-ko} (Lemma 4) .
0<r<m-1

So Vq is the union of m disjoint balls with radius p- ko .

By the proof of Lemma 4, we have that Vq is the union of mpt disjoint
balls with radius p- (ko+t) and with centers agr(gm)k, 0 < r < m - 1,
0<k<pt.

	

- _

Take x, y E

	

{aqj jj = 0, 1, 2, . . . } with ix - y¡

	

_< p-(ko+c) .

	

Then,
by Lemmms 2 and 4, there exist natural numbers n.,: and ny such that
x = agr(qm)n- and y = ag r (gm )n y wlth Inx -ny1 < p-t (n, ny E N) .
Then

F~lrther,

n~-~n~
_ Ir_

	

+ n nx

	

- Ir+ ?mny

r + mnx
~
_

	

m(nx - ny ) + r + mny
n

	

~

	

n

r + mny
n

since 1 < k < n < mpt and 1nx - ny 1 < P- t .
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m(ny - ny )

	

r +mny

	

q-k(-(r+mny)+n-k)

k

	

11 n - k
k=0

(Lemma 10 if nx > ny)

+
n

	

m(ny - n y )

	

r +mny

	

q-k(-(r+mny)+n-k)
[

	

k

	

] [ n-kk=1

	

1

Since [ j~

	

(i > j > 1) we have

	

~~

	

<

	

(i > 0, j > 1),

m(nx - ny)

	

(m(ns -ny)I

	

-

	

(qSo

	

k

	

<

	

[k]

	

-

	

i < 1/p by Lemma 2
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Then

r +rmnx	-

	

r +7mny

<_ max
{ ~

f m(nx - ny )

	

rr + mny

	

q_k(_(r+my)+n-k)

	

< 1/p .
1<k<n

	

k

	

n - k

So ~ { x } - { n } ~ < 1/p and this also holds if n is zero .

Finally, if s is greater then one,

x

	

y

	

x

	

y

	

S	x

	

y } S

The lemma follows by continuity.

Lemma 12.
Let q - 3 (mod 4),

Proof..

q=1+2+22E

E = eo + E12 + E222 + . . ., Eo = El = . = EN-1 = 1, EN = 0.

If x, y E Vq, IX - y¡ < P-(N+2+1) then ~ { n }s
- {

n }3

	

< 1/2, where

sE N,0<n<2t (t>1) .

The lemma holds if s is equal to zero .
Vq = {x E 7Z21 ix - al < 2-(N+3)} U

{x E 7221 Ix - aql <- 2-(N+3)}, by
Lemma 5 .
By the proof of Lemma 5, we have that Vq is the union of 2t disjoint

balls with radius 2-(N-4-2-'-') and with centers aq
n

, 0 < n < 2' (t > 1) .
Take x, y E {aqj jj = 0, 1, 2 . . . . } with ix - y1 <_ 2-(N+2+t) .

	

Then,
by Lenlmas 3 and 5 we must have that x = agnx and y = agny with

lnx - n. l < 2-t (n, ny E N) . Then

~ { x } _ { y } ~ = ~ [nx ] _ [ny]



Further,

(n_ [, ny)+nyn

	

l

n

	

nx - ny	ny

	

q_k(_%+n_k) (Lemma 10 if nx > ny)
1, n-kk=O ] ~

ny ] +

	

[n-
k ny [

nny
k

	

q-k(-ny+n-k) (n > 1)]
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Since [~ ] = [l [~ _ i ] (i > j > 1) we have

	

[~ ]

	

<

	

[

	

(i > 0, j > 1),

so [nx	ny l

	

<

	

[nx[k]ny]

	

=

	

g~9k-i
-i

	

< 1/2 by Lemma 3 since

1<k<n<2t andIn,-ny s<2 - t .
Then

n

	

n

	

lmax {
~
[
nx

k ny [ nny k ] q-k(-ny+_

	

-k)

So

	

{ n } - { n } ~ < 1/2 and this also holds if n is zero .

Finally, if s is greater then one,

< 1/2 .

n

	

-

	

n

	

-

	

n

	

-

	

n

	

n

	

{ n

	

< 1/2.

The lemma follows by continuity.
Since C(,, , Qp) has a normal basis, its norm satisfies condition (N),

and so we can use [2, p . 82, Prop . 3.1 .5] to prove the following :

Theorem 5.
Let (in) be a sequence in No .

	

Then the sequence of polynomials
l ~n

f n

	

forms a normal basis for C(Vq -> Qp) .

Proof..
This proof is analogous to the proof of Theorem 1 .1 in [3] .

By [2, Proposition 3.1 .5, p . 82] it suffices to prove that
({ nnX }

forms a vectorial basis of C(Vq --> Fp) .
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We distinguish two cases .

