NORMAL BASES FOR NON-ARCHIMEDEAN SPACES OF CONTINUOUS FUNCTIONS

ANN VERDOODT

Abstract

K is a complete non-archimedean valued field and M is a compact, infinite, subset of $K . C(M \rightarrow K)$ is the Banach space of continuous functions from M to K, equipped with the supremum norm. Let ($p_{n}(x)$) be a sequence of polynomials, with $\operatorname{deg} p_{n}=n$. We give necessary and sufficient conditions for ($p_{n}(x)$) to be a normal basis for $C(M \rightarrow K)$. In the rest of the paper, K contains $\mathbb{Q} p$, and V_{q} is the closure of the set $\left\{a q^{n} \mid n=0,1,2 \ldots\right\}$ where a and q are two units of \mathbb{Z}_{p}, q not a root of unity. We give necessary and suffcient conditions for a sequence of polynomials ($r_{n}(x)$) (deg $r_{n}=n$) to be a normal basis for $C\left(V_{q} \rightarrow K\right)$. Furthermore, if we define $\left\{\begin{array}{l}x \\ 0\end{array}\right\}=1,\left\{\begin{array}{l}x \\ n\end{array}\right\}=\frac{(x / a-1)(x /(a q)-1) \ldots\left(x /\left(a q^{n-1}\right)-1\right)}{\left(q^{n}-1\right) \cdot(a-1)}$ if $n \geq 1$, and if $\left(j_{n}\right)$ is a sequence in \mathbb{N}_{0}, then we show that the sequence of polynornials $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$.

1. Introduction

The main aim of this paper is to find normal bases for spaces of continuous functions. Therefore we start by recalling some definitions and some previous results.

Let K be a non-archimedean valued field and suppose that K is complete for its valuation !... Take $M \subset K$ compact, infinite, and let $C(M \rightarrow K)$ be the Banach space of continuous functions from M to K, equipped with the supremum norm.

Let E be a non-archimedean Banach space over a non-archimedean valued field K. Let e_{1}, e_{2}, \ldots be a finite or infinite sequence of elements of E. We say that this sequence is orthogonal if $\left\|\alpha_{1} e_{1}+\cdots+\alpha_{k} e_{k}\right\|=$ $\max \left\{\left\|\alpha_{i} e_{i}\right\|: i=1, \ldots, k\right\}$ for all k in \mathbb{N} (or for all k that do not exceed the length of the sequence) and for all $\alpha_{1}, \ldots, \alpha_{k}$ in K. If the sequence
is infinite, it follows that $\left\|\sum_{i=1}^{\infty} \alpha_{i} e_{i}\right\|=\max \left\{\left\|\alpha_{i} e_{i}\right\|: i=1,2, \ldots\right\}$ for all $\alpha_{1}, \alpha_{2}, \ldots$ in K for which $\lim _{i \rightarrow \infty} \alpha_{i} e_{i}=0$. An orthogoal sequence e_{1}, e_{2}, \ldots is called orthonormal if $\left\|e_{i}\right\|=1$ for all i.

This leads us to the following definition:
If E is a non-archimedean Banach space over a non-archimcdean valued field K, then a family $\left(e_{i}\right)$ of elements of E is a (ortho)normal basis of E if the family (e_{i}) is orthonormal and also a basis.

An equivalent formulation is
If E is a non-archimedean Banach space over a non-archimedean valued field K, then a family (e_{i}) of elements of E is a (ortho) normal basis of E if each element x of E has a unique representation $x=\sum_{i} x_{i} e_{i}$ where $x_{i} \in K$ and $x_{i} \rightarrow 0$ if $i \rightarrow \infty$, and if the norm of x is the supremum of the norms of x_{i}.

In [6, chapter $5,5.27$ and 5.33$]$ we find the following theorem which is due to Y. Amice:

Theorem 1.

Let K be a non-archimedean valued field, complete with respect to its norm $|$.$| , and let M$ be a compact, infinite subset of K.

Let $\left(u_{n}\right)$ be an injective sequence in M.
Define $p_{0}(x)=1, p_{n}(x)=\left(x-u_{n-1}\right) p_{n-1}(x)$ for $n \geq 1, q_{n}(x)=$ $\frac{p_{n}(x)}{p_{n}\left(u_{n}\right)}$.

Then $\left(q_{n}(x)\right)$ forms a normal basis for $C(M \rightarrow K)$ if and only if $\left\|q_{n}\right\|=1(\forall n)$.

If $\left(q_{n}(x)\right)$ forms a normal basis for $C(M \rightarrow K)$ and f is an element of $C(M \rightarrow K)$, then

$$
f(x)=\sum_{n=0}^{\infty} a_{n} q_{n}(x) \text { where } a_{n}=p_{n}\left(u_{n}\right) \sum_{i=0}^{n} \frac{f\left(u_{i}\right)}{p_{n+1}^{\prime}\left(u_{i}\right)}
$$

We remark that there always exist sequences $\left(q_{n}(x)\right)$ such that $\left\|q_{n}\right\|=1$ for all n.

We will call a sequence of polynomials $\left(p_{n}(x)\right)$ a polynomial sequence if p_{n} is exactly of degree n for all n.

After all these definitions, we now give a survey of the results in this article.

In Section 2 of this paper, K is a non-archimedean complete field, and M is a compact, infinite subset of K. In Theorems 2 and 3 we will give necessary and sufficient conditions for a polynomial sequence $\left(p_{n}(x)\right)$ to be a normal basis for $C(M \rightarrow K)$.

In Sections $3,4,5$ and 6 we consider the following situation: \mathbb{Z}_{p} is the ring of p-adic integers, \mathbb{Q}_{p} the field of p-adic numbers, and K is a non-archimedean valued field, K containing \mathbb{Q}_{p}, and we supppose that K is complete for the valuation $|$.$| , which extends the p$-adic valuation. Let a and q be two units of \mathbb{Z}_{p}, q not a root of unity. We define V_{q} to be the closure of the set $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$. A description of the set V_{q} will be given in Section 3 (Lemmas 4 and 5). In Section 4, Theorem 4, we will give necessary and sufficient conditions for a polynomial sequence $\left(r_{n}(x)\right)$ to be a normal basis for $C\left(V_{q} \rightarrow K\right)$.

If we put $\left\{\begin{array}{l}x \\ 0\end{array}\right\}=1,\left\{\begin{array}{l}x \\ n\end{array}\right\}=\frac{(x / a-1)(x /(a q)-1) \ldots\left(x /\left(a q^{n-1}\right)-1\right)}{\left(q^{n}-1\right) \ldots(q-1)}$ if $n \geq 1$, and if $\left(j_{n}\right)$ is a sequence in \mathbb{N}_{0}, then we show in Theorem 5 of Section 5 that $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$. The proof we give here is only valid when we work with a discrete valuation.

In Section 6, Theorem 6 we show that $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ also forms a normal basis for $C\left(V_{q} \rightarrow K\right)$, where the valuation of K does not have to be discrete, as was the case in the previous section.

To prove this, we need the results of Section 5 .
S. Caenepeel ([3]) proved the following: Let $\binom{x}{n}=\frac{x(x-1) \ldots(x-n+1)}{n!}$ if $n \geq 1,\binom{x}{0}=1$ (the binomial polynomials), then for each $\left.s \in \mathbb{N}_{0},\binom{x}{n}^{s}\right)$ forms a normal basis for $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right)$, and each function f in $C\left(\mathbb{Z}_{p} \rightarrow\right.$ \mathbb{Q}_{p}) can be written as a uniformly convergent series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}^{(s)}\binom{x}{n}^{s}
$$

where

$$
a_{n}^{(s)}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}^{s} f(k) \alpha_{n-k}^{(s)}
$$

and

$$
\begin{align*}
& \alpha_{0}^{(s)}=1 \\
& \alpha_{m}^{(s)}=\sum_{\substack{\left(j_{1}, \ldots, j_{r}\right) \\
j_{i}=m_{i} l \leq j_{i} \leq m}}(-1)^{r+m}\binom{m}{j_{1} \ldots j_{r}}^{s} . \tag{1}
\end{align*}
$$

If $\left(j_{n}\right)$ is a sequence in \mathbb{N}_{0}, then the sequence of polynomials $\left(\begin{array}{l}\left.\binom{x}{n}^{j_{n}}\right)\end{array}\right.$ also forms a normal basis of $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right)([4, \mathrm{p} .158])$.

Now we can find an analogous result on the space $C\left(V_{q} \rightarrow K\right)$: each function f, element of $C\left(V_{q} \rightarrow K\right)$, can be written as a uniformly convergent series

$$
f(x)=\sum_{n=0}^{\infty} b_{n}^{(s)}\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{s}
$$

and we can give an expression for the coefficients $b_{n}^{(s)}$, which is analogous to the expression in (1). This result can be found in Proposition 1 of Section 6 .

Acknowledgement. I want to thank Professor Van Hamme and Professor Caenepeel for the advice and the help they gave me during the preparation of this paper.

2. Normal bases for $C(M \rightarrow K)$

In this section, K, is a non-archimedean valued field, complete with respect to his norm $|$.$| , and M$ is a compact, infinite subset of K.

Before we generalize Amice's Theorem, we give a lemma.

Lemma 1.

