NORMAL BASES FOR NON-ARCHIMEDEAN SPACES OF CONTINUOUS FUNCTIONS

ANN VERDOODT

Abstract

K is a complete non-archimedean valued field and M is a compact, infinite, subset of K. $C(M \to K)$ is the Banach space of continuous functions from M to K, equipped with the supremum norm. Let $(p_n(x))$ be a sequence of polynomials, with deg $p_n = n$. We give necessary and sufficient conditions for $(p_n(x))$ to be a normal basis for $C(M \to K)$. In the rest of the paper, K contains \mathbb{Q}_p , and V_q is the closure of the set $\{aq^n | n = 0, 1, 2...\}$ where a and q are two units of \mathbb{Z}_p , q not a root of unity. We give necessary and sufficient conditions for a sequence of polynomials $(r_n(x))$ (deg $r_n = n$) to be a normal basis for $C(V_q \to K)$. Furthermore, if we define $\begin{cases} x \\ 0 \\ \end{cases} = 1, \begin{cases} x \\ n \end{cases} = \frac{(x/a-1)(x/(aq)-1)...(x/(aq^{n-1})-1)}{(q^{n-1})...(q-1)}$ if $n \ge 1$, and if (j_n) is a sequence in \mathbb{N}_0 , then we show that the sequence of polynomials $\left(\begin{cases} x \\ n \end{cases}^{j_n} \right)$ forms a normal basis for $C(V_q \to K)$.

1. Introduction

The main aim of this paper is to find normal bases for spaces of continuous functions. Therefore we start by recalling some definitions and some previous results.

Let K be a non-archimedean valued field and suppose that K is complete for its valuation |.|. Take $M \subset K$ compact, infinite, and let $C(M \to K)$ be the Banach space of continuous functions from M to K, equipped with the supremum norm.

Let *E* be a non-archimedean Banach space over a non-archimedean valued field *K*. Let e_1, e_2, \ldots be a finite or infinite sequence of elements of *E*. We say that this sequence is orthogonal if $\|\alpha_1 e_1 + \cdots + \alpha_k e_k\| = \max\{\|\alpha_i e_i\| : i = 1, \ldots, k\}$ for all *k* in N (or for all *k* that do not exceed the length of the sequence) and for all $\alpha_1, \ldots, \alpha_k$ in *K*. If the sequence

is infinite, it follows that $\left\|\sum_{i=1}^{\infty} \alpha_i e_i\right\| = \max\{\|\alpha_i e_i\| : i = 1, 2, ...\}$ for all $\alpha_1, \alpha_2, ...$ in K for which $\lim_{i \to \infty} \alpha_i e_i = 0$. An orthogoal sequence $e_1, e_2, ...$ is called orthonormal if $\|e_i\| = 1$ for all i.

This leads us to the following definition:

If E is a non-archimedean Banach space over a non-archimedean valued field K, then a family (e_i) of elements of E is a (ortho)normal basis of E if the family (e_i) is orthonormal and also a basis.

An equivalent formulation is

If E is a non-archimedean Banach space over a non-archimedean valued field K, then a family (e_i) of elements of E is a (ortho)normal basis of E if each element x of E has a unique representation $x = \sum x_i e_i$ where

 $x_i \in K$ and $x_i \to 0$ if $i \to \infty$, and if the norm of x is the supremum of the norms of x_i .

In [6, chapter 5, 5.27 and 5.33] we find the following theorem which is due to Y. Amice:

Theorem 1.

Let K be a non-archimedean valued field, complete with respect to its norm |.|, and let M be a compact, infinite subset of K.

Let (u_n) be an injective sequence in M.

Define $p_0(x) = 1$, $p_n(x) = (x - u_{n-1})p_{n-1}(x)$ for $n \ge 1$, $q_n(x) = \frac{p_n(x)}{p_n(u_n)}$.

Then $(q_n(x))$ forms a normal basis for $C(M \to K)$ if and only if $||q_n|| = 1 \ (\forall n)$.

If $(q_n(x))$ forms a normal basis for $C(M \to K)$ and f is an element of $C(M \to K)$, then

$$f(x) = \sum_{n=0}^{\infty} a_n q_n(x) \text{ where } a_n = p_n(u_n) \sum_{i=0}^n \frac{f(u_i)}{p'_{n+1}(u_i)}.$$

We remark that there always exist sequences $(q_n(x))$ such that $||q_n|| = 1$ for all n.

We will call a sequence of polynomials $(p_n(x))$ a polynomial sequence if p_n is exactly of degree n for all n.

After all these definitions, we now give a survey of the results in this article.

In Section 2 of this paper, K is a non-archimedean complete field, and M is a compact, infinite subset of K. In Theorems 2 and 3 we will give necessary and sufficient conditions for a polynomial sequence $(p_n(x))$ to be a normal basis for $C(M \to K)$.

In Sections 3, 4, 5 and 6 we consider the following situation: \mathbb{Z}_p is the ring of *p*-adic integers, \mathbb{Q}_p the field of *p*-adic numbers, and *K* is a non-archimedean valued field, *K* containing \mathbb{Q}_p , and we suppose that *K* is complete for the valuation |.|, which extends the *p*-adic valuation. Let *a* and *q* be two units of \mathbb{Z}_p , *q* not a root of unity. We define V_q to be the closure of the set $\{aq^n | n = 0, 1, 2, ...\}$. A description of the set V_q will be given in Section 3 (Lemmas 4 and 5). In Section 4, Theorem 4, we will give necessary and sufficient conditions for a polynomial sequence $(r_n(x))$ to be a normal basis for $C(V_q \to K)$.

If we put $\begin{cases} x \\ 0 \end{cases} = 1, \begin{cases} x \\ n \end{cases} = \frac{(x/a-1)(x/(aq)-1)\dots(x/(aq^{n-1})-1)}{(q^n-1)\dots(q-1)}$ if $n \ge 1$, and if (j_n) is a sequence in \mathbb{N}_0 , then we show in Theorem 5 of Section 5 that $\left(\begin{cases} x \\ n \end{cases} \right)^{j_n}$ forms a normal basis for $C(V_q \to \mathbb{Q}_p)$. The proof we give here is only valid when we work with a discrete valuation.

In Section 6, Theorem 6 we show that $\begin{pmatrix} x \\ n \end{pmatrix}^{j_n}$ also forms a normal basis for $C(V_q \to K)$, where the valuation of K does not have to be discrete, as was the case in the previous section.

To prove this, we need the results of Section 5.

S. Caenepeel ([3]) proved the following: Let $\binom{x}{n} = \frac{x(x-1)\dots(x-n+1)}{n!}$ if $n \ge 1$, $\binom{x}{0} = 1$ (the binomial polynomials), then for each $s \in \mathbb{N}_0$, $\binom{x}{n}^s$ forms a normal basis for $C(\mathbb{Z}_p \to \mathbb{Q}_p)$, and each function f in $C(\mathbb{Z}_p \to \mathbb{Q}_p)$ can be written as a uniformly convergent series

$$f(x) = \sum_{n=0}^{\infty} a_n^{(s)} \binom{x}{n}^s$$

where

$$a_n^{(s)} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k}^s f(k) \alpha_{n-k}^{(s)}$$

and

(1)
$$\alpha_{0}^{(s)} = 1$$

$$\alpha_{m}^{(s)} = \sum_{\substack{(j_{1}, \dots, j_{r}) \\ \sum j_{i} \equiv m; \ 1 \leq j_{i} \leq m}} (-1)^{r+m} {m \choose j_{1} \dots j_{r}}^{s}.$$

A. VERDOODT

If (j_n) is a sequence in \mathbb{N}_0 , then the sequence of polynomials $\binom{x}{n}^{j_n}$ also forms a normal basis of $C(\mathbb{Z}_p \to \mathbb{Q}_p)$ ([4, p. 158]).

Now we can find an analogous result on the space $C(V_q \to K)$: each function f, element of $C(V_q \to K)$, can be written as a uniformly convergent series

$$f(x) = \sum_{n=0}^{\infty} b_n^{(s)} \left\{ \begin{array}{c} x \\ n \end{array} \right\}^s$$

and we can give an expression for the coefficients $b_n^{(s)}$, which is analogous to the expression in (1). This result can be found in Proposition 1 of Section 6.

Acknowledgement. I want to thank Professor Van Hamme and Professor Caenepeel for the advice and the help they gave me during the preparation of this paper.

2. Normal bases for $C(M \to K)$

In this section, K, is a non-archimedean valued field, complete with respect to his norm |.|, and M is a compact, infinite subset of K.

Before we generalize Amice's Theorem, we give a lemma.

Lemma 1.

Let (u_n) be an injective sequence in M, and let $q_0(x) = 1$, $q_n(x) = \frac{(x-u_0)\dots(x-u_{n-1})}{(u_n-u_0)\dots(u_n-u_{n-1})}$ for $n \ge 1$, where $||q_n|| = 1$ for all n.

If p(x) is a polynomial in k[x] of degree n, then there exists an index $i, 0 \le i \le n$, such that $||p|| = |p(u_i)|$.