If q-m, - 1 (mod pko), qm

	

é~ 1 (mod pko+1) with (p, ko) 0 (2, l), define
Ct the space of the functions from Vq to IFp constant on balls of the type
{x E Zpl Ix - al < p-(ko+t)}, a E Vq . Since C(Vq �+ IFp) = Ut>oCt it

x

	

~}
~ in < mpt ) forms a basis of Ct . By thensuffices to prove that

proof of Lemma 4, we can write Vq as the union ofmpt disjoint balls with
radius p- (ko+ t) and with centers aq''(gm)n, 0 <_ r < m - 1, 0 <_ n < pt .
Let Xi be the characteristic function of the ball with center aq

i. Using
Lemma 11, we have

hence the transition matrix from

jn
is triangular, so

({ n

	

in < mpt

/
forms a basis of Ct.

If q - 3 (mod 4), q = 1 + 2+ 22E, E = Eo + E12 + E222 + . . . , Eo = El =
= EN-1 = 1, EN = 0, define Ct the space of the functions from Vq to

IF 2 constant on balls of the type {x E Z2 1 IX - al < 2-(N+2+t)}, a E Vq .
7.

Since C(Vq ---> F2) = Ut>1Ct it suffices to prove that
({ n

	

in <
2t/

forms a basis of Ct . By the proof of Lemma 5, we can write Vq as the
union of 2t disjoint balls with radius 2-(N+2+t) and with centers aq',
0 < n < 2t . Let xi be the characteristic function of the ball with center
aqi. Using Lemma 12 we have

triangular, so
({ x

n
theorem.

2c _1

mpt-l xi (x) l
ñz

7~
(X.In < mpt) to

({ n

	

in < mptl

hence the transition matrix from (Xn l n < 21 ) to

in < 2t ) forms a basis of Ct . This proves the



Theorem 6.

for C(Vq -> K) .

Proof..

max {¡ni¡} .
0<i<n

~CIN{
agN }jN

- NN
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6. Extension to C(V. --> K)

Let K be as in Chapters 3 and 4 . We want to show that ({

	

}in

n
forms a normal basis for C(Vq - K) . To prove this, we need the results
from Section 5 . We remark that the valuation of K does not have to be
discrete, as was the case in Section 5 .

xLet (in) be a sequence in No . Then
(~

n
}j,) forms a normal basis

jn
It is clear that

	

n
x

	

= 1 .
~~{}

We now prove the orthogonality of the sequence . Let n be in
x }i0

	

x

	

jn
N, ao, . . . , CYn

	

in

	

K.

	

We

	

prove

	

a0 { 0

	

+

	

+an ~ n

jo

	

j~
It is clear that

	

a0
{

0

	

+

	

+ 0¿n { n

	

< ó<n{~ai¡} .

Put M = max {iai¡}, N = min{ii0 < i < n and Iail = M}. Then0<i<n

aqN }i0

	

aqN }jn

a0{

	

~
0

	

+ . . .+an{ n

N }i0

	

a N

	

jN-i

	

a N

	

jN
=max

l
a0 {aq~}0

	

+ . . . +a~,-1 { Nq

	

1

	

aN { N }

N }i0

	

N

	

jN-i

	

N }iN
since Iao { aq0

	

+ . . . + aN_i { Nq

	

1

	

<M,

	

aN {
aq

jo

	

x

	

jn
M. So

	

ceo {
x }}jo

+. .

	

+Can {

	

= max {iai¡} .0

	

n 0<á<n

Finally, we prove that the sequence forms a basis .
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By [6, p . 165, Lemma 5 .1] and by Kaplansky's Theorem (see e.g .
[6, p . 191, Theorem 5.28]), it suffices to prove that the k linear span

of the polynomials
n

element of Qp[x] and ({ x }3n)
forms a normal basis of C(Vq -> Qp)

1n

(Theorem 5), we can write { Xk ~ as a uniformly convergent expansion

{k} _ E angn(x) jn . So if OZ0, al, . . . , (kn are elements of K then there
n=0

exists coefficients dnj') in K such that ~Cei

	

x
} -

	

dnjn) { x
Yn

i=0

	

{ Z

	

n=0

	

nn
where the right-hand-side is uniformly convergent .

Let p be an element of K[x] . By the previous remark there exist

coefilcients enn) such that p(x) _Sri

	

x
} _

	

cnn)

	

x

	

So the
i=o

	

{ n

	

n=o

	

nn

k linear span of the polynomials

the proof.

If f is an element of C(Vq

A. VERDOODT

x
}In ) contains K[x] .

	

Since each
{
k

	

is an
}

contains K[x] . This finishes

K), there exist coefficients (bnn)) such

that f(x) = w b(jn)
{

x }~n
where the series on the right-hand-side is

n=o nn
uniformly convergent . In some cases it is possible to give an expression
for the coefficients :

Proposition 1 .
Let s be in No . Then each continuous function f : Vq	K can be

written as a uniformly convergent series

where

and Qós) = l, ~Ms)
_

fjll! . . .[ir]! .