Let $\left(u_{n}\right)$ be an injective sequence in M, and let $q_{0}(x)=1, q_{n}(x)=$ $\frac{\left(x-u_{0}\right) \ldots\left(x-u_{n-1}\right)}{\left(u_{n}-u_{0}\right) \ldots\left(u_{n}-u_{n-1}\right)}$ for $n \geq 1$, where $\left\|q_{n}\right\|=1$ for all n.

If $p(x)$ is a polynomial in $k[x]$ of degree n, then there exists an index $i, 0 \leq i \leq n$, such that $\|p\|=\left|p\left(u_{i}\right)\right|$.

Proof:
There exist coefficients c_{j} such that $p(x)=\sum_{j=0}^{n} c_{j} q_{j}(x)$. Now suppose that $\left|p\left(u_{i}\right)\right|<\|p\|$ for all $i, 0 \leq i \leq n$. This will lead to a contradiction.

Supposing that $\left|p\left(u_{i}\right)\right|<\|p\|$ for all $i, 0 \leq i \leq n$, we will prove by induction that $\left|c_{i}\right|<\|p\|$ for $0 \leq i \leq n$.

Now $p\left(u_{0}\right)=\sum_{j=0}^{n} c_{j} q_{j}\left(u_{0}\right)=c_{0}$, so $\left|c_{0}\right|<\|p\|$.
Further, $p\left(u_{1}\right)=\sum_{j=0}^{n} c_{j} q_{j}\left(u_{1}\right)=c_{0}+c_{1}$, so $\left|c_{0}+c_{1}\right|<\|p\|$, and combining this with the previous we find $\left|c_{1}\right|<\|p\|$.

Suppose we already have that $\left|c_{i}\right|<\|p\|$ for $0 \leq i<k \leq n$.

Then $p\left(u_{k}\right)=\sum_{j=0}^{n} c_{j} q_{j}\left(u_{k}\right)=\sum_{j=0}^{k-1} c_{j} q_{j}\left(u_{k}\right)+c_{k}$, so $\left|\sum_{j=0}^{k-1} c_{j} q_{j}\left(u_{k}\right)+c_{k}\right|<$ $\|p\|$. Since $\left|c_{i}\right|<\|p\|$ for $0 \leq i<k \leq n$ and since $\left\|q_{j}\right\|=1$, we find that $\left|c_{k}\right|<\|p\|$.

So we may conclude that $\left|c_{i}\right|<\|p\|$ for $0 \leq i \leq n$.
But then we have, since $\left(q_{n}(x)\right)$ forms a normal basis (Theorem 1), $\|p\|=\max _{0 \leq i \leq n}\left\{\left|c_{i}\right|\right\}<\|p\|$ which is clearly a contradiction.

Since $\left|p\left(u_{i}\right)\right| \leq\|p\|$, we may conclude that there exists an index $i, 0 \leq$ $i \leq n$, such that $\|p\|=\left|p\left(u_{i}\right)\right|$.

Procecding from the theorem of Amice, we can marke more normal bases with the following theorem:

Theorem 2.

Let $\left(q_{n}(x)\right)$ be a normal basis as found in Theorem 1.
Defne $\rho_{n}(x)=\sum_{j=0}^{n} c_{n ; j} q_{j}(x), c_{n ; j} \in K, c_{n: n} \neq 0$.
Then $\left(p_{n}(x)\right)$ forms a normal basis for $C(M \rightarrow K)$ if and only if $\left\|p_{n}\right\|=1$ and $\left|c_{n ; n}\right|=1$ for all n.

Proof:
Suppose that the sequence $\left(p_{n}(x)\right)$ forms a normal basis for $C(M \rightarrow$ $K)$.

It is clear that the norm of p_{n} must equal one. Since $\left(q_{n}(x)\right)$ forms a normal basis, this implies that $\left|c_{n ; n}\right| \leq 1$.

There exist coefficients $d_{n ; j}$ such that $q_{n}=\sum_{j=0}^{n} d_{n ; j} P_{j}(x)$ and so we have $1=\left\|q_{n}\right\|=\max _{0 \leq j \leq n}\left\{\left|d_{n ; j}\right|\right\}$ so $\left|d_{n ; n}\right| \leq 1$.

Further, $q_{n}=\sum_{j=0}^{n} d_{n ; j} p_{j}(x)=\sum_{j=0}^{n} d_{n ; j} \sum_{i=0}^{j} c_{j ; i} q_{i}=\sum_{i=0}^{n} q_{i} \sum_{j=i}^{n} d_{n ; j} c_{j ; i}$ and this implies $d_{n ; n} c_{n ; n}=1$.

Combining this with the fact that $\left|d_{n ; n}\right| \leq 1$ and $\left|c_{n ; \pi}\right| \leq I$, we conclude $\left|d_{n ; n}\right|=1$ and $\left|c_{n ; n}\right|=1$.

We now prove the other implication.
Let k be an arbitrary element of \mathbb{N} and let $b_{0}, b_{1}, \ldots, b_{k}$ be arbitrary elements of K. For the orthonormality of the sequence $\left(p_{n}(x)\right)$, we have to show

$$
\left\|b_{0} p_{0}+\cdots+b_{k} p_{k}\right\|=\max _{0 \leq n \leq k}\left\{\left\|b_{i} p_{i}\right\|\right\}=\max _{0 \leq n \leq k}\left\{\left|b_{i}\right|\right\}
$$

If $\max _{0 \leq \pi \leq k}\left\{\left|b_{n}\right|\right\}=0$ there is nothing to prove.
If $\max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\}>0$, then put $I=\left\{n|0 \leq n \leq k|\left|b_{n}\right|=\max _{0 \leq j \leq k}\left\{\left|b_{j}\right|\right\}\right\}$.
There exists an N such that $N=\max \{i \in I\}$.
We have $\left|\sum_{n=0}^{k} b_{n} p_{n}(x)\right| \leq \max _{0 \leq n \leq k}\left\{\left|b_{n} p_{n}(x)\right|\right\} \leq\left|b_{N}\right|$, and so $\left\|\sum_{n=0}^{k} b_{n} p_{n}\right\| \leq \max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\}$.

Put $\sum_{n=0}^{k} b_{n} p_{n}(x)=\sum_{n=0}^{N} b_{n} p_{n}(x)+\sum_{n=N+1}^{k} b_{n} p_{n}(x)=\tilde{f}(x)+\hat{f}(x)$, where we have $\|\tilde{f}\| \leq \max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\},\|\hat{f}\|<\max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\}$ (strict inequality).

$$
\begin{aligned}
\tilde{f}(x) & =\sum_{n=0}^{N} b_{n} p_{n}(x)=\sum_{n=0}^{N} b_{n} \sum_{j=0}^{n} c_{n ; j} q_{j}(x)=\sum_{j=0}^{N} q_{j}(x) \sum_{n=j}^{N} b_{n} c_{n ; j} \\
& =\sum_{j=0}^{N-1} q_{j}(x) \sum_{n=j}^{N} b_{n} c_{n ; j}+q_{N}(x) b_{N} c_{N ; N} .
\end{aligned}
$$

We distinguish two cases:
a) $\left\|\sum_{j=0}^{N-1} q_{j} \sum_{n=j}^{N} b_{n} c_{n ; j}\right\|<\left|b_{N}\right|$.

Since $\left|q_{N}\left(u_{N}\right) b_{N} c_{N_{i} N}\right|=\left|b_{N}\right|$, it follows that $\left|\tilde{f}\left(u_{N}\right)\right|=\left|b_{N}\right|$, and so $\left\|\sum_{n=0}^{k} b_{n} p_{n}\right\|=\left|b_{N}\right|=\max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\}$.
b) $\left\|\sum_{j=0}^{N-1} q_{j} \sum_{n=j}^{N} b_{n} c_{n ; j}\right\|=\left|b_{N}\right|$.

There exists an $i, 0 \leq i \leq N-1$, such that $\left|\sum_{j=0}^{N-1} q_{j}\left(u_{i}\right) \sum_{n=j}^{N} b_{n} c_{n ; j}\right|=\left|b_{N}\right|$ (Lemma 1).
Then we have $\left|\tilde{f}\left(u_{i}\right)=\left|\sum_{j=0}^{N-1} q_{j}\left(u_{i}\right) \sum_{n=j}^{N} b_{n} c_{n ; j}\right|=\left|b_{N}\right|\right.$, and so $\left\|\sum_{n=0}^{k} b_{n} p_{n}\right\|=\left|b_{N}\right|=\max _{0 \leq n \leq k}\left\{\left|b_{n}\right|\right\}$.

We conclude that the sequence $\left(p_{n}(x)\right)$ is orthonormal.
By [6, p. 165, Lemma 5.1] and by Kaplansky's Theorem (see e.g. [6, p. 191, Theorem 5.28]) it follows that ($p_{n}(x)$) forms a basis of $C(M \rightarrow K)$, since the k linear span of the polynomials $p_{n}(x)$ contains $K[x]$.

Theorem 3.

Let $\left(p_{n}(x)\right)$ be a polynomial sequence in $K[x]$, which forms a normal basis for $C(M \rightarrow K)$, and let $\left(r_{n}(x)\right)$ be a polynomial sequence in $K[x]$ such that $r_{n}(x)=\sum_{j=0}^{n} e_{n_{i} j} p_{j}(x), e_{n ; j} \in K$. Then the following are equivalent:
i) $\left(r_{n}(x)\right)$ forms a normal basis for $C(M \rightarrow K)$
ii) $\left\|r_{n}\right\|=1,\left|e_{n_{i} n}\right|=1$
iii) $\left|e_{n ; j}\right| \leq 1,\left|e_{n ; n}\right|=1$.