Proof:

There exist coefficients c_j such that $p(x) = \sum_{j=0}^n c_j q_j(x)$. Now suppose that $|p(u_i)| < ||p||$ for all $i, 0 \le i \le n$. This will lead to a contradiction.

Supposing that $|p(u_i)| < ||p||$ for all $i, 0 \le i \le n$, we will prove by induction that $|c_i| < ||p||$ for $0 \le i \le n$.

and com-

Now
$$p(u_0) = \sum_{j=0}^n c_j q_j(u_0) = c_0$$
, so $|c_0| < ||p||$.
Further, $p(u_1) = \sum_{j=0}^n c_j q_j(u_1) = c_0 + c_1$, so $|c_0 + c_1| < ||p||$,

bining this with the previous we find $|c_1| < ||p||$.

Suppose we already have that $|c_i| < ||p||$ for $0 \le i < k \le n$.

Then
$$p(u_k) = \sum_{j=0}^n c_j q_j(u_k) = \sum_{j=0}^{k-1} c_j q_j(u_k) + c_k$$
, so $\left| \sum_{j=0}^{k-1} c_j q_j(u_k) + c_k \right| < \infty$

 $\|p\|$. Since $|c_i| < \|p\|$ for $0 \le i < k \le n$ and since $\|q_j\| = 1$, we find that $|c_k| < \|p\|$.

So we may conclude that $|c_i| < ||p||$ for $0 \le i \le n$.

But then we have, since $(q_n(x))$ forms a normal basis (Theorem 1), $||p|| = \max_{0 \le i \le n} \{|c_i|\} < ||p||$ which is clearly a contradiction.

Since $|p(u_i)| \leq ||p||$, we may conclude that there exists an index $i, 0 \leq i \leq n$, such that $||p|| = |p(u_i)|$.

Proceeding from the theorem of Amice, we can marke more normal bases with the following theorem:

Theorem 2.

Let $(q_n(x))$ be a normal basis as found in Theorem 1.

Define
$$p_n(x) = \sum_{j=0}^n c_{n;j} q_j(x), c_{n;j} \in K, c_{n:n} \neq 0.$$

Then $(p_n(x))$ forms a normal basis for $C(M \to K)$ if and only if $||p_n|| = 1$ and $|c_{n;n}| = 1$ for all n.

Proof:

Suppose that the sequence $(p_n(x))$ forms a normal basis for $C(M \to K)$.

It is clear that the norm of p_n must equal one. Since $(q_n(x))$ forms a normal basis, this implies that $|c_{n;n}| \leq 1$.

There exist coefficients $d_{n;j}$ such that $q_n = \sum_{j=0}^n d_{n;j} p_j(x)$ and so we have $1 = ||q_n|| = \max_{0 \le j \le n} \{|d_{n;j}|\}$ so $|d_{n;n}| \le 1$.

Further,
$$q_n = \sum_{j=0}^n d_{n;j} p_j(x) = \sum_{j=0}^n d_{n;j} \sum_{i=0}^j c_{j;i} q_i = \sum_{i=0}^n q_i \sum_{j=i}^n d_{n;j} c_{j;i}$$
 and this implies $d_{n;n} c_{n;n} = 1$.

Combining this with the fact that $|d_{n,n}| \leq 1$ and $|c_{n,n}| \leq 1$, we conclude $|d_{n,n}| = 1$ and $|c_{n,n}| = 1$.

We now prove the other implication.

Let k be an arbitrary element of N and let b_0, b_1, \ldots, b_k be arbitrary elements of K. For the orthonormality of the sequence $(p_n(x))$, we have to show

$$||b_0p_0 + \dots + b_kp_k|| = \max_{0 \le n \le k} \{||b_ip_i||\} = \max_{0 \le n \le k} \{|b_i|\}.$$

If $\max_{0 \le n \le k} \{|b_n|\} = 0 \text{ there is nothing to prove.}$ If $\max_{0 \le n \le k} \{|b_n|\} > 0, \text{ then put } I = \{n|0 \le n \le k| |b_n| = \max_{0 \le j \le k} \{|b_j|\}\}.$ There exists an N such that $N = \max\{i \in I\}.$ We have $\left|\sum_{n=0}^{k} b_n p_n(x)\right| \le \max_{0 \le n \le k} \{|b_n p_n(x)|\} \le |b_N|, \text{ and so}$ $\left\|\sum_{n=0}^{k} b_n p_n\right\| \le \max_{0 \le n \le k} \{|b_n|\}.$ Put $\sum_{n=0}^{k} b_n p_n(x) = \sum_{n=0}^{N} b_n p_n(x) + \sum_{n=N+1}^{k} b_n p_n(x) = \hat{f}(x) + \hat{f}(x), \text{ where}$ we have $\|\tilde{f}\| \le \max_{0 \le n \le k} \{|b_n|\}, \|\hat{f}\| < \max_{0 \le n \le k} \{|b_n|\} \text{ (strict inequality).}$

$$\tilde{f}(x) = \sum_{n=0}^{N} b_n p_n(x) = \sum_{n=0}^{N} b_n \sum_{j=0}^{n} c_{n;j} q_j(x) = \sum_{j=0}^{N} q_j(x) \sum_{n=j}^{N} b_n c_{n;j}$$
$$= \sum_{j=0}^{N-1} q_j(x) \sum_{n=j}^{N} b_n c_{n;j} + q_N(x) b_N c_{N;N}.$$

We distinguish two cases:

a)
$$\left\| \sum_{j=0}^{N-1} q_j \sum_{n=j}^{N} b_n c_{n;j} \right\| < |b_N|.$$

Since $|q_N(u_N)b_N c_{N;N}| = |b_N|$, it follows that $|\tilde{f}(u_N)| = |b_N|$, and so
 $\left\| \sum_{n=0}^{k} b_n p_n \right\| = |b_N| = \max_{0 \le n \le k} \{|b_n|\}.$
b) $\left\| \sum_{j=0}^{N-1} q_j \sum_{n=j}^{N} b_n c_{n;j} \right\| = |b_N|.$

There exists an $i, 0 \le i \le N-1$, such that $\left|\sum_{j=0}^{N-1} q_j(u_i) \sum_{n=j}^{N} b_n c_{n;j}\right| = |b_N|$ (Lemma 1).

Then we have $|\tilde{f}(u_i) = \left| \sum_{j=0}^{N-1} q_j(u_i) \sum_{n=j}^N b_n c_{n;j} \right| = |b_N|$, and so

$$\left\|\sum_{n=0}^{k} b_n p_n\right\| = |b_N| = \max_{0 \le n \le k} \{|b_n|\}.$$

We conclude that the sequence $(p_n(x))$ is orthonormal.

By [6, p. 165, Lemma 5.1] and by Kaplansky's Theorem (see e.g. [6, p. 191, Theorem 5.28]) it follows that $(p_n(x))$ forms a basis of $C(M \to K)$, since the k linear span of the polynomials $p_n(x)$ contains K[x].

Theorem 3.

Let $(p_n(x))$ be a polynomial sequence in K[x], which forms a normal basis for $C(M \to K)$, and let $(r_n(x))$ be a polynomial sequence in K[x] such that $r_n(x) = \sum_{j=0}^{n} e_{n,j}p_j(x)$, $e_{n,j} \in K$. Then the following are equivalent:

- i) $(r_n(x))$ forms a normal basis for $C(M \to K)$
- ii) $||r_n|| = 1, |e_{n;n}| = 1$
- iii) $|e_{n;j}| \le 1, |e_{n;n}| = 1.$

Proof:

i) \Leftrightarrow ii) follows from Theorem 2, using the expression $p_n(x) = \sum_{j=0}^{n} c_{n;j}q_j(x)$, and ii) \Leftrightarrow iii) follows from the fact that $(p_n(x))$ forms a normal basis.

3. The set V_q

From now on, K is a non-archimedean valued field, K contains \mathbb{Q}_p , and K is complete for the valuation |.|, which extends the *p*-adic valuation.

The aim now is to find normal bases for the space $C(V_q \to K)$. Therefore, we start by giving a description of the set V_q (Lemmas 4 and 5 below).

Definition.

If b is an element of \mathbb{Z}_p , $b \equiv 1 \pmod{p}$, x an element of \mathbb{Z}_p , then we put $b^x = \lim_{n \to x} b^n$. The mapping: $\mathbb{Z}_p \to \mathbb{Z}_p : x \to b^x$ is continuous.

For more details, we refer the reader to [4, Section 32].

Lemma 2.

Let α be an element of \mathbb{Z}_p , $\alpha \equiv 1 \pmod{p^r}$, $\alpha \not\equiv 1 \pmod{p^{r+1}}$ $r \geq 1$. If $(p,r) \neq (2,1)$, $\beta \in \mathbb{Z}_p \setminus \{0\}$ then

$$\alpha^{\beta} \equiv (mod \ p^{r+\operatorname{ord}_{p}\beta})$$
$$\alpha^{\beta} \not\equiv 1(mod \ p^{r+1+\operatorname{ord}_{p}\beta}).$$

Proof:

Let $\alpha = 1 + \gamma p^r$, and let $\gamma = \gamma_0 + \gamma_1 p + \dots$, with $\gamma_0 \neq 0$, be the Henseldevelopment of the *p*-adic integer γ ([4, Section 3]).