00

.f (x) =

	

bns) { n }

	

with 11f 11 = máó{Ibnsl 1 }
n=0

bñs) = E(-1)n-k
[n
k
]s

f(aqk)~3-;,,5)k
k=o

~j~=m; 1<j~<m

r

l

	

_(-1)r+m m m
i1 . . . ir] SI

	

Iii . . . .ir ~



Proof.
The proof is equal to the proof of Corollary 1 .2 in [3] .

Ilf 11 = m
>
aó{Ibñs) 1} follows from the fact that

({ n }s)
forms a normal

basis .

	

If f(x)

	

_

	

b(s) { x

	

s
then f(aqk )

	

_

	

r- bñs)
[ k ]

s, and so
n=0 n

	

n=0 n
_1

	

k
s

b(s) = f(a), bk
s ) = f(agk ) - kE. b(s ) [

	

]

	

if k > 1 .
n=0 n

If k is equal to zero, the formulas certainly hold .
We proceed by induction . Suppose the formulas hold for 0 < j < N.

b( s)

	

a N+1)

	

1 bns) [N+1]8N+1=f(g - n
n=0

= f(agN+1)-1
: [Nn

1]s~

[k]s(-1)n-kf(agk)~ns)k
n=o k=O
N N

= f(agN+1) _ 11 1:(-1)n-kf(agk)
k=0n=k

(-1)r+n-k

	

n-k

JS

[n] s [N +1
J

s

~ti-i j'-n-k

	

,il

	

. . jr

	

k

	

n

N N
-f(agN+1) + 1: 1: f(agk)

k=0n=k

[j1]! . . . [jr]![k]![N + 1 - n]!

put jr+1 = N+ 1 - n

= f(agN+1) +
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rN+ 11 s f(agk)
kk

k=O

( -1)r+1 N+ .1-kl s
71~jr+1

ji=N+1-k

= f(agN+1)
+ E

[
N+1]

s f(agk)
(-1)N+1-kos+1-k

k=O

- [N+lls
k f(agk)(-1)N+1-koÑs+1-k

k=O
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which proves the proposition .

ProoE

An example.
We have

A. VERDOODT

Proposition 2.
s

For each s E X1 0 , the sequence of polynomials ( ( (x
[n];(n)

)) form a

oasis of C(V9 --> K) . Each continuous function f : Vq ---> K can be
wrátten as a uniformly convergent series

00

.f (x) _

	

cñs) (
(x [n~¡~n) ) S with ¡¡f 11 =mó{Ic(s)(q -1)nsIÍ

n=0

where cn(s) = bñs)I((q - j)ngn(n-1)/2an)s .

This follows from the fact that (x-a)(') =
~ n

	

(q - 1 )n gn(n-1)/2an .
~

lf we put s equal to one in Proposition 2, we find Jackson's interpola-
tion formula for continuous functions from Vq to K ([5]).

/30s) - bi
s) = 1

O2s)= [21s-1= (q+ 1 )3-1

O3s) =[3]s [2]s-
2[31 s

+ 1= (q2 +q+ 1 )s(q+ 1)s-2(q2 +q+ 1 )s + 1

,Q4s) = [4]s [31s [2] s - 3[4l s [3]s + [!
2i

t
+ 2[4] s - 1

_ (q3 +q2 + q + 1),(g2 + q + 1)s(q + 1)s

- 3(q3 + q2 + q + 1)
s
(g

2 + q + 1)s + (q2 + 1)
s
(g
2 + q + 1)s

+2(q3 +q2 +q+l)s -1

and after some calculations we find
2

1 1

	

{ 1 1

	

- q(q + 1)
{X

2 12 + (q2 + q + 1) (q + 1)2q2
{x3

}2

2
- q3 (q3 + q2 + q + 1 )(q2 + q + 1 )(q4 + 3q3 + 3q2 + 3q + 1)

	

x

	

+. .
{ 4

.

which gives us a uniformly convergent series .



NORMAL BASES

	

427

Referentes

l . Y . AMICE; Interpolation p-adique, Bull Soc . Math . France 92
(1964), 117-180 .

2 . Y . AMICE, "Les nombres p-adiques," Presses Universitaires de
Rance, Paris, Collection SUP, Le Mathématicien 14, 1975 .

3 .

	

S . CAENEPEEL, About p-adic interpolation of continuous and dif-
ferentiable functions, Groupe d'étude d'analyse ultramétrique (Y .
Amice, G. Christol, P. Robba) 25, 9e année, 1981/82, 8 p .

4 .

	

W. H. SCHIKHOF, "Ultrametric calculus : An introduction to p-adic
analysis," Cambridge University Press, 1984 .

5 .

	

L. VAN HAMME, Jackson's Interpolation formula in p-adic analysis,
Proceedings of the Conference on p-adic analysis, report nr . 7806,
Nijmegen, June 1978, 119-125 .

6 .

	

A. C . M . VAN ROoi.I, "Non-Archimedean functional analysis,"
Marcel Dekker, Pure and Applied Mathematics 51, 1978 .

Vrije Universiteit Brussel
Faculty of Applied Sciences
Pleinlaan 2
B-1050 Brussels
BELGIUM

Rebut el 2 de Juny de 1993