Proof:

i) \Leftrightarrow ii) follows from Theorem 2, using the expression $p_{n}(x)=$ $\sum_{j=0}^{n} c_{n ; j} q_{j}(x)$, and ii) \Leftrightarrow iii) follows from the fact that, $\left(p_{n}(x)\right.$) forms a normal basis.

3. The set V_{q}

From now on, K is a non-archimedean valued field, K contains \mathbb{Q}_{p}, and K is complete for the valuation \mid.$] , which extends the p$-adic valuation.

The aim now is to find normal bases for the space $C\left(V_{q} \rightarrow K\right)$. Therefore, we start by giving a description of the set V_{q} (Lemmas 4 and 5 below).

Definition.

If b is an element of $\mathbb{Z}_{p}, b \equiv 1(\bmod p), x$ an element of \mathbb{Z}_{p}, then we put $b^{x}=\lim _{n \rightarrow x} b^{n}$. The mapping: $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}: x \rightarrow b^{x}$ is continuous.

For more details, we refer the reader to [4, Section 32].

Lemma 2.

Let α be an element of $\mathbb{Z}_{p}, \alpha \equiv 1\left(\bmod p^{r}\right), \alpha \not \equiv 1\left(\bmod p^{r+1}\right) r \geq 1$. If $(p, r) \neq(2,1), \beta \in \mathbb{Z}_{p} \backslash\{0\}$ then

$$
\begin{aligned}
& \alpha^{\beta} \equiv\left(\bmod p^{r+\operatorname{od}_{p} \beta}\right) \\
& \alpha^{\beta} \not \equiv 1\left(\bmod p^{r+1+\operatorname{ord}_{p} \beta}\right) .
\end{aligned}
$$

Proof:
Let $\alpha=1+\gamma p^{r}$, and let $\gamma=\gamma_{0}+\gamma_{1} p+\ldots$, with $\gamma_{0} \neq 0$, be the Henseldevelopment of the p-adic integer γ ([4, Section 3]).

Then we have

$$
\begin{aligned}
\alpha^{p} & =\left(1+\gamma p^{r}\right)^{p}=\sum_{k=0}^{p}\binom{p}{k}\left(\gamma p^{r}\right)^{k}=1+p \gamma p^{r}+\ldots\left(\gamma p^{r}\right)^{p} \\
& =1+\gamma p^{r+1} \ldots(\text { remark }: r+1 \neq r p),
\end{aligned}
$$

and so $\alpha^{p} \equiv 1\left(\bmod p^{r+1}\right), \alpha^{p} \not \equiv 1\left(\bmod p^{r+2}\right)$.
If we continue in this way, we find: $\alpha^{p^{s}} \equiv 1\left(\bmod p^{r+s}\right), \alpha^{p^{s}} \not \equiv 1(\bmod$ $\left.p^{r+1+s}\right)$.

Now take k such that $2 \leq k \leq p-1$.

$$
\alpha^{k}=\left(1+\gamma p^{r}\right)^{k}=\sum_{j=0}^{k}\binom{k}{j}\left(\gamma p^{r}\right)^{j}=1+k \gamma p^{r}+\ldots\left(\gamma p^{r}\right)^{k}
$$

$k \gamma$ cannot be a multiple of p, since neither k or γ is divisible by p.
So $\alpha^{k} \equiv 1\left(\bmod p^{r}\right), \alpha^{k} \neq 1\left(\bmod p^{r+1}\right)$.
Let n be an element of \mathbb{N}_{0}. If we combine the previous results then we find $\alpha^{n} \equiv 1\left(\bmod p^{r+\operatorname{ord}_{p} n}\right), \alpha^{n} \not \equiv 1\left(\bmod p^{r+1+\operatorname{ord}_{p} n}\right)$.

The lemma follows by continuity.

Lemma 3.

Let α be an element of $\mathbb{Z}_{2}, \alpha \equiv 3$ (mod 4). Define a natural number n by $\alpha=1+2+2^{2} \varepsilon, \varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{\pi-1}=1$, $\varepsilon_{n}=0$.

If $\beta \in \mathbb{Z}_{2} \backslash\{0\}$, ord $_{2} \beta=0$ then

$$
\begin{aligned}
& \alpha^{\beta} \equiv 1(\bmod 2) \\
& \alpha^{\beta} \not \equiv 1(\bmod 4)
\end{aligned}
$$

If $\beta \in \mathbb{Z}_{2} \backslash\{0\}$, ord $_{2} \beta=k \geq 1$ then

$$
\begin{aligned}
& \alpha^{\beta} \equiv 1\left(\bmod 2^{n+2+\operatorname{ord}_{2} \beta}\right) \\
& \alpha^{\beta} \not \equiv 1\left(\bmod 2^{n+3+\operatorname{ord}_{2} \beta}\right) .
\end{aligned}
$$

Proof:

$$
\alpha=3+4 \varepsilon . \text { Hence } \alpha^{2}=1+2^{3}(1+\varepsilon)(1+2 \varepsilon)
$$

Since $\varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{n-1}=1, \varepsilon_{n}=0$, $\operatorname{ord}_{2}(1+2 \varepsilon)=0$, we have $\alpha^{2} \equiv 1\left(\bmod 2^{n+3}\right), \alpha^{2} \not \equiv 1\left(\bmod 2^{n+4}\right)$.

Then

$$
\begin{aligned}
\alpha^{2^{k+1}}=\left(\alpha^{2}\right)^{2^{k}} & \equiv 1\left(\bmod 2^{n+3+k}\right) \\
& \not \equiv 1\left(\bmod 2^{n+4+k}\right) \text { by Lemma } 2(k \geq 1)
\end{aligned}
$$

So $\alpha^{2^{k}} \equiv 1\left(\bmod 2^{n+2+k}\right), \alpha^{2^{k}} \not \equiv 1\left(\bmod 2^{n+3+k}\right)(k \geq 1)$.
In an analogous way as in the previous lemma, we show
If $s \in \mathbb{N}_{0}, \operatorname{ord}_{2} s=0$, then $\alpha^{s} \equiv 1(\bmod 2), \alpha^{s} \neq 1(\bmod 4)$.
If $s \in \mathbb{N}_{0}, \operatorname{ord}_{2} s=k \geq 1$, then $\alpha^{s} \equiv 1\left(\bmod 2^{n+2+\operatorname{ord}_{2} s}\right), \alpha^{s} \not \equiv I(\bmod$ $2^{n+3+\text { ord }_{2} s}$).

The lemma follows by continuity.
In the following lemma, m is the smallest integer such that $q^{m} \equiv 1$ $(\bmod p) .($ Remark: $1 \leq m \leq p-1)$.

Lemma 4.

Let $q^{m} \equiv 1\left(\bmod p^{k_{0}}\right), q^{m} \not \equiv 1\left(\bmod p^{k_{0}+1}\right)$.
If $\left(p, k_{0}\right) \neq(2,1)$, then $V_{q}=\underset{0 \leq r \leq m-1}{\bigcup}\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$.

Proof:

We take the m balls $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}, 0 \leq r \leq m-1$.
Every element $a q^{T}\left(q^{m}\right)^{n}(0 \leq r \leq m-1, n \in \mathbb{N})$ belongs to one of these balls: $\left|a q^{r}\left(q^{m n}\right)^{n}-a q^{r}\right|=\left|a q^{r}\right|\left|\left(q^{m}\right)^{n}-1\right| \leq p^{-k_{0}}$ (Lemma 2).

Since V_{q} is the closure of $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}=\left\{a q^{r}\left(q^{m}\right)^{n} \mid 0 \leq r \leq\right.$ $m-1, n \in \mathbb{N}\}$, we have that $\bigcup_{0 \leq r \leq m-1}\left\{x \in \mathbb{Z}_{p}| | x-a q^{\tau} \mid \leq p^{-k_{0}}\right\} \supset V_{q}$.

The m balls $\left\{x \in \mathbb{Z}_{p}| | x-a q^{T} \mid \leq p^{-k_{0}}\right\}$ are pairwise disjoint: take $r, s \in$ $\{0,1, \ldots, m-1\}, r \neq s$ e.g. $r>s$, then $\left|a q^{r}-a q^{s}\right|=\left|a q^{s}\right|\left|q^{r-s}-1\right|=1$.

We remark that it is impossible to take balls with a smaller radius: $\left|a q^{T}-a q^{T} q^{m}\right|=\left|a q^{r}\right|\left|1-q^{m}\right|=p^{-k_{0}}$.

Let r be fixed: $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$.
We take the following p elements of $V_{q}: a q^{r}\left(q^{m}\right)^{0}, a q^{r}\left(q^{m}\right)^{1}, \ldots$, $a q^{r}\left(q^{m}\right)^{p-1}$.

Each of these elements belongs to $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$: $\left|a q^{r}\left(q^{m}\right)^{i}-a q^{r}\right|=\left|a q^{r}\right|\left|\left(q^{m}\right)^{i}-1\right| \leq p^{-k_{0}}$ by Lemma $2(0 \leq i \leq p-1)$.

Furthermore, if $i, j \in\{0,1, \ldots, p-1\}, i \neq j$, say $i>j$, then $\left|a q^{r}\left(q^{m}\right)^{i}-a q^{T}\left(q^{m}\right)^{j}\right|=\left|a q^{r}\left(q^{m}\right)^{j}\right|\left|\left(q^{m}\right)^{i-j}-1\right|=p^{-k_{0}}$ by Lemma 2 since $0<i-j \leq p-1$.