Then we have

$$\alpha^{p} = (1 + \gamma p^{r})^{p} = \sum_{k=0}^{p} {p \choose k} (\gamma p^{r})^{k} = 1 + p\gamma p^{r} + \dots (\gamma p^{r})^{p}$$
$$= 1 + \gamma_{0} p^{r+1} \dots (\text{remark} : r+1 \neq rp),$$

and so $\alpha^p \equiv 1 \pmod{p^{r+1}}$, $\alpha^p \not\equiv 1 \pmod{p^{r+2}}$.

If we continue in this way, we find: $\alpha^{p^s} \equiv 1 \pmod{p^{r+s}}$, $\alpha^{p^s} \not\equiv 1 \pmod{p^{r+1+s}}$.

Now take k such that $2 \le k \le p-1$.

$$\alpha^{k} = (1+\gamma p^{r})^{k} = \sum_{j=0}^{k} \binom{k}{j} (\gamma p^{r})^{j} = 1+k\gamma p^{r}+\ldots(\gamma p^{r})^{k}.$$

 $k\gamma$ cannot be a multiple of p, since neither k or γ is divisible by p.

So $\alpha^k \equiv 1 \pmod{p^r}$, $\alpha^k \not\equiv 1 \pmod{p^{r+1}}$.

Let *n* be an element of \mathbb{N}_0 . If we combine the previous results then we find $\alpha^n \equiv 1 \pmod{p^{r+\operatorname{ord}_p n}}$, $\alpha^n \not\equiv 1 \pmod{p^{r+1+\operatorname{ord}_p n}}$.

The lemma follows by continuity. \blacksquare

Lemma 3.

Let α be an element of \mathbb{Z}_2 , $\alpha \equiv 3 \pmod{4}$. Define a natural number n by $\alpha = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \dots$, $\varepsilon_0 = \varepsilon_1 = \dots = \varepsilon_{n-1} = 1$, $\varepsilon_n = 0$.

If $\beta \in \mathbb{Z}_2 \setminus \{0\}$, ord₂ $\beta = 0$ then

$$\alpha^{\beta} \equiv 1 (mod \ 2)$$
$$\alpha^{\beta} \not\equiv 1 (mod \ 4).$$

If $\beta \in \mathbb{Z}_2 \setminus \{0\}$, $\operatorname{ord}_2 \beta = k \ge 1$ then

$$\alpha^{\beta} \equiv 1 \pmod{2^{n+2+\operatorname{ord}_2 \beta}}$$
$$\alpha^{\beta} \not\equiv 1 \pmod{2^{n+3+\operatorname{ord}_2 \beta}}.$$

Proof:

 $\alpha = 3 + 4\varepsilon$. Hence $\alpha^2 = 1 + 2^3(1 + \varepsilon)(1 + 2\varepsilon)$.

Since $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \dots$, $\varepsilon_0 = \varepsilon_1 = \dots = \varepsilon_{n-1} = 1$, $\varepsilon_n = 0$, ord₂(1 + 2 ε) = 0, we have $\alpha^2 \equiv 1 \pmod{2^{n+3}}$, $\alpha^2 \not\equiv 1 \pmod{2^{n+4}}$.

Then

$$\alpha^{2^{k+1}} = (\alpha^2)^{2^k} \equiv 1 \pmod{2^{n+3+k}} \\ \neq 1 \pmod{2^{n+4+k}} \text{ by Lemma 2 } (k \ge 1).$$

So $\alpha^{2^k} \equiv 1 \pmod{2^{n+2+k}}$, $\alpha^{2^k} \not\equiv 1 \pmod{2^{n+3+k}}$ $(k \ge 1)$.

In an analogous way as in the previous lemma, we show

If $s \in \mathbb{N}_0$, $\operatorname{ord}_2 s = 0$, then $\alpha^s \equiv 1 \pmod{2}$, $\alpha^s \not\equiv 1 \pmod{4}$.

If $s \in \mathbb{N}_0$, $\operatorname{ord}_2 s = k \ge 1$, then $\alpha^s \equiv 1 \pmod{2^{n+2+\operatorname{ord}_2 s}}$, $\alpha^s \not\equiv 1 \pmod{2^{n+3+\operatorname{ord}_2 s}}$.

The lemma follows by continuity. \blacksquare

In the following lemma, m is the smallest integer such that $q^m \equiv 1 \pmod{p}$. (Remark: $1 \leq m \leq p-1$).

Lemma 4.

Let
$$q^m \equiv 1 \pmod{p^{k_0}}, q^m \neq 1 \pmod{p^{k_0+1}}.$$

If $(p, k_0) \neq (2, 1)$, then $V_q = \bigcup_{0 \leq r \leq m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \leq p^{-k_0} \}.$

Proof:

We take the *m* balls $\{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}, 0 \le r \le m - 1.$

Every element $aq^r(q^m)^n$ $(0 \le r \le m-1, n \in \mathbb{N})$ belongs to one of these balls: $|aq^r(q^m)^n - aq^r| = |aq^r||(q^m)^n - 1| \le p^{-k_0}$ (Lemma 2).

Since V_q is the closure of $\{aq^n | n = 0, 1, 2, ...\} = \{aq^r(q^m)^n | 0 \le r \le m-1, n \in \mathbb{N}\}$, we have that $\bigcup_{0 \le r \le m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\} \supset V_q$.

The *m* balls $\{x \in \mathbb{Z}_p | |x-aq^r| \le p^{-k_0}\}$ are pairwise disjoint: take $r, s \in \{0, 1, \ldots, m-1\}, r \ne s$ e.g. r > s, then $|aq^r - aq^s| = |aq^s| |q^{r-s} - 1| = 1$. We remark that it is impossible to take balls with a smaller radius:

 $|aq^{r} - aq^{r}q^{m}| = |aq^{r}||1 - q^{m}| = p^{-k_{0}}.$

Let r be fixed: $\{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}.$

We take the following p elements of V_q : $aq^r(q^m)^0$, $aq^r(q^m)^1$,..., $aq^r(q^m)^{p-1}$.

Each of these elements belongs to $\{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}$: $|aq^r(q^m)^i - aq^r| = |aq^r| | (q^m)^i - 1 | \le p^{-k_0}$ by Lemma 2 $(0 \le i \le p - 1)$.

Furthermore, if $i, j \in \{0, 1, ..., p-1\}, i \neq j$, say i > j, then $|aq^r(q^m)^i - aq^r(q^m)^j| = |aq^r(q^m)^j| |(q^m)^{i-j} - 1| = p^{-k_0}$ by Lemma 2 since $0 < i-j \le p-1$.

So these p elements define p disjoint balls with radius $p^{-(k_0+1)}$ which cover $\{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}.$

We take $\{x \in \mathbb{Z}_p | |x - aq^r (q^m)^i| \le p^{-(k_0+1)}\}, i \in \{0, 1, \dots, p-1\}, i$ fixed.

Take the p elements $aq^r(q^m)^{i+jp}$, $0 \le j \le p-1$.

These elements belong to $\{x \in \mathbb{Z}_p | |x - aq^r(q^m)^i| \leq p^{-(k_0+1)}\}$: $|aq^r(q^m)^{i+jp} - aq^r(q^m)^i| = |aq^r(q^m)^i| | (q^m)^{jp} - 1| \leq p^{-(k_0+1)}$ by Lemma 2 $(0 \leq j \leq p - 1)$.

Furthermore, if $j, k \in \{0, 1, ..., p-1\}, k \neq j$, say k > j, then $|aq^{r}(q^{m})^{i+kp} - aq^{r}(q^{m})^{i+jp}| = |aq^{r}(q^{m})^{i+jp}| |(q^{m})^{(k-j)p} - 1| = p^{-(k_{0}+1)}$ by Lemma 2 since $0 < k - j \leq p - 1$. So these p elements define p disjoint balls with radius $p^{-(k_{0}+2)}$ which cover $\{x \in \mathbb{Z}_{p} | |x - aq^{r}(q^{m})^{i}| \leq p^{-(k_{0}+1)}\}$.

We can continue this way.