So these p elements define p disjoint balls with radius $p^{-\left(k_{0}+1\right)}$ which cover $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$.

We take $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r}\left(q^{m}\right)^{i} \mid \leq p^{-\left(k_{0}+1\right)}\right\}, i \in\{0,1, \ldots, p-1\}$, i fixed.

Take the p elements $a q^{r}\left(q^{m}\right)^{i+j p}, 0 \leq j \leq p-1$.
These elements belong to $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r}\left(q^{m}\right)^{i} \mid \leq p^{-\left(k_{0}+1\right)}\right\}$: $\left|a q^{r}\left(q^{m}\right)^{i+j p}-a q^{r}\left(q^{m}\right)^{i}\right|=\left|a q^{r}\left(q^{m}\right)^{i}\right|\left|\left(q^{m}\right)^{j p}-1\right| \leq p^{-\left(k_{0}+1\right)}$ by Lemma $2(0 \leq j \leq p-1)$.

Furthermore, if $j, k \in\{0,1, \ldots, p-1\}, k \neq j$, say $k>j$, then $\left|a q^{r}\left(q^{m}\right)^{i+k p}-a q^{r}\left(q^{m}\right)^{i+j p}\right|=\left|a q^{r}\left(q^{m}\right)^{i+j p}\right|\left|\left(q^{m}\right)^{(k-j) p}-1\right|=p^{-\left(k_{0}+1\right)}$ by Lemma 2 since $0<k-j \leq p-1$. So these p elements defino p disjoint balls with radius $p^{-\left(k_{0}+2\right)}$ which cover $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r}\left(q^{m}\right)^{i} \mid \leq\right.$ $\left.p^{-\left(k_{0}+1\right)}\right\}$.

We can continue this way.
Suppose we have $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}} \mid \leq p^{-\left(k_{0}+n+1\right)}\right\}$, $i_{0}, i_{1}, \ldots, i_{n} \in\{0,1, \ldots, p-1\}, i_{0}, i_{1}, \ldots, i_{n}$ fixed.

We take the p elements $a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+i_{n} p^{n}+i_{n+1} p^{n+1}}, 0 \leq i_{n+1} \leq p-1$.
All these elements belong to $\left\{x \in \mathbb{Z}_{p}| | x-a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}} \mid \leq\right.$ $\left.p^{-\left(k_{0}+n+1\right)}\right\}:$

$$
\begin{aligned}
& \left|a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}+i_{n+1} p^{n+1}}-a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}}\right| \\
& \quad=\left|a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}}\right|\left|a q^{r}\left(q^{m}\right)^{i_{n+1} p^{n+1}}-1\right| \leq p^{-\left(k_{0}+n+1\right)} .
\end{aligned}
$$

Furthermore, if $j, k \in\{0,1, \ldots, p-1\}, k \neq j$, say $k>j$, then

$$
\begin{aligned}
& \left|a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}+k p^{n+1}}-a q^{T}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}+j p^{n+1}}\right| \\
& =\left|a q^{r}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}+j p^{n+1}} \|\left(q^{m}\right)^{(k-j) p^{n+1}}-1\right|=p^{-\left(k_{0}+n+1\right)} .
\end{aligned}
$$

So these p elements define p disjoint balls with radius $p^{-\left(k_{0}+n+2\right)}$ which cover $\left\{x \in \mathbb{Z}_{p}| | x-a q^{T}\left(q^{m}\right)^{i_{0}+i_{1} p+\cdots+i_{n} p^{n}} \mid \leq p^{-\left(k_{0}+n+1\right)}\right\}$.

Continuing this way, we find closed balls with radius tending to zero and whose centers are elements of $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$, and these balls cover $\underset{0 \leq r \leq m-1}{\bigcup}\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$. So $\underset{0 \leq r \leq m-1}{\cup}\left\{x \in \mathbb{Z}_{p}| | x-\right.$ $\left.a q^{r} \mid \leq p^{-k_{0}}\right\}$ is the closure of $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$. But this means that $V_{q}=\underset{0 \leq r \leq m-1}{\cup}\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$.

Lemma 5.

Let $q \equiv 3$ ($\bmod 4$).
Then $V_{q}=\left\{x \in \mathbb{Z}_{2}| | x-a \mid \leq 2^{-(N+3)}\right\} \cup\left\{x \in \mathbb{Z}_{2}| | x-a q \mid \leq 2^{-(N+3)}\right\}$, where $q=1+2+2^{2} \varepsilon, \varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{N-1}=1$, $\varepsilon_{N}=0$.

Proof:
Every element $a q^{n}$ belongs to $\left\{x \in \mathbb{Z}_{2}| | x-a\left\{\leq 2^{-(N+3)}\right\} \cup\{x \in\right.$ $\left.\mathbb{Z}_{2}| | x-a q \mid \leq 2^{-(N+3)}\right\}:\left|a q^{0+2 k}-a\right|=|a|\left|q^{2 k}-1\right| \leq 2^{-(N+3)}$ and $\left|a q^{1+2 k}-a q\right|=|a q|\left|q^{2 k}-1\right| \leq 2^{-(N+3)}$ by Lemma $3(k \in \mathbb{N})$. Since V_{q} is the closure of $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$, we have that $\left\{x \in \mathbb{Z}_{2}| | x-a \mid \leq\right.$ $\left.2^{-(N+3)}\right\} \cup\left\{x \in \mathbb{Z}_{2}| | x-a q \mid \leq 2^{-(N+3)}\right\} \supset V_{q}$.

The balls $\left\{x \in \mathbb{Z}_{2}| | x-a \mid \leq 2^{-(N+3)}\right\}$ and $\left\{x \in \mathbb{Z}_{2}| | x-a q \mid \leq 2^{-(N+3)}\right\}$ are disjoint: $|a q-a|=|a||q-1|=2^{-1}$.

We remark that it is impossible to take balls with a smaller radius: $\left|a q^{2}-a\right|=|a|\left|q^{2}-1\right|=2^{-(N+3)}$ and $\left|a q^{1+2}-a q\right|=|a q|\left|q^{2}-1\right|=2^{-(N+3)}$ (Lemma 3).

From now on, we can prove the lemma in an analogous way as Lemma 4.

We will need these lemmas in the sequel.

4. Normal bases for $C\left(V_{q} \rightarrow K\right)$

We want to give a theorem analogous to Theorem 3 , but with $C(M \rightarrow$ K) replaced by $C\left(V_{q} \rightarrow K\right)$.

Therefore, we need some notations.
We introduce the following:

$$
\begin{aligned}
& {[n]!=[n][n-1] \ldots[1],[0]!=1, \text { where }[n]=\frac{q^{n}-1}{q-1} \text { if } n \geq 1 .} \\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]!n-k]!} \text { if } n \geq k,\left[\begin{array}{l}
n \\
k
\end{array}\right]=0 \text { if } n<k .} \\
& (x-a)^{(n)}=(x-a)(x-a q) \ldots\left(x-a q^{n-1}\right) \text { if } n \geq 1,(x-a)^{(0)}=1 . \\
& \left\{\begin{array}{l}
x \\
k
\end{array}\right\}=\frac{(x / a-1)(x /(a q)-1) \ldots\left(x /\left(a q^{k-1}\right)-1\right)}{\left(q^{k}-1\right) \ldots(q-1)} \text { if } k \geq 1,\left\{\begin{array}{l}
x \\
0
\end{array}\right\}=1 .
\end{aligned}
$$

Lemma 6.

i) $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]+q^{k}\left[\begin{array}{c}n-1 \\ k\end{array}\right]$.
ii) $\left[\begin{array}{l}n \\ k\end{array}\right]$ is a polynomial in q.
iii) $\left|\left[\begin{array}{l}n \\ k\end{array}\right]\right| \leq 1$.

Proof:

i) follows immediately from the definition, ii) and iii) follow from i).

The polynomials $\left[\begin{array}{l}n \\ k\end{array}\right]$ are the Gauss-polynomials.
We will need the following properties of these symbols: $\left\|\left\{\begin{array}{l}x \\ k\end{array}\right\}\right\|=$ 1 , since $\left[\begin{array}{l}n \\ k\end{array}\right]=\left\{\begin{array}{l}x \\ k\end{array}\right\}$ if $x=a q^{n},\left|\left[\begin{array}{l}n \\ k\end{array}\right]\right| \leq 1$ for all n, k in \mathbb{N}, $\left\{\begin{array}{c}a q^{k} \\ k\end{array}\right\}=\left[\begin{array}{c}k \\ k\end{array}\right]=1$ and since $\left\{\begin{array}{l}x \\ k\end{array}\right\}$ is continuous $\frac{(x-a)^{(n)}}{[n]!}=\left\{\begin{array}{l}x \\ n\end{array}\right\}$ $(q-1)^{n} q^{n(n-1) / 2} a^{n}$, so $\left\|\frac{(x-a)^{(n)}}{[n]!}\right\|=\left|(q-1)^{n}\right|$.

Definition.
If $f: V_{q} \rightarrow K$ then we define the operator D_{q} as follows:

$$
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{x(q-1)}
$$

The following properties are easily verified:

$$
\begin{array}{ll}
D_{q}^{j} x^{k}=[k][k-1] \ldots[k-j+1] x^{k-j} & \text { if } k \geq j \geq 1 \\
D_{q}^{j} x^{k}=0 & \text { if } k<j \\
D_{q}^{j}(x-y)^{(k)}=[k][k-1] \ldots[k-j+1](x-y)^{(k-j)} & \text { if } k \geq j \geq 1, \\
D_{q}^{j}(x-y)^{(k)}=0 & \text { if } j>k
\end{array}
$$

Lemma 7.

$$
x^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] a^{n-k}(x-a)^{(k)}
$$

Proof:
We know we can write x^{n} as $x^{n}=\sum_{k=0}^{n} a_{k}(x-a)^{(k)}$. Since $D_{q} x^{n}=$ $[n] x^{n-1}$ and if we apply the operator $D_{q} k$ times and put $x=a$, we find $[n][n-1] \ldots[n-k+1] a^{n-k}=a_{k}[k]!$.

Lemma 7 and it's proof can also be found in [5, p. 121].

Lemma 8.

Take on injective sequence (u_{n}) in V_{q} and define

$$
q_{n}(x)=\frac{\left(x-u_{0}\right) \ldots\left(x-u_{n-1}\right)}{\left(u_{n}-u_{0}\right) \ldots\left(u_{n}-u_{n-1}\right)} \text { for } n \geq 1, \quad q_{0}(x)=1
$$

Then $\left(q_{n}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$ if and only if $\left\|q_{n}\right\|=1$ for all n.

Proof:
Put $M=V_{q}$ in Theorem 1.

Corollary.

$\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}\right)$ forms a normal bosis for $C\left(V_{q} \rightarrow K\right)$.
Proof:
Put $u_{n}=a q^{n}$.

Theorem 4.

Let $\left(p_{n}(x)\right)$ be a polynomial sequence in $K[x]$ which forms a normal basis for $C\left(V_{q} \rightarrow K\right)$, and let $\left(r_{n}(x)\right)$ be a polynomial sequence such that $r_{n}(x)=\sum_{j=0}^{n} c_{n ; j} p_{j}(x)=\sum_{j=0}^{n} b_{n ; j} x^{j}, c_{n: j}, b_{n ; j} \in K, c_{n: n} \neq 0, b_{n: n} \neq 0$.

Then the following are equivalent:
i) $\left(r_{n}(x)\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$.
ii) $\left\|r_{n}\right\|=1,\left|c_{n ; n}\right|=1$.
iii) $\left|c_{n ; j}\right| \leq 1,\left|c_{n ; n}\right|=1$.
iv) $\left\|r_{n}\right\|=1,\left|b_{n ; n}\right|=\frac{1}{\|[n]!(q-1)^{n} \mid}$.
v) $\left|\sum_{j=k}^{n} b_{n ; j}\left[\begin{array}{l}j \\ k\end{array}\right] a^{j}\right| \leq \frac{1}{\left|[k]!(q-1)^{k}\right|},\left|b_{n ; n}\right|=\frac{1}{i[n]!(q-1)^{n} \mid}$.

Proof:
i) \Leftrightarrow ii) \Leftrightarrow iii) follows from Theorem 3 , by putting $M=V_{q}$, ii) \Leftrightarrow iv) and iii) \Leftrightarrow v) follow from Lemma 7 , by putting $p_{n}(x)=\left\{\begin{array}{l}x \\ n\end{array}\right\}$.

Some examples.

1) Put $p_{n}(x)=\left\{\begin{array}{c}q x \\ n\end{array}\right\}$.

Then the sequence $\left(p_{n}(x)\right)$ forms a normal basis of $C\left(V_{q} \rightarrow K\right)$: apply iv).
2) If the polynomial sequence $\left(p_{n}(x)\right)$ forms a normal basis of $C\left(V_{q} \rightarrow K\right)$, then so does $\left(p_{n}(q x)\right)$: If $p_{n}(x)=\sum_{j=0}^{n} c_{n ; j}\left\{\begin{array}{l}x \\ j\end{array}\right\}$, then $p_{n}(q x)=\sum_{j=0}^{n} c_{n ; j}\left\{\begin{array}{c}q x \\ j\end{array}\right\}$.

Use example i) and apply iii).
3) If the sequence ($p_{n}(x)$) forms a normal basis of $C\left(V_{q} \rightarrow K\right)$, then so does $\left(p_{n}\left(q^{k} x\right)\right)$ where k is a fixed natural number: use Example 2).
4) If the sequence $\left(p_{n}(x)\right)$ forms a normal basis of $C\left(V_{q} \rightarrow K\right)$, then so does $\left(p_{n}\left(q^{k_{n}} x\right)\right)$, where $\left(k_{n}\right)$ is a sequence in \mathbb{N} : usc Example $3)$.
5) If the sequence $\left(p_{n}(x)\right)$ forms a normal basis of $C\left(V_{q} \rightarrow K\right)$, then so does $\left(r_{n}(x)\right)$, where $r_{n}(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{n}(x)$: apply iii).
6) If the polynomial sequence $\left(p_{n}(x)\right)$ forms a normal basis of $C\left(V_{q} \rightarrow K\right)$, then so does $\left((q-1)^{j} D_{q}^{j} p_{n}(x)\right)_{n \geq j}, j \in \mathbb{N}, j$ fixed: apply iii).
To end this chapter, we give the valuation of $\left|b_{n ; n}\right|=\frac{1}{\left|(n)!(q-1)^{n}\right|}$.
If n is different from zero, then $\frac{1}{\| n!!(q-1)^{n} \mid}=\frac{1}{\left|\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots(q-1)\right|}$ and this leads us to the following lemma:

Lemma 9.

Take $m \geq 1, m$ the smallest integer such that $q^{m} \equiv 1(\bmod p)$.
i) If $q^{m} \equiv 1\left(\bmod p^{r}\right), q^{m} \not \equiv 1\left(\bmod p^{r+1}\right)(r \geq 1)$, and $(p, r) \neq(2,1)$ then

$$
\left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right|=p^{-[k / m] r}|[k / m]!|
$$

where $[x]=\max \{k \in \mathbb{Z} \mid k \leq x\}$.
ii) If $q \equiv 3(\bmod 4)$, where

$$
\begin{aligned}
& q=1+2+2^{2} \varepsilon_{1} \\
& \varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{N-1}=1, \varepsilon_{N}=0
\end{aligned}
$$

then

$$
\begin{aligned}
& \left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right| \\
& =2^{-2 k} 2^{-N k / 2}|(k / 2)!| \\
& =2^{(-k N-4 k+N+2) / 2} 2^{-N k / 2}|((k-1) / 2) \ddagger| \text { if } k \text { is odd. }
\end{aligned}
$$

We remark that (see $[4$, Section 25.5$])|j \dagger|=p^{-\lambda(j)}$ with $\lambda(j)=\frac{j-s_{j}}{p-1}$,

$$
j=\sum_{i=0}^{t} \gamma_{i} p^{i}, \quad s_{j}=\sum_{i=0}^{t} \gamma_{i}
$$

Proof:
i) Suppose $q^{m} \equiv 1\left(\bmod p^{r}\right), q^{m} \not \equiv 1\left(\bmod p^{r+1}\right), r \geq 1,(p, r) \neq(2,1)$. First, take $p \neq 2 . q^{k}-1=q^{m j+s}-1$ with $0 \leq s<m$.

Then $\left(q^{m}\right)^{j} \equiv 1\left(\bmod p^{r+\operatorname{ord}_{p} j}\right),\left(q^{m}\right)^{3} \not \equiv 1\left(\bmod p^{r+1+\operatorname{ord}_{p} j}\right)($ Lemma 2), so $\left(q^{m}\right)^{j}=1+\alpha p^{r+\text { ord }_{p} j}$ ord $_{p} \alpha=0$.

If s is different from zero, then $q^{s}=\beta$ with $\beta=\beta_{0}+\beta_{1} p+\beta_{2} p^{2}+\ldots$ with $\beta_{0} \neq 0, \beta_{0} \neq 1$, so $q^{m j+s}-1=\left(1+\alpha p^{r+\operatorname{ord}_{p} 9}\right) \beta-1=\beta+$ $\alpha \beta p^{r+\text { ord }_{p} j}-1$ and thus $q^{m j+s}-1$ is a unit if s is different from zero.

Then

$$
\begin{aligned}
\left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right| & =\left|\left(\left(q^{m n}\right)^{j}-1\right) \ldots\left(q^{m}-1\right)\right| \\
& =p^{-\left(r+\operatorname{ord}_{j} j\right)} \ldots p^{-\left(r+\operatorname{ord}_{p} 1\right)} \\
& \left.=p^{-r j}|j!|=p^{-|k / m| r}| | k / m\right]|!|
\end{aligned}
$$

If p is equal to 2 then m equals one and thus

$$
\begin{aligned}
\left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right| & =2^{-\left(r+\operatorname{ord}_{p} k\right)} \ldots 2^{-\left(r+\operatorname{ord}_{p} 1\right)} \\
& =2^{-r k}|k!|=2^{-i k / m \mid r} \mid[k / m]!!
\end{aligned}
$$

ii) Suppose $q \equiv 3(\bmod 4)$. We use Lemma 3 .