Suppose we have $\{x \in \mathbb{Z}_p | |x - aq^r(q^m)^{i_0+i_1p+\dots+i_np^n}| \le p^{-(k_0+n+1)}\},\ i_0, i_1, \dots, i_n \in \{0, 1, \dots, p-1\}, i_0, i_1, \dots, i_n \text{ fixed.}$

We take the *p* elements $aq^r(q^m)^{i_0+i_1p+i_np^n+i_{n+1}p^{n+1}}$, $0 \le i_{n+1} \le p-1$. All these elements belong to $\{x \in \mathbb{Z}_p | |x - aq^r(q^m)^{i_0+i_1p+\cdots+i_np^n} | \le p^{-(k_0+n+1)}\}$:

$$\begin{aligned} |aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}+i_{n+1}p^{n+1}} - aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}}| \\ &= |aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}}| |aq^{r}(q^{m})^{i_{n+1}p^{n+1}} - 1| \le p^{-(k_{0}+n+1)}. \end{aligned}$$

Furthermore, if $j, k \in \{0, 1, \dots, p-1\}, k \neq j$, say k > j, then

$$\begin{aligned} |aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}+kp^{n+1}} - aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}+jp^{n+1}}| \\ &= |aq^{r}(q^{m})^{i_{0}+i_{1}p+\cdots+i_{n}p^{n}+jp^{n+1}}| |(q^{m})^{(k-j)p^{n+1}} - 1| = p^{-(k_{0}+n+1)}.\end{aligned}$$

So these p elements define p disjoint balls with radius $p^{-(k_0+n+2)}$ which cover $\{x \in \mathbb{Z}_p | |x - aq^{\tau}(q^m)^{i_0+i_1p+\cdots+i_np^n}| \le p^{-(k_0+n+1)}\}.$

Continuing this way, we find closed balls with radius tending to zero and whose centers are elements of $\{aq^n|n = 0, 1, 2, ...\}$, and these balls cover $\bigcup_{0 \le r \le m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}$. So $\bigcup_{0 \le r \le m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}$ is the closure of $\{aq^n|n = 0, 1, 2, ...\}$. But this means that $V_q = \bigcup_{0 \le r \le m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}$.

Lemma 5.

Let $q \equiv 3 \pmod{4}$.

Then $V_q = \{x \in \mathbb{Z}_2 | |x-a| \le 2^{-(N+3)}\} \cup \{x \in \mathbb{Z}_2 | |x-aq| \le 2^{-(N+3)}\},\$ where $q = 1+2+2^2\varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \dots$, $\varepsilon_0 = \varepsilon_1 = \dots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$. Proof:

Every element aq^n belongs to $\{x \in \mathbb{Z}_2 | |x - a| \le 2^{-(N+3)}\} \cup \{x \in \mathbb{Z}_2 | |x - aq| \le 2^{-(N+3)}\}$: $|aq^{0+2k} - a| = |a| |q^{2k} - 1| \le 2^{-(N+3)}$ and $|aq^{1+2k} - aq| = |aq| |q^{2k} - 1| \le 2^{-(N+3)}$ by Lemma 3 $(k \in \mathbb{N})$. Since V_q is the closure of $\{aq^n | n = 0, 1, 2, ...\}$, we have that $\{x \in \mathbb{Z}_2 | |x - a| \le 2^{-(N+3)}\} \cup \{x \in \mathbb{Z}_2 | |x - aq| \le 2^{-(N+3)}\} \supset V_q$.

The balls $\{x \in \mathbb{Z}_2 | |x-a| \le 2^{-(N+3)}\}$ and $\{x \in \mathbb{Z}_2 | |x-aq| \le 2^{-(N+3)}\}$ are disjoint: $|aq-a| = |a| |q-1| = 2^{-1}$.

We remark that it is impossible to take balls with a smaller radius: $|aq^2-a| = |a| |q^2-1| = 2^{-(N+3)}$ and $|aq^{1+2}-aq| = |aq| |q^2-1| = 2^{-(N+3)}$ (Lemma 3).

From now on, we can prove the lemma in an analogous way as Lemma 4.

We will need these lemmas in the sequel.

4. Normal bases for $C(V_q \rightarrow K)$

We want to give a theorem analogous to Theorem 3, but with $C(M \to K)$ replaced by $C(V_q \to K)$.

Therefore, we need some notations.

We introduce the following:

$$[n]! = [n][n-1] \dots [1], [0]! = 1, \text{ where } [n] = \frac{q^{n}-1}{q-1} \text{ if } n \ge 1.$$

$$\begin{bmatrix} n\\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!} \text{ if } n \ge k, \begin{bmatrix} n\\ k \end{bmatrix} = 0 \text{ if } n < k.$$

$$(x-a)^{(n)} = (x-a)(x-aq) \dots (x-aq^{n-1}) \text{ if } n \ge 1, (x-a)^{(0)} = 1.$$

$$\begin{cases} x\\ k \end{cases} = \frac{(x/a-1)(x/(aq)-1)\dots(x/(aq^{k-1})-1)}{(q^{k}-1)\dots(q-1)} \text{ if } k \ge 1, \begin{cases} x\\ 0 \end{cases} = 1.$$

Lemma 6.

i)
$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

ii) $\begin{bmatrix} n \\ k \end{bmatrix}$ is a polynomial in q .
iii) $\begin{vmatrix} \begin{bmatrix} n \\ k \end{bmatrix} \end{vmatrix} \le 1$.

Proof:

i) follows immediately from the definition, ii) and iii) follow from i). \blacksquare

The polynomials $\begin{bmatrix} n \\ k \end{bmatrix}$ are the Gauss-polynomials. We will need the following properties of these symbols: $\left\| \begin{cases} x \\ k \end{cases} \right\| =$ 1, since $\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} x \\ k \end{cases}$ if $x = aq^n$, $\left| \begin{bmatrix} n \\ k \end{bmatrix} \right| \le 1$ for all n, k in \mathbb{N} , $\left\{ \begin{array}{c} aq^k \\ k \end{array} \right\} = \begin{bmatrix} k \\ k \end{bmatrix} = 1$ and since $\left\{ \begin{array}{c} x \\ k \end{array} \right\}$ is continuous. $\frac{(x-a)^{(n)}}{[n]!} = \left\{ \begin{array}{c} x \\ n \end{array} \right\}$ $(q-1)^n q^{n(n-1)/2} a^n$, so $\left\| \frac{(x-a)^{(n)}}{[n]!} \right\| = |(q-1)^n|$. Definition.

If $f: V_q \to K$ then we define the operator D_q as follows:

$$(D_q f)(x) = \frac{f(qx) - f(x)}{x(q-1)}$$

The following properties are easily verified:

$$\begin{array}{ll} D_q^j x^k = [k][k-1] \dots [k-j+1] x^{k-j} & \text{if } k \ge j \ge 1, \\ D_q^j x^k = 0 & \text{if } k < j \\ D_q^j (x-y)^{(k)} = [k][k-1] \dots [k-j+1] (x-y)^{(k-j)} & \text{if } k \ge j \ge 1, \\ D_q^j (x-y)^{(k)} = 0 & \text{if } j > k. \end{array}$$

Lemma 7.

$$x^n = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} a^{n-k} (x-a)^{(k)}.$$

Proof:

We know we can write x^n as $x^n = \sum_{k=0}^n a_k (x-a)^{(k)}$. Since $D_q x^n = [n]x^{n-1}$ and if we apply the operator $D_q k$ times and put x = a, we find $[n][n-1] \dots [n-k+1]a^{n-k} = a_k[k]!$.

Lemma 7 and it's proof can also be found in [5, p. 121].

Lemma 8.

Take an injective sequence (u_n) in V_q and define

$$q_n(x) = \frac{(x - u_0) \dots (x - u_{n-1})}{(u_n - u_0) \dots (u_n - u_{n-1})} \text{ for } n \ge 1, \qquad q_0(x) = 1.$$

Then (q_n) forms a normal basis for $C(V_q \to K)$ if and only if $||q_n|| = 1$ for all n.

Proof: Put $M = V_q$ in Theorem 1.

Corollary.
$$\left(\begin{cases} x \\ n \end{cases} \right)$$
 forms a normal basis for $C(V_q \to K)$.

Proof: Put $u_n = aq^n$.

Theorem 4.

Let $(p_n(x))$ be a polynomial sequence in K[x] which forms a normal basis for $C(V_q \to K)$, and let $(r_n(x))$ be a polynomial sequence such that $r_n(x) = \sum_{j=0}^n c_{n;j} p_j(x) = \sum_{j=0}^n b_{n;j} x^j$, $c_{n;j}$, $b_{n;j} \in K$, $c_{n:n} \neq 0$, $b_{n:n} \neq 0$. Then the following are equivalent:

i) $(r_n(x))$ forms a normal basis for $C(V_q \to K)$. ii) $||r_n|| = 1$, $|c_{n;n}| = 1$. iii) $|c_{n;j}| \le 1$, $|c_{n;n}| = 1$. iv) $||r_n|| = 1$, $|b_{n;n}| = \frac{1}{|[n]!(q-1)^n|}$. v) $\left|\sum_{j=k}^n b_{n;j} \begin{bmatrix} j\\k \end{bmatrix} a^j \right| \le \frac{1}{|[k]!(q-1)^k|}$, $|b_{n;n}| = \frac{1}{|[n]!(q-1)^n|}$.

Proof:

i) \Leftrightarrow ii) \Leftrightarrow iii) follows from Theorem 3, by putting $M = V_q$, ii) \Leftrightarrow iv) and iii) \Leftrightarrow v) follow from Lemma 7, by putting $p_n(x) = \begin{cases} x \\ n \end{cases}$.