If k is even then $\left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right|$

$$
\begin{aligned}
& =2^{-k / 2} 2^{-\left(N+2+\operatorname{ord}_{2} k\right)} 2^{-\left(N+2+\operatorname{ord}_{2}(k-2)\right)} \ldots 2^{-\left(N+2+\text { ord }_{2} 2\right)} \\
& =2^{-k / 2} 2^{-(N+2) k / 2}|k||k-2| \ldots|2| \\
& =2^{-2 k} 2^{-N k / 2}|(k / 2)!|
\end{aligned}
$$

and if k is odd $\left|\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)\right|$

$$
\begin{aligned}
& =2^{-(k+1) / 2} 2^{-\left(N+2+\operatorname{ord}_{2}(k-1)\right)} 2^{-\left(N+2+\operatorname{ord}_{2}(k-3)\right)} \ldots 2^{-\left(N+2+\text { ord }_{2} 2\right)} \\
& =2^{-(k+1) / 2} 2^{-(N+2)(k-1) / 2} 2^{-(k-1) / 2}|((k-1) / 2)!| \\
& =2^{(-N k-4 k+N+2) / 2}|((k-1) / 2)!| \text { which proves the lemma. }
\end{aligned}
$$

5. More bases for $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$

We want to make new normal bases, using the basis $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}\right)$.
Now, if E is a non-archimedean Banach space over a non-archimedean valued field L, and E has a normal basis, then the norm of E satisfies the following condition: for each element x of E there exists ν in L such that the norm of x is equal to $|\nu|$. Y. Amice ([2, p. 82]) calls this condition (N).

So, if we want to make more normal bases for $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$ we can use the following result ($[2$, p. 82, Prop. 3.1.5]) :

Let E be a Banach space over a non-archimedean valued field L. If L has a discrete valuation and if E satisfies condition (N), then for a family (e_{n}) of E for which $\left\|e_{n}\right\| \leq 1$ for all n the following are equivalent:
i) $\left(e_{n}\right)$ is a normal basis of E,
ii) $\left(p\left(e_{n}\right)\right)$ is a basis of the vector space \bar{E}.
where $E_{0}=\{x \in E\| \| e \| \leq 1\}, E_{0}^{\prime}=\left\{x \in E\{\|e\|<1\}, \bar{E}=E_{0} / E_{0}^{\prime}\right.$ and p is the canonical projection of E_{0} on \bar{E}.

Since the valuation of L has to be discrete, we use this result to find normal bases for $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$. We start with some lemmas.

Lemma 10.

$$
\left[\begin{array}{c}
i+j \\
n
\end{array}\right]=\sum_{k=0}^{n}\left[\begin{array}{l}
i \\
k
\end{array}\right]\left[\begin{array}{c}
j \\
n-k
\end{array}\right] q^{-k(-j+n-k)} .
$$

Proof:
If n is zero or $i+j$ is strictly smaller then n, then the lemma surely holds.

From now on we suppose $i+j$ greater than n.
If $i+j$ is equal to n then $\left[\begin{array}{c}i+j \\ n\end{array}\right]$ is equal to one and $\sum_{k=0}^{n}\left[\begin{array}{l}i \\ k\end{array}\right]\left[\begin{array}{c}j \\ n-k\end{array}\right] q^{-k(-j+n-k)}=\sum_{k=0}^{n}\left[\begin{array}{l}i \\ k\end{array}\right]\left[\begin{array}{c}n-i \\ n-k\end{array}\right] q^{-k(i-k)}=1$ since the only term different from zero is the term where k equals i.

From now on we proceed by (double) induction.

$$
\begin{aligned}
{\left[\begin{array}{c}
i+j \\
n
\end{array}\right]=} & {\left[\begin{array}{c}
i+j-1 \\
n-1
\end{array}\right]+q^{n}\left[\begin{array}{c}
i+j-1 \\
n
\end{array}\right](\text { by Lemma } 6) } \\
= & \sum_{k=0}^{n-1}\left[\begin{array}{l}
i \\
k
\end{array}\right]\left[\begin{array}{c}
j-1 \\
n-k-1
\end{array}\right] q^{-k(-j+n-k)} \\
& +q^{n} \sum_{k=0}^{n}\left[\begin{array}{l}
i \\
k
\end{array}\right]\left[\begin{array}{l}
j-1 \\
n-k
\end{array}\right] q^{-k(-j+1+n-k)}
\end{aligned}
$$

(by the induction hypothesis)

$$
\begin{aligned}
& =\left[\begin{array}{c}
i \\
n
\end{array}\right] q^{n j}+\sum_{k=0}^{n-1}\left[\begin{array}{c}
i \\
k
\end{array}\right] q^{-k(-j+n-k)}\left(\left[\begin{array}{c}
j-1 \\
n-k-1
\end{array}\right]+\left[\begin{array}{l}
j-1 \\
n-k
\end{array}\right] q^{n-k}\right) \\
& =\sum_{k=0}^{n}\left[\begin{array}{c}
i \\
k
\end{array}\right]\left[\begin{array}{c}
j \\
n-k
\end{array}\right] q^{-k(-j+n-k)}(\text { by Lemma 6). }
\end{aligned}
$$

Lemma 11.

Let $q^{m} \equiv 1\left(\bmod p^{k_{0}}\right), q^{m} \not \equiv 1\left(\bmod p^{k_{0}+1}\right)$ with $\left(p, k_{0}\right) \neq(2,1)$.
If $x, y \in V_{q},|x-y| \leq p^{-\left(k_{0}+t\right)}$ then $\left|\left\{\begin{array}{l}x \\ n\end{array}\right\}^{s}-\left\{\begin{array}{c}y \\ n\end{array}\right\}^{s}\right| \leq 1 / p$, where $s \in \mathbb{N}, 0 \leq n<m p^{t}$.

Proof:

The lemma holds if s is equal to zero.
If $q^{m} \equiv 1\left(\bmod p^{k_{0}}\right), q^{m} \not \equiv 1\left(\bmod p^{k_{0}+1}\right)$ with $\left(p, k_{0}\right) \neq(2,1)$, we then have $V_{q}=\underset{0 \leq r \leq m-1}{\cup}\left\{x \in \mathbb{Z}_{p}| | x-a q^{r} \mid \leq p^{-k_{0}}\right\}$ (Lemma 4).

So V_{q} is the union of m disjoint balls with radius $p^{-k_{0}}$.
By the proof of Lemma 4, we have that V_{q} is the union of $m p^{t}$ disjoint balls with radius $p^{-\left(k_{0}+t\right)}$ and with centers $a q^{r}\left(q^{m}\right)^{k}, 0 \leq r \leq m-1$, $0 \leq k<p^{t}$.

Take $x, y \in\left\{a q^{j} \mid j=0,1,2, \ldots\right\}$ with $|x-y| \leq p^{-\left(k_{0}+t\right)}$. Then, by Lemmas 2 and 4, there exist natural numbers n_{x} and n_{y} such that $x=a q^{r}\left(q^{m}\right)^{n_{x}}$ and $y=a q^{r}\left(q^{m}\right)^{n_{y}}$ with $\left|n_{x}-n_{y}\right| \leq p^{-t}\left(n_{x}, n_{y} \in \mathbb{N}\right)$.

Then

$$
\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}\right|=\left|\left[\begin{array}{c}
r+m n_{x} \\
n
\end{array}\right]-\left[\begin{array}{c}
r+m n_{y} \\
n
\end{array}\right]\right| .
$$

Further,

$$
\begin{aligned}
{\left[\begin{array}{c}
r+m n_{x} \\
n
\end{array}\right]=} & {\left[\begin{array}{c}
m\left(n_{x}-n_{y}\right)+r+m n_{y} \\
n
\end{array}\right] } \\
= & \sum_{k=0}^{n}\left[\begin{array}{c}
m\left(n_{x}-n_{y}\right) \\
k
\end{array}\right]\left[\begin{array}{c}
r+m n_{y} \\
n-k
\end{array}\right] q^{-k\left(-\left(r+m n_{y}\right)+n-k\right)} \\
= & \left(\begin{array}{c}
r+m n_{y} \\
n
\end{array}\right] \\
& \left.+\sum_{k=1}^{n}\left[\begin{array}{c}
m\left(n_{x}-n_{y}\right) \\
k
\end{array}\right]\left[\begin{array}{c}
r+m n_{y} \\
n-k
\end{array}\right] q^{-k\left(-\left(r+m n_{y}\right)+n-k\right)} 10 \text { if } n_{x} \geq n_{y}\right)
\end{aligned}
$$

$$
(n \geq 1)
$$

Since $\left[\begin{array}{l}i \\ j\end{array}\right]=\frac{[i]}{[j]}\left[\begin{array}{l}i-1 \\ j-1\end{array}\right](i \geq j \geq 1)$ we have $\left|\left[\begin{array}{l}i \\ j\end{array}\right]\right| \leq\left|\frac{[i]}{[j]}\right|(i \geq 0, j \geq 1)$, so $\left|\left[\begin{array}{c}m\left(n_{x}-n_{y}\right) \\ k\end{array}\right]\right| \leq\left|\frac{\left[m\left(n_{x}-n_{y}\right)\right]}{[k]}\right|=\left|\frac{\left(q^{m}\right)^{n_{x}-n_{y}}-1}{q^{k}-1}\right| \leq 1 / p$ by Lemma 2 since $1 \leq k \leq n<m p^{t}$ and $\left|n_{x}-n_{y}\right| \leq p^{-t}$.