Some examples.

1) Put $p_n(x) = \left\{ \begin{array}{c} qx \\ n \end{array} \right\}.$

Then the sequence $(p_n(x))$ forms a normal basis of $C(V_q \to K)$: apply iv).

2) If the polynomial sequence $(p_n(x))$ forms a normal basis of $C(V_q \to K)$, then so does $(p_n(qx))$: If $p_n(x) = \sum_{j=0}^n c_{n;j} \left\{ \begin{array}{c} x \\ j \end{array} \right\}$, then $p_n(qx) = \sum_{j=0}^n c_{n;j} \left\{ \begin{array}{c} qx \\ j \end{array} \right\}$.

Use example i) and apply iii).

 If the sequence (p_n(x)) forms a normal basis of C(V_q → K), then so does (p_n(q^kx)) where k is a fixed natural number: use Example 2).

A. VERDOODT

- 4) If the sequence (p_n(x)) forms a normal basis of C(V_q → K), then so does (p_n(q^{k_n}x)), where (k_n) is a sequence in N: use Example 3).
- 5) If the sequence $(p_n(x))$ forms a normal basis of $C(V_q \to K)$, then so does $(r_n(x))$, where $r_n(x) = p_0(x) + p_1(x) + \cdots + p_n(x)$: apply iii).
- 6) If the polynomial sequence $(p_n(x))$ forms a normal basis of $C(V_q \to K)$, then so does $((q-1)^j D_q^j p_n(x))_{n \ge j}, j \in \mathbb{N}, j$ fixed: apply iii).

To end this chapter, we give the valuation of $|b_{n;n}| = \frac{1}{|[n]!(q-1)^n|}$. If n is different from zero, then $\frac{1}{|[n]!(q-1)^n|} = \frac{1}{|[q^n-1)(q^{n-1}-1)\dots(q-1)|}$

and this leads us to the following lemma:

Lemma 9.

Take $m \ge 1$, m the smallest integer such that $q^m \equiv 1 \pmod{p}$.

i) If $q^m \equiv 1 \pmod{p^r}$, $q^m \not\equiv 1 \pmod{p^{r+1}}$ $(r \ge 1)$, and $(p, r) \neq (2, 1)$ then

$$|(q^k-1)(q^{k-1}-1)\dots(q-1)| = p^{-[k/m]r}|[k/m]!|$$

where $[x] = \max\{k \in \mathbb{Z} | k \le x\}$. ii) If $q \equiv 3 \pmod{4}$, where

$$q = 1 + 2 + 2^{2}\varepsilon,$$

$$\varepsilon = \varepsilon_{0} + \varepsilon_{1}2 + \varepsilon_{2}2^{2} + \dots, \varepsilon_{0} = \varepsilon_{1} = \dots = \varepsilon_{N-1} = 1, \varepsilon_{N} = 0$$

then

$$\begin{aligned} &|(q^k - 1)(q^{k-1} - 1)\dots(q - 1)| \\ &= 2^{-2k} 2^{-Nk/2} |(k/2)!| & \text{if } k \text{ is even}, \\ &= 2^{(-kN-4k+N+2)/2} 2^{-Nk/2} |((k-1)/2)!| & \text{if } k \text{ is odd.} \end{aligned}$$

We remark that (see [4, Section 25.5]) $|j!| = p^{-\lambda(j)}$ with $\lambda(j) = \frac{j-s_j}{p-1}$,

$$j = \sum_{i=0}^t \gamma_i p^i, \qquad s_j = \sum_{i=0}^t \gamma_i.$$

Proof:

i) Suppose $q^m \equiv 1 \pmod{p^r}$, $q^m \not\equiv 1 \pmod{p^{r+1}}$, $r \ge 1$, $(p, r) \neq (2, 1)$. First, take $p \neq 2.q^k - 1 = q^{mj+s} - 1$ with $0 \le s < m$.

Then $(q^m)^j \equiv 1 \pmod{p^{r+\operatorname{ord}_p j}}, (q^m)^j \not\equiv 1 \pmod{p^{r+1+\operatorname{ord}_p j}}$ (Lemma 2), so $(q^m)^j = 1 + \alpha p^{\tau + \operatorname{ord}_p j}$ ord $\alpha = 0$.

If s is different from zero, then $q^s = \beta$ with $\beta = \beta_0 + \beta_1 p + \beta_2 p^2 + \dots$ with $\beta_0 \neq 0$, $\beta_0 \neq 1$, so $q^{mj+s} - 1 = (1 + \alpha p^{\tau + \operatorname{ord}_p j})\beta - 1 = \beta + \beta q^{mj+s}$ $\alpha \beta p^{r+\operatorname{ord}_p j} - 1$ and thus $q^{mj+s} - 1$ is a unit if s is different from zero. Then

$$|(q^{k}-1)(q^{k-1}-1)\dots(q-1)| = |((q^{m})^{j}-1)\dots(q^{m}-1)|$$

= $p^{-(r+\operatorname{ord}_{p}j)}\dots p^{-(r+\operatorname{ord}_{p}1)}$
= $p^{-rj}|j!| = p^{-[k/m]r}|[k/m]!|.$

If p is equal to 2 then m equals one and thus

$$|(q^{k}-1)(q^{k-1}-1)\dots(q-1)| = 2^{-(r+\operatorname{ord}_{p}k)}\dots 2^{-(r+\operatorname{ord}_{p}1)}$$
$$= 2^{-rk}|k!| = 2^{-[k/m]r}|[k/m]!|$$

ii) Suppose $q \equiv 3 \pmod{4}$. We use Lemma 3. If k is even then $|(q^{k}-1)(q^{k-1}-1)\dots(q-1)|$

$$= 2^{-k/2} 2^{-(N+2+\operatorname{ord}_2 k)} 2^{-(N+2+\operatorname{ord}_2 (k-2))} \dots 2^{-(N+2+\operatorname{ord}_2 2)}$$

= $2^{-k/2} 2^{-(N+2)k/2} |k| |k-2| \dots |2|$
= $2^{-2k} 2^{-Nk/2} |(k/2)!|$

and if k is odd $|(q^{k}-1)(q^{k-1}-1)\dots(q-1)|$

$$= 2^{-(k+1)/2} 2^{-(N+2+\operatorname{ord}_2(k-1))} 2^{-(N+2+\operatorname{ord}_2(k-3))} \dots 2^{-(N+2+\operatorname{ord}_2 2)}$$

= 2^{-(k+1)/2}2^{-(N+2)(k-1)/2}2^{-(k-1)/2} |((k-1)/2)!|
= 2^{(-Nk-4k+N+2)/2} |((k-1)/2)!| which proves the lemma.

5. More bases for $C(V_q \to \mathbb{Q}_p)$

We want to make new normal bases, using the basis $\left(\left\{ \begin{array}{c} x \\ n \end{array} \right\} \right)$.

Now, if E is a non-archimedean Banach space over a non-archimedean valued field L, and E has a normal basis, then the norm of E satisfies the following condition: for each element x of E there exists ν in L such that the norm of x is equal to $|\nu|$. Y. Amice ([2, p. 82]) calls this condition (N).

So, if we want to make more normal bases for $C(V_q \to \mathbb{Q}_p)$ we can use the following result ([2, p. 82, Prop. 3.1.5]):

Let E be a Banach space over a non-archimedean valued field L. If L has a discrete valuation and if E satisfies condition (N), then for a family (e_n) of E for which $||e_n|| \leq 1$ for all n the following are equivalent:

- i) (e_n) is a normal basis of E,
- ii) $(p(e_n))$ is a basis of the vector space \overline{E} .

where $E_0 = \{x \in E | ||e|| \le 1\}, E'_0 = \{x \in E | ||e|| < 1\}, \bar{E} = E_0/E'_0$ and p is the canonical projection of E_0 on \bar{E} .

Since the valuation of L has to be discrete, we use this result to find normal bases for $C(V_q \to \mathbb{Q}_p)$. We start with some lemmas.

Lemma 10.

$$\begin{bmatrix} i+j\\n \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} i\\k \end{bmatrix} \begin{bmatrix} j\\n-k \end{bmatrix} q^{-k(-j+n-k)}.$$

Proof:

If n is zero or i + j is strictly smaller then n, then the lemma surely holds.

From now on we suppose i + j greater than n.

If i + j is equal to n then $\begin{bmatrix} i+j\\n \end{bmatrix}$ is equal to one and $\sum_{k=0}^{n} \begin{bmatrix} i\\k \end{bmatrix} \begin{bmatrix} j\\n-k \end{bmatrix} q^{-k(-j+n-k)} = \sum_{k=0}^{n} \begin{bmatrix} i\\k \end{bmatrix} \begin{bmatrix} n-i\\n-k \end{bmatrix} q^{-k(i-k)} = 1$ since the only term different from zero is the term where k equals i.