Then

$$
\begin{aligned}
& \left|\left[\begin{array}{c}
r+m n_{x} \\
n
\end{array}\right]-\left[\begin{array}{c}
r+m n_{y} \\
n
\end{array}\right]\right| \\
& \leq \max _{1 \leq k \leq n}\left\{\left|\left[\begin{array}{c}
m\left(n_{x}-n_{y}\right) \\
k
\end{array}\right]\left[\begin{array}{c}
r+m n_{y} \\
n-k
\end{array}\right] q^{-k\left(-\left(r+m_{y}\right)+n-k\right)}\right|\right\} \leq 1 / p .
\end{aligned}
$$

So $\left|\left\{\begin{array}{l}x \\ n\end{array}\right\}-\left\{\begin{array}{c}y \\ n\end{array}\right\}\right| \leq 1 / p$ and this also holds if n is zero.
Finally, if s is greater then one,

$$
\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{s}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}^{s}\right|=\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}\right|\left|\sum_{i=0}^{s-1}\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{i}\left\{\begin{array}{l}
y \\
n
\end{array}\right\}^{s-1-i}\right| \leq 1 / p
$$

The lemma follows by continuity.

Lemma 12.

Let $q \equiv 3(\bmod 4)$,

$$
\begin{aligned}
& q=1+2+2^{2} \varepsilon \\
& \varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{N-1}=1, \varepsilon_{N}=0
\end{aligned}
$$

If $x, y \in V_{q},|x-y| \leq p^{-(N+2+t)}$ then $\left|\left\{\begin{array}{c}x \\ n\end{array}\right\}^{s}-\left\{\begin{array}{c}y \\ n\end{array}\right\}^{s}\right| \leq 1 / 2$, where $s \in \mathbb{N}, 0 \leq \pi<2^{t}(t \geq 1)$.

Proof:
The lemma holds if s is equal to zero.
$V_{q}=\left\{x \in \mathbb{Z}_{2}| | x-a \mid \leq 2^{-(N+3)}\right\} \cup\left\{x \in \mathbb{Z}_{2}| | x-a q \mid \leq 2^{-(N+3)}\right\}$, by Lemma 5.

By the proof of Lemma. 5, we have that V_{q} is the union of 2^{t} disjoint balls with radius $2^{-(N+2+t)}$ and with centers $a q^{n}, 0 \leq n<2^{t}(t \geq 1)$.

Take $x, y \in\left\{a \dot{q}^{j} \mid j=0,1,2, \ldots\right\}$ with $|x-y| \leq 2^{-(N+2+t)}$. Then, by Lemmas 3 and 5 we must have that $x=a q^{n_{x}}$ and $y=a q^{n_{y}}$ with $\left|n_{x}-n_{y}\right| \leq 2^{-t}\left(n_{x}, n_{y} \in \mathbb{N}\right)$. Then

$$
\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}\right|=\left|\left[\begin{array}{c}
n_{x} \\
n
\end{array}\right]-\left[\begin{array}{c}
n_{y} \\
n
\end{array}\right]\right| .
$$

Further,

$$
\begin{aligned}
{\left[\begin{array}{c}
n_{x} \\
n
\end{array}\right] } & =\left[\begin{array}{c}
\left(n_{x}-n_{y}\right)+n_{y} \\
n
\end{array}\right] \\
& =\sum_{k=0}^{n}\left[\begin{array}{c}
n_{x}-n_{y} \\
k
\end{array}\right]\left[\begin{array}{c}
n_{y} \\
n-k
\end{array}\right] q^{-k\left(-n_{y}+n-k\right)}\left(\text { Lemma } 10 \text { if } n_{x} \geq n_{y}\right) \\
& =\left[\begin{array}{c}
n_{y} \\
n
\end{array}\right]+\sum_{k=1}^{n}\left[\begin{array}{c}
n_{x}-n_{y} \\
k
\end{array}\right]\left[\begin{array}{c}
n_{y} \\
n-k
\end{array}\right] q^{-k\left(-n_{y}+n-k\right)}(n \geq 1)
\end{aligned}
$$

Since $\left[\begin{array}{l}i \\ j\end{array}\right]=\frac{i(i]}{[j]}\left[\begin{array}{l}i-1 \\ j-1\end{array}\right](i \geq j \geq 1)$ we have $\left|\left[\begin{array}{l}i \\ j\end{array}\right]\right| \leq\left|\frac{[i]}{[j]}\right|(i \geq 0, j \geq 1)$, so $\left|\left[\begin{array}{c}n_{x}-n_{y} \\ k\end{array}\right]\right| \leq\left|\frac{\left[n_{x}-n_{y}\right]}{[k]}\right|=\left|\frac{9^{n_{x}-n_{y}}-1}{q^{k}-1}\right| \leq 1 / 2$ by Lemma 3 since $1 \leq k \leq n<2^{t}$ and $\left|n_{x}-n_{y}\right| \leq 2^{-t}$.

Then

$$
\left|\left[\begin{array}{c}
n_{x} \\
n
\end{array}\right]-\left[\begin{array}{c}
n_{y} \\
n
\end{array}\right]\right| \leq \max _{1 \leq k \leq n}\left\{\left|\left[\begin{array}{c}
n_{x}-n_{y} \\
k
\end{array}\right]\left[\begin{array}{c}
n_{y} \\
n-k
\end{array}\right] q^{-k\left(-n_{y}+n-k\right)}\right|\right\} \leq 1 / 2
$$

So $\left|\left\{\begin{array}{l}x \\ n\end{array}\right\}-\left\{\begin{array}{l}y \\ n\end{array}\right\}\right| \leq 1 / 2$ and this also holds if n is zero.
Finally, if s is greater then one,

$$
\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{s}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}^{s}\right|=\left|\left\{\begin{array}{l}
x \\
n
\end{array}\right\}-\left\{\begin{array}{l}
y \\
n
\end{array}\right\}\right|\left|\sum_{i=0}^{s-1}\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{i}\left\{\begin{array}{l}
y \\
n
\end{array}\right\}^{s-1-i}\right| \leq 1 / 2
$$

The lemma follows by continuity.
Since $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$ has a normal basis, its norm satisfies condition (N), and so we can use [2, p. 82, Prop. 3.1.5] to prove the following:

Theorem 5.

Let $\left(j_{n}\right)$ be a sequence in \mathbb{N}_{0}. Then the sequence of polynomials $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$.

Proof:
This proof is analogous to the proof of Theorem 1.1 in [3].
By $\left[2\right.$, Proposition 3.1 .5, p. 82] it suffices to prove that $\left.\left(\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a vectorial basis of $C\left(V_{q} \rightarrow \mathbb{F}_{p}\right)$.

We distinguish two cases.
If $q^{m} \equiv 1\left(\bmod p^{k_{0}}\right), q^{m} \neq 1\left(\bmod p^{k_{0}+1}\right)$ with $\left(p, k_{0}\right) \neq(2,1)$, define C_{t} the space of the functions from V_{q} to \mathbb{F}_{p} constant on balls of the type $\left\{x \in \mathbb{Z}_{p}| | x-\alpha \mid \leq p^{-\left(k_{0}+t\right)}\right\}, \alpha \in V_{q}$. Since $C\left(V_{q} \rightarrow \mathbb{F}_{p}\right)=U_{t \geq 0} C_{t}$ it suffices to prove that $\left(\left.\overline{\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}} \right\rvert\, n<m p^{t}\right)$ forms a basis of C_{t}. By the proof of Lemma 4, we can write V_{q} as the union of $m p^{t}$ disjoint balls with radius $p^{-\left(k_{0}+t\right)}$ and with centers $a q^{r}\left(q^{m}\right)^{n}, 0 \leq r \leq m-1,0 \leq n<p^{t}$. Let χ_{i} be the charactcristic function of the ball with center $a q^{i}$. Using Lemma 11, we have

$$
\overline{\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{j_{n}}}=\sum_{i=0}^{m p^{t}-1} \chi_{i}(x) \overline{\left\{\begin{array}{c}
a q^{i} \\
n
\end{array}\right\}^{j_{n}}}=\sum_{i=n}^{m p^{t}-1} \chi_{i}(x) \overline{\left\{\begin{array}{c}
a q^{i} \\
n
\end{array}\right\}^{j_{n}}}
$$

hence the transition matrix from $\left(\chi_{n} \mid n<m p^{t}\right)$ to $\left(\begin{array}{l}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\end{array} n<m p^{t}\right)$ is triangular, so $\left(\left.\overline{\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}} \right\rvert\, n<m p^{t}\right)$ forms a basis of C_{t}.