From now on we proceed by (double) induction.

$$\begin{bmatrix} i+j\\n \end{bmatrix} = \begin{bmatrix} i+j-1\\n-1 \end{bmatrix} + q^n \begin{bmatrix} i+j-1\\n \end{bmatrix}$$
(by Lemma 6)
$$= \sum_{k=0}^{n-1} \begin{bmatrix} i\\k \end{bmatrix} \begin{bmatrix} j-1\\n-k-1 \end{bmatrix} q^{-k(-j+n-k)}$$
$$+ q^n \sum_{k=0}^n \begin{bmatrix} i\\k \end{bmatrix} \begin{bmatrix} j-1\\n-k \end{bmatrix} q^{-k(-j+1+n-k)}$$

(by the induction hypothesis)

$$= \begin{bmatrix} i \\ n \end{bmatrix} q^{nj} + \sum_{k=0}^{n-1} \begin{bmatrix} i \\ k \end{bmatrix} q^{-k(-j+n-k)} \left(\begin{bmatrix} j-1 \\ n-k-1 \end{bmatrix} + \begin{bmatrix} j-1 \\ n-k \end{bmatrix} q^{n-k} \right)$$
$$= \sum_{k=0}^{n} \begin{bmatrix} i \\ k \end{bmatrix} \begin{bmatrix} j \\ n-k \end{bmatrix} q^{-k(-j+n-k)} \text{ (by Lemma 6).} \blacksquare$$

Lemma 11.

Let
$$q^m \equiv 1 \pmod{p^{k_0}}, q^m \neq 1 \pmod{p^{k_0+1}}$$
 with $(p, k_0) \neq (2, 1)$.
If $x, y \in V_q, |x - y| \leq p^{-(k_0+t)}$ then $\left| \left\{ \begin{array}{c} x \\ n \end{array} \right\}^s - \left\{ \begin{array}{c} y \\ n \end{array} \right\}^s \right| \leq 1/p$, where $s \in \mathbb{N}, \ 0 \leq n < mp^t$.

Proof:

The lemma holds if s is equal to zero.

If $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \neq 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \neq (2, 1)$, we then have $V_q = \bigcup_{0 \le r \le m-1} \{x \in \mathbb{Z}_p | |x - aq^r| \le p^{-k_0}\}$ (Lemma 4).

So V_q is the union of m disjoint balls with radius p^{-k_0} .

By the proof of Lemma 4, we have that V_q is the union of mp^t disjoint balls with radius $p^{-(k_0+t)}$ and with centers $aq^r(q^m)^k$, $0 \le r \le m-1$, $0 \le k < p^t$.

Take $x, y \in \{aq^j | j = 0, 1, 2, ...\}$ with $|x - y| \leq p^{-(k_0+t)}$. Then, by Lemmas 2 and 4, there exist natural numbers n_x and n_y such that $x = aq^r (q^m)^{n_x}$ and $y = aq^r (q^m)^{n_y}$ with $|n_x - n_y| \leq p^{-t}$ $(n_x, n_y \in \mathbb{N})$.

Then

$$\left| \left\{ \begin{array}{c} x \\ n \end{array} \right\} - \left\{ \begin{array}{c} y \\ n \end{array} \right\} \right| = \left| \left[\begin{array}{c} r + mn_x \\ n \end{array} \right] - \left[\begin{array}{c} r + mn_y \\ n \end{array} \right] \right|.$$

Further,

$$\begin{bmatrix} r+mn_x\\n \end{bmatrix} = \begin{bmatrix} m(n_x-n_y)+r+mn_y\\n \end{bmatrix}$$

$$= \sum_{k=0}^n \begin{bmatrix} m(n_x-n_y)\\k \end{bmatrix} \begin{bmatrix} r+mn_y\\n-k \end{bmatrix} q^{-k(-(r+mn_y)+n-k)}$$

$$(Lemma 10 \text{ if } n_x \ge n_y)$$

$$= \begin{bmatrix} r+mn_y\\n \end{bmatrix}$$

$$+ \sum_{k=1}^n \begin{bmatrix} m(n_x-n_y)\\k \end{bmatrix} \begin{bmatrix} r+mn_y\\n-k \end{bmatrix} q^{-k(-(r+mn_y)+n-k)}$$

$$(n \ge 1).$$

Since $\begin{bmatrix} i\\ j \end{bmatrix} = \begin{bmatrix} i\\ j \end{bmatrix} \begin{bmatrix} i-1\\ j-1 \end{bmatrix}$ $(i \ge j \ge 1)$ we have $\left| \begin{bmatrix} i\\ j \end{bmatrix} \right| \le \left| \begin{bmatrix} i\\ j \end{bmatrix} \right|$ $(i \ge 0, j \ge 1)$, so $\left| \begin{bmatrix} m(n_x - n_y)\\ k \end{bmatrix} \right| \le \left| \frac{(m(n_x - n_y))}{[k]} \right| = \left| \frac{(q^m)^{n_x - n_y} - 1}{q^k - 1} \right| \le 1/p$ by Lemma 2 since $1 \le k \le n < mp^t$ and $|n_x - n_y| \le p^{-t}$. Then

$$\left| \begin{bmatrix} r+mn_x \\ n \end{bmatrix} - \begin{bmatrix} r+mn_y \\ n \end{bmatrix} \right|$$

$$\leq \max_{1 \leq k \leq n} \left\{ \left| \begin{bmatrix} m(n_x-n_y) \\ k \end{bmatrix} \begin{bmatrix} r+mn_y \\ n-k \end{bmatrix} q^{-k(-(r+m_y)+n-k)} \right| \right\} \leq 1/p.$$

So $\left| \left\{ \begin{array}{c} x\\n \end{array} \right\} - \left\{ \begin{array}{c} y\\n \end{array} \right\} \right| \le 1/p$ and this also holds if n is zero. Finally, if s is greater then one,

$$\left| \left\{ \frac{x}{n} \right\}^{s} - \left\{ \frac{y}{n} \right\}^{s} \right| = \left| \left\{ \frac{x}{n} \right\} - \left\{ \frac{y}{n} \right\} \right| \left| \sum_{i=0}^{s-1} \left\{ \frac{x}{n} \right\}^{i} \left\{ \frac{y}{n} \right\}^{s-1-i} \right| \le 1/p. \quad \blacksquare$$

The lemma follows by continuity.

Lemma 12. Let $q \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$ $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \dots$, $\varepsilon_0 = \varepsilon_1 = \dots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$.

If $x, y \in V_q$, $|x - y| \le p^{-(N+2+t)}$ then $\left| \left\{ \begin{array}{c} x \\ n \end{array} \right\}^s - \left\{ \begin{array}{c} y \\ n \end{array} \right\}^s \right| \le 1/2$, where $s \in \mathbb{N}, \ 0 \le n < 2^t \ (t \ge 1)$.

Proof:

The lemma holds if s is equal to zero.

 $V_q = \{x \in \mathbb{Z}_2 | |x-a| \le 2^{-(N+3)}\} \cup \{x \in \mathbb{Z}_2 | |x-aq| \le 2^{-(N+3)}\},$ by Lemma 5.

By the proof of Lemma 5, we have that V_q is the union of 2^t disjoint balls with radius $2^{-(N+2+t)}$ and with centers aq^n , $0 \le n < 2^t$ $(t \ge 1)$.

Take $x, y \in \{aq^j | j = 0, 1, 2, ...\}$ with $|x - y| \leq 2^{-(N+2+t)}$. Then, by Lemmas 3 and 5 we must have that $x = aq^{n_x}$ and $y = aq^{n_y}$ with $|n_x - n_y| \leq 2^{-t} (n_x, n_y \in \mathbb{N})$. Then

$$\left| \left\{ \begin{array}{c} x \\ n \end{array} \right\} - \left\{ \begin{array}{c} y \\ n \end{array} \right\} \right| = \left| \left[\begin{array}{c} n_x \\ n \end{array} \right] - \left[\begin{array}{c} n_y \\ n \end{array} \right] \right|.$$

420

Further,

$$\begin{bmatrix} n_x \\ n \end{bmatrix} = \begin{bmatrix} (n_x - n_y) + n_y \\ n \end{bmatrix}$$
$$= \sum_{k=0}^n \begin{bmatrix} n_x - n_y \\ k \end{bmatrix} \begin{bmatrix} n_y \\ n-k \end{bmatrix} q^{-k(-n_y+n-k)} \text{ (Lemma 10 if } n_x \ge n_y)$$
$$= \begin{bmatrix} n_y \\ n \end{bmatrix} + \sum_{k=1}^n \begin{bmatrix} n_x - n_y \\ k \end{bmatrix} \begin{bmatrix} n_y \\ n-k \end{bmatrix} q^{-k(-n_y+n-k)} (n \ge 1)$$

Since $\begin{bmatrix} i \\ j \end{bmatrix} = \frac{[i]}{[j]} \begin{bmatrix} i-1 \\ j-1 \end{bmatrix}$ $(i \ge j \ge 1)$ we have $\left| \begin{bmatrix} i \\ j \end{bmatrix} \right| \le \left| \frac{[i]}{[j]} \right|$ $(i \ge 0, j \ge 1)$, so $\left| \begin{bmatrix} n_x - n_y \\ k \end{bmatrix} \right| \le \left| \frac{[n_x - n_y]}{[k]} \right| = \left| \frac{q^{n_x - n_y - 1}}{q^{k} - 1} \right| \le 1/2$ by Lemma 3 since $1 \le k \le n < 2^t$ and $|n_x - n_y| \le 2^{-t}$.

Then

$$\left| \begin{bmatrix} n_x \\ n \end{bmatrix} - \begin{bmatrix} n_y \\ n \end{bmatrix} \right| \le \max_{1 \le k \le n} \left\{ \left| \begin{bmatrix} n_x - n_y \\ k \end{bmatrix} \begin{bmatrix} n_y \\ n - k \end{bmatrix} q^{-k(-n_y + n - k)} \right| \right\} \le 1/2.$$

So $\left| \begin{cases} x \\ n \end{cases} - \begin{cases} y \\ n \end{cases} \right| \le 1/2$ and this also holds if n is zero. Finally, if s is greater then one,

$$\left|\left\{\frac{x}{n}\right\}^{s}-\left\{\frac{y}{n}\right\}^{s}\right|=\left|\left\{\frac{x}{n}\right\}-\left\{\frac{y}{n}\right\}\right|\left|\sum_{i=0}^{s-1}\left\{\frac{x}{n}\right\}^{i}\left\{\frac{y}{n}\right\}^{s-1-i}\right|\leq 1/2.$$

The lemma follows by continuity.

Since $C(V_q \to \mathbb{Q}_p)$ has a normal basis, its norm satisfies condition (N), and so we can use [2, p. 82, Prop. 3.1.5] to prove the following:

Theorem 5.

Let (j_n) be a sequence in \mathbb{N}_0 . Then the sequence of polynomials $\left(\left\{ \begin{matrix} x \\ n \end{matrix} \right\}^{j_n} \right)$ forms a normal basis for $C(V_q \to \mathbb{Q}_p)$.

Proof:

This proof is analogous to the proof of Theorem 1.1 in [3].

By [2, Proposition 3.1.5, p. 82] it suffices to prove that $\left(\left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} \right)$ forms a vectorial basis of $C(V_q \to \mathbb{F}_p)$.

We distinguish two cases.

If $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \not\equiv 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \neq (2, 1)$, define C_t the space of the functions from V_q to \mathbb{F}_p constant on balls of the type $\{x \in \mathbb{Z}_p | |x - \alpha| \leq p^{-(k_0+t)}\}, \alpha \in V_q$. Since $C(V_q \to \mathbb{F}_p) = \bigcup_{t \geq 0} C_t$ it suffices to prove that $\left(\overline{\left\{\frac{x}{n}\right\}^{j_n}} | n < mp^t\right)$ forms a basis of C_t . By the proof of Lemma 4, we can write V_q as the union of mp^t disjoint balls with radius $p^{-(k_0+t)}$ and with centers $aq^r(q^m)^n, 0 \leq r \leq m-1, 0 \leq n < p^t$. Let χ_i be the characteristic function of the ball with center aq^i . Using Lemma 11, we have

$$\overline{\left\{ \begin{array}{c} x\\ n \end{array} \right\}^{j_n}} = \sum_{i=0}^{mp^t-1} \chi_i(x) \overline{\left\{ \begin{array}{c} aq^i\\ n \end{array} \right\}^{j_n}} = \sum_{i=n}^{mp^t-1} \chi_i(x) \overline{\left\{ \begin{array}{c} aq^i\\ n \end{array} \right\}^{j_n}},$$

hence the transition matrix from $(\chi_n | n < mp^t)$ to $\left(\overline{\left\{ \begin{array}{c} x\\ n \end{array} \right\}^{j_n}} | n < mp^t \right)$

is triangular, so $\left(\left\{\frac{x}{n}\right\}^{j_n} | n < mp^t\right)$ forms a basis of C_t .

If $q \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \dots$, $\varepsilon_0 = \varepsilon_1 = \cdots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$, define C_t the space of the functions from V_q to \mathbb{F}_2 constant on balls of the type $\{x \in \mathbb{Z}_2 | |x - \alpha| \le 2^{-(N+2+t)}\}, \alpha \in V_q$.

Since $C(V_q \to \mathbb{F}_2) = \bigcup_{t \ge 1} C_t$ it suffices to prove that $\left(\left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} | n < 2^t \right)$

forms a basis of C_t . By the proof of Lemma 5, we can write V_q as the union of 2^t disjoint balls with radius $2^{-(N+2+t)}$ and with centers aq^n , $0 \le n < 2^t$. Let χ_i be the characteristic function of the ball with center aq^i . Using Lemma 12 we have

$$\overline{\left\{\frac{x}{n}\right\}^{j_n}} = \sum_{i=0}^{2^t-1} \chi_i(x) \overline{\left\{\frac{aq^i}{n}\right\}^{j_n}} = \sum_{i=n}^{2^t-1} \chi_i(x) \overline{\left\{\frac{aq^i}{n}\right\}^{j_n}},$$

hence the transition matrix from $(\chi_n|n < 2^t)$ to $\left(\overline{\left\{\frac{x}{n}\right\}^{j_n}}|n < 2^t\right)$ is

triangular, so $\left(\left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} | n < 2^t \right)$ forms a basis of C_t . This proves the theorem.

6. Extension to $C(V_q \rightarrow K)$

Let K be as in Chapters 3 and 4. We want to show that $\begin{pmatrix} x \\ n \end{pmatrix}^{j_n}$ forms a normal basis for $C(V_q \to K)$. To prove this, we need the results from Section 5. We remark that the valuation of K does not have to be discrete, as was the case in Section 5.

Theorem 6.

Let (j_n) be a sequence in \mathbb{N}_0 . Then $\left(\left\{ \begin{matrix} x \\ n \end{matrix} \right\}^{j_n} \right)$ forms a normal basis for $C(V_q \to K)$.

Proof:

It is clear that $\left\| \left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} \right\| = 1.$

We now prove the orthogonality of the sequence. Let n be in $\mathbb{N}, \alpha_0, \ldots, \alpha_n$ in K. We prove $\left\| \alpha_0 \left\{ \begin{array}{c} x \\ 0 \end{array} \right\}^{j_0} + \cdots + \alpha_n \left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} \right\| = \max_{0 \le i \le n} \{ |\alpha_i| \}.$

It is clear that
$$\left\| \alpha_0 \left\{ \begin{matrix} x \\ 0 \end{matrix} \right\}^{j_0} + \dots + \alpha_n \left\{ \begin{matrix} x \\ n \end{matrix} \right\}^{j_n} \right\| \le \max_{0 \le i \le n} \{ |\alpha_i| \}.$$

Put $M = \max_{0 \le i \le n} \{ |\alpha_i| \}, N = \min\{i|0 \le i \le n \text{ and } |\alpha_i| = M \}.$ Then

$$\left\| \alpha_0 \left\{ \begin{array}{c} aq^N \\ 0 \end{array} \right\}^{j_0} + \dots + \alpha_n \left\{ \begin{array}{c} aq^N \\ n \end{array} \right\}^{j_n} \right\|$$

$$= \max \left\{ \left| \alpha_0 \left\{ \begin{array}{c} aq^N \\ 0 \end{array} \right\}^{j_0} + \dots + \alpha_{N-1} \left\{ \begin{array}{c} aq^N \\ N-1 \end{array} \right\}^{j_{N-1}} \right|, \left| \alpha_N \left\{ \begin{array}{c} aq^N \\ N \end{array} \right\}^{j_N} \right| \right\}$$

$$= \left| \alpha_N \left\{ \begin{array}{c} aq^N \\ N \end{array} \right\}^{j_N} \right| = M$$

since
$$\left| \alpha_0 \left\{ \begin{array}{c} aq^N \\ 0 \end{array} \right\}^{j_0} + \dots + \alpha_{N-1} \left\{ \begin{array}{c} aq^N \\ N-1 \end{array} \right\}^{j_{N-1}} \right| < M, \left| \alpha_N \left\{ \begin{array}{c} aq^N \\ N \end{array} \right\}^{j_N} \right| =$$

 $M.$ So $\left\| \alpha_0 \left\{ \begin{array}{c} x \\ 0 \end{array} \right\}^{j_0} + \dots + \alpha_n \left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} \right\| = \max_{0 \le i \le n} \{ |\alpha_i| \}.$

Finally, we prove that the sequence forms a basis.

By [6, p. 165, Lemma 5.1] and by Kaplansky's Theorem (see e.g. [6, p. 191, Theorem 5.28]), it suffices to prove that the k linear span of the polynomials $\left(\begin{cases} x \\ n \end{cases}^{j_n} \right)$ contains K[x]. Since each $\begin{cases} x \\ k \end{cases}$ is an element of $\mathbb{Q}_p[x]$ and $\left(\begin{cases} x \\ n \end{cases}^{j_n} \right)$ forms a normal basis of $C(V_q \to \mathbb{Q}_p)$ (Theorem 5), we can write $\begin{cases} x \\ k \end{cases}$ as a uniformly convergent expansion $\left\{ \frac{x}{k} \right\} = \sum_{n=0}^{\infty} a_n q_n(x)^{j_n}$. So if $\alpha_0, \alpha_1, \ldots, \alpha_n$ are elements of K then there exists coefficients $d_n^{(j_n)}$ in K such that $\sum_{i=0}^n \alpha_i \begin{cases} x \\ i \end{cases} = \sum_{n=0}^{\infty} d_n^{(j_n)} \left\{ \frac{x}{n} \right\}^{j_n}$ where the right-hand-side is uniformly convergent.

Let p be an element of K[x]. By the previous remark there exist coefficients $c_n^{(j_n)}$ such that $p(x) = \sum_{i=0}^N \beta_i \left\{ \begin{array}{c} x \\ n \end{array} \right\} = \sum_{n=0}^\infty c_n^{(j_n)} \left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n}$. So the k linear span of the polynomials $\left(\left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n} \right)$ contains K[x]. This finishes the proof.

If f is an element of $C(V_q \to K)$, there exist coefficients $(b_n^{(j_n)})$ such that $f(x) = \sum_{n=0}^{\infty} b_n^{(j_n)} \left\{ \begin{array}{c} x \\ n \end{array} \right\}^{j_n}$ where the series on the right-hand-side is uniformly convergent. In some cases it is possible to give an expression for the coefficients:

Proposition 1.

Let s be in \mathbb{N}_0 . Then each continuous function $f: V_q \to K$ can be written as a uniformly convergent series

$$f(x) = \sum_{n=0}^{\infty} b_n^{(s)} \left\{ \begin{array}{c} x \\ n \end{array} \right\} \text{ with } \|f\| = \max_{n \ge 0} \{|b_n^{(s)}|\}$$

where

(2)
$$b_n^{(s)} = \sum_{k=0}^n (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}^s f(aq^k) \beta_{n-k}^{(s)}$$

and
$$\beta_0^{(s)} = 1, \ \beta_m^{(s)} = \sum_{\substack{(j_1, \dots, j_r) \\ \sum j_i = m; \ 1 \le j_i \le m}} (-1)^{r+m} \begin{bmatrix} m \\ j_1 \dots j_r \end{bmatrix}^s, \ \begin{bmatrix} m \\ j_1 \dots j_r \end{bmatrix} =$$

 $\frac{[m]!}{[j_1]!...[j_r]!}$

Proof:

The proof is equal to the proof of Corollary 1.2 in [3].

$$\|f\| = \max_{n \ge 0} \{|b_n^{(s)}|\} \text{ follows from the fact that } \left(\left\{\frac{x}{n}\right\}^s\right) \text{ forms a normal}$$

basis. If $f(x) = \sum_{n=0}^{\infty} b_n^{(s)} \left\{\frac{x}{n}\right\}^s$ then $f(aq^k) = \sum_{n=0}^k b_n^{(s)} \left[\frac{k}{n}\right]^s$, and so
 $b_0^{(s)} = f(a), \ b_k^{(s)} = f(aq^k) - \sum_{n=0}^{k-1} b_n^{(s)} \left[\frac{k}{n}\right]^s$ if $k \ge 1$.

If k is equal to zero, the formulas certainly hold.

We proceed by induction. Suppose the formulas hold for $0 \le j \le N$.

$$\begin{aligned} b_{N+1}^{(s)} &= f(aq^{N+1}) - \sum_{n=0}^{N} b_n^{(s)} \left[\frac{N+1}{n} \right]^s \\ &= f(aq^{N+1}) - \sum_{n=0}^{N} \left[\frac{N+1}{n} \right]^s \sum_{k=0}^{n} \left[\frac{n}{k} \right]^s (-1)^{n-k} f(aq^k) \beta_{n-k}^{(s)} \\ &= f(aq^{N+1}) - \sum_{k=0}^{N} \sum_{n=k}^{N} (-1)^{n-k} f(aq^k) \\ &\sum_{\sum_{i=1}^{r} j_i = n-k} (-1)^{r+n-k} \left[\frac{n-k}{j_1 \dots j_r} \right]^s \left[\frac{n}{k} \right]^s \left[\frac{N+1}{n} \right]^s \\ &= f(aq^{N+1}) + \sum_{k=0}^{N} \sum_{n=k}^{N} f(aq^k) \\ &\sum_{\sum_{i=1}^{r} j_i = n-k} (-1)^{r+1} \left(\frac{[N+1]!}{[j_1]! \dots [j_r]! [k]! [N+1-n]!} \right)^s \end{aligned}$$

put $j_{r+1} = N + 1 - n$

$$= f(aq^{N+1}) + \sum_{k=0}^{N} {\binom{N+1}{k}}^{s} f(aq^{k})$$

$$\sum_{\substack{\sum_{i=1}^{r+1} j_{i}=N+1-k}} (-1)^{r+1} {\binom{N+1-k}{j_{1}\dots j_{r+1}}}^{s}$$

$$= f(aq^{N+1}) + \sum_{k=0}^{N} {\binom{N+1}{k}}^{s} f(aq^{k})(-1)^{N+1-k} \beta_{N+1-k}^{(s)}$$

$$= \sum_{k=0}^{N+1} {\binom{N+1}{k}}^{s} f(aq^{k})(-1)^{N+1-k} \beta_{N+1-k}^{(s)}$$

which proves the proposition. \blacksquare

Proposition 2.

For each $s \in \mathbb{N}_0$, the sequence of polynomials $\left(\left(\frac{(x-a)^{(n)}}{[n]!}\right)^s\right)$ form a basis of $C(V_q \to K)$. Each continuous function $f_s: V_q \to K$ can be written as a uniformly convergent series

$$f(x) = \sum_{n=0}^{\infty} c_n^{(s)} \left(\frac{(x-a)^{(n)}}{[n]!} \right)^s \text{ with } \|f\| = \max_{n \ge 0} \{ |c_n^{(s)}(q-1)^{ns}| \}$$

where $c_n^{(s)} = b_n^{(s)} / ((q-1)^n q^{n(n-1)/2} a^n)^s$.

Proof:

This follows from the fact that $\frac{(x-a)^{(n)}}{[n]!} = \begin{cases} x \\ n \end{cases} (q-1)^n q^{n(n-1)/2} a^n.$

If we put s equal to one in Proposition 2, we find Jackson's interpolation formula for continuous functions from V_q to K ([5]).

An example.

We have

$$\begin{aligned} \beta_0^{(s)} &= \beta_1^{(s)} = 1\\ \beta_2^{(s)} &= [2]^s - 1 = (q+1)^s - 1\\ \beta_3^{(s)} &= [3]^s [2]^s - 2[3]^s + 1 = (q^2 + q + 1)^s (q+1)^s - 2(q^2 + q + 1)^s + 1\\ \beta_4^{(s)} &= [4]^s [3]^s [2]^s - 3[4]^s [3]^s + \frac{[4]^s [3]^s}{[2]^s} + 2[4]^s - 1\\ &= (q^3 + q^2 + q + 1)^s (q^2 + q + 1)^s (q + 1)^s\\ &- 3(q^3 + q^2 + q + 1)^s (q^2 + q + 1)^s + (q^2 + 1)^s (q^2 + q + 1)^s\\ &+ 2(q^3 + q^2 + q + 1)^s - 1\end{aligned}$$

and after some calculations we find

$$\begin{cases} x \\ 1 \end{cases} = \begin{cases} x \\ 1 \end{cases}^2 - q(q+1) \begin{cases} x \\ 2 \end{cases}^2 + (q^2+q+1)(q+1)^2 q^2 \begin{cases} x \\ 3 \end{cases}^2 - q^3(q^3+q^2+q+1)(q^2+q+1)(q^4+3q^3+3q^2+3q+1) \begin{cases} x \\ 4 \end{cases}^2 + \dots$$

which gives us a uniformly convergent series.

References

- 1. Y. AMICE, Interpolation p-adique, Bull Soc. Math. France 92 (1964), 117–180.
- 2. Y. AMICE, "Les nombres p-adiques," Presses Universitaires de France, Paris, Collection SUP, Le Mathématicien 14, 1975.
- S. CAENEPEEL, About p-adic interpolation of continuous and differentiable functions, Groupe d'étude d'analyse ultramétrique (Y. Amice, G. Christol, P. Robba) 25, 9^e année, 1981/82, 8 p.
- 4. W. H. SCHIKHOF, "Ultrametric calculus: An introduction to p-adic analysis," Cambridge University Press, 1984.
- L. VAN HAMME, Jackson's Interpolation formula in p-adic analysis, Proceedings of the Conference on p-adic analysis, report nr. 7806, Nijmegen, June 1978, 119-125.
- A. C. M. VAN ROOLJ, "Non-Archimedean functional analysis," Marcel Dekker, Purc and Applied Mathematics 51, 1978.

Vrije Universiteit Brussel Faculty of Applied Sciences Pleinlaan 2 B-1050 Brussels BELGIUM

Rebut el 2 de Juny de 1993