If $q \equiv 3(\bmod 4), q=1+2+2^{2} \varepsilon, \varepsilon=\varepsilon_{0}+\varepsilon_{1} 2+\varepsilon_{2} 2^{2}+\ldots, \varepsilon_{0}=\varepsilon_{1}=$ $\cdots=\varepsilon_{N-1}=1, \varepsilon_{N}=0$, define C_{t} the space of the functions from V_{q} to \mathbb{F}_{2} constant on balls of the type $\left\{x \in \mathbb{Z}_{2}| | x-\alpha \mid \leq 2^{-(N+2+t)}\right\}, \alpha \in V_{q}$.
Since $C\left(V_{q} \rightarrow \mathbb{F}_{2}\right)=U_{t \geq 1} C_{t}$ it suffices to prove that $\left(\left.\overline{\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}} \right\rvert\, n<2^{t}\right)$ forms a basis of C_{t}. By the proof of Lemma 5 , we can write V_{q} as the union of 2^{t} disjoint balls with radius $2^{-(N+2+t)}$ and with centers $a q^{n}$, $0 \leq n<2^{t}$. Let χ_{i} be the characteristic function of the ball with center $a q^{i}$. Using Lemma 12 we have

$$
\overline{\left\{\begin{array}{l}
x \\
n
\end{array}\right\}^{j_{n}}}=\sum_{i=0}^{2^{t}-1} \chi_{i}(x) \overline{\left\{\begin{array}{c}
a q^{i} \\
n
\end{array}\right\}^{j_{n}}}=\sum_{i=n}^{2^{2}-1} \chi_{i}(x) \overline{\left\{\begin{array}{c}
a q^{i} \\
n
\end{array}\right\}^{j_{n}}}
$$

hence the transition matrix from $\left(\chi_{n} \mid n<2^{t}\right)$ to $\left(\begin{array}{l}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}} \\ \end{array} n<2^{t}\right)$ is triangular, so $\left(\left.\overline{\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}} \right\rvert\, n<2^{t}\right)$ forms a basis of C_{t}. This proves the theorem.

6. Extension to $C\left(V_{q} \rightarrow K\right)$

Let K be as in Chapters 3 and 4. We want to show that $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$. To prove this, we need the results from Section 5. We remark that the valuation of K does not have to be discrete, as was the case in Section 5.

Theorem 6.

Let $\left(j_{n}\right)$ be a sequence in \mathbb{N}_{0}. Then $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$.

Proof:

It is clear that $\left\|\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right\|=1$.
We now prove the orthogonality of the sequence. Let n be in $\mathbb{N}, \alpha_{0}, \ldots, \alpha_{n}$ in K. We prove $\left\|\alpha_{0}\left\{\begin{array}{l}x \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{n}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right\|=$ $\max _{0 \leq i \leq n}\left\{\left|\alpha_{i}\right|\right\}$.

It is clear that $\left\|\alpha_{0}\left\{\begin{array}{l}x \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{n}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right\| \leq \max _{0 \leq i \leq n_{i}}\left\{\left|\alpha_{i}\right|\right\}$.
Put $M=\max _{0 \leq i \leq n}\left\{\left|\alpha_{i}\right|\right\}, N=\min \left\{i \mid 0 \leq i \leq n\right.$ and $\left.\left|\alpha_{i}\right|=M\right\}$. Then
$\left.\| \alpha_{0}\left\{\begin{array}{c}a q^{N} \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{n}\left\{\begin{array}{c}a q^{N} \\ n\end{array}\right\}^{j_{n}} \right\rvert\,$
$=\max \left\{\left|\alpha_{0}\left\{\begin{array}{c}a q^{N} \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{N-1}\left\{\begin{array}{c}a q^{N} \\ N-1\end{array}\right\}^{j_{N-1}}\right|,\left|\alpha_{N}\left\{\begin{array}{c}a q^{N} \\ N\end{array}\right\}^{j_{N}}\right|\right\}$
$=\left|\alpha_{N}\left\{\begin{array}{c}a q^{N} \\ N\end{array}\right\}^{j_{N}}\right|=M$
since $\left|\alpha_{0}\left\{\begin{array}{c}a q^{N} \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{N-1}\left\{\begin{array}{c}a q^{N} \\ N-1\end{array}\right\}^{j_{N-1}}\right|<M,\left|\alpha_{N}\left\{\begin{array}{c}a q^{N} \\ N\end{array}\right\}^{j_{N}}\right|=$
M. So $\left\|\alpha_{0}\left\{\begin{array}{l}x \\ 0\end{array}\right\}^{j_{0}}+\cdots+\alpha_{n}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right\|=\max _{0 \leq i \leq n}\left\{\left|\alpha_{i}\right|\right\}$.

Finally, we prove that the sequence forms a basis.

By [6, p. 165, Lemma 5.1] and by Kaplansky's Theorem (see e.g. [6, p. 191, Theorem 5.28]), it suffices to prove that the k linear span of the polynomials $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ contains $K[x]$. Since each $\left\{\begin{array}{l}x \\ k\end{array}\right\}$ is an element of $\mathbb{Q}_{p}[x]$ and $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ forms a normal basis of $C\left(V_{q} \rightarrow \mathbb{Q}_{p}\right)$ (Theorem 5), we can write $\left\{\begin{array}{l}x \\ k\end{array}\right\}$ as a uniformly convergent expansion $\left\{\begin{array}{l}x \\ k\end{array}\right\}=\sum_{n=0}^{\infty} a_{n} q_{n}(x)^{j_{n}}$. So if $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ are elements of K then there exists coefficients $d_{n}^{\left(j_{n}\right)}$ in K such that $\sum_{i=0}^{n} \alpha_{i}\left\{\begin{array}{l}x \\ i\end{array}\right\}=\sum_{n=0}^{\infty} d_{n}^{\left(j_{n}\right)}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}$ where the right-hand-side is uniformly convergent.

Let p be an element of $K[x]$. By the previous romark there exist coefficients $c_{n}^{\left(j_{n}\right)}$ such that $p(x)=\sum_{i=0}^{N} \beta_{i}\left\{\begin{array}{l}x \\ n\end{array}\right\}=\sum_{n=0}^{\infty} c_{n}^{\left(j_{n}\right)}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}$. So the k linear span of the polynomials $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}\right)$ contains $K[x]$. This finishes the proof.

If f is an element of $C\left(V_{q} \rightarrow K\right)$, there exist coefficients $\left(b_{n}^{\left(j_{n}\right)}\right)$ such that $f(x)=\sum_{n=0}^{\infty} b_{n}^{\left(j_{n}\right)}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{j_{n}}$ where the series on the right-hand-side is uniformly convergent. In some cases it is possible to give an expression for the coefficients:

Proposition 1.

Let s be in \mathbb{N}_{0}. Then each continuous function $f: V_{q} \rightarrow K$ can be written as a uniformly convergent series

$$
f(x)=\sum_{n=0}^{\infty} b_{n}^{(s)}\left\{\begin{array}{l}
x \\
n
\end{array}\right\} \text { with }\|f\|=\max _{n \geq 0}\left\{\left|b_{n}^{(s)}\right|\right\}
$$

where

$$
b_{n}^{(s)}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{2}\\
k
\end{array}\right]^{s} f\left(a q^{k}\right) \beta_{n-k}^{(s)}
$$

and $\beta_{0}^{(s)}=1, \beta_{m}^{(s)}=\sum_{\substack{\left(j_{1}, \ldots, j_{r}\right) \\ \sum j_{i}=m_{i} 1 \leq j_{i} \leq m}}(-1)^{r+m}\left[\begin{array}{c}m \\ j_{1} \ldots j_{r}\end{array}\right]^{s},\left[\begin{array}{c}m \\ j_{1} \ldots j_{r}\end{array}\right]=$ $\frac{[m]!}{\left[j_{1}\right] \ldots \ldots\left[j_{r}\right]!}$.

Proof:

The proof is equal to the proof of Corollary 1.2 in [3].
$\|f\|=\max _{n \geq 0}\left\{\left|b_{n}^{(s)}\right|\right\}$ follows from the fact that $\left(\left\{\begin{array}{l}x \\ n\end{array}\right\}^{s}\right)$ forms a normal basis. If $f(x)=\sum_{n=0}^{\infty} b_{n}^{(s)}\left\{\begin{array}{l}x \\ n\end{array}\right\}^{s}$ then $f\left(a q^{k}\right)=\sum_{n=0}^{k} b_{n}^{(s)}\left[\begin{array}{l}k \\ n\end{array}\right]^{s}$, and so $b_{0}^{(s)}=f(a), b_{k}^{(s)}=f\left(a q^{k}\right)-\sum_{n=0}^{k-1} b_{n}^{(s)}\left[\begin{array}{l}k \\ n\end{array}\right]^{s}$ if $k \geq 1$.
If k is equal to zero, the formulas certainly hold.
We proceed by induction. Suppose the formulas hold for $0 \leq j \leq N$.

$$
\begin{aligned}
& b_{N+1}^{(s)}=f\left(a q^{N+1}\right)-\sum_{n=0}^{N} b_{n}^{(s)}\left[\begin{array}{c}
N+1 \\
n
\end{array}\right]^{s} \\
&=f\left(a q^{N+1}\right)-\sum_{n=0}^{N}\left[\begin{array}{c}
N+1 \\
n
\end{array}\right]^{s} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]^{s}(-1)^{n-k} f\left(a q^{k}\right) \beta_{n-k}^{(s)} \\
&=f\left(a q^{N+1}\right)-\sum_{k=0}^{N} \sum_{n=k}^{N}(-1)^{n-k} f\left(a q^{k}\right) \\
&=f\left(a q^{N+1}\right)+\sum_{k=0}^{N} \sum_{n=k}^{N} f\left(a q^{k}\right) \\
& \quad \sum_{i=1}^{r}(-1)^{r+n-k}\left[\begin{array}{c}
n-k \\
j_{1} \ldots j_{r}
\end{array}\right]^{s}\left[\begin{array}{c}
n \\
k
\end{array}\right]^{s}\left[\begin{array}{c}
N+1 \\
n
\end{array}\right]^{s} \\
& \sum_{i=1}^{r} j_{i=n-k}(-1)^{r+1}\left(\frac{[N+1]!}{\left[j_{1}\right]!\ldots\left[j_{r}\right)![k]![N+1-n]!}\right)^{s}
\end{aligned}
$$

put $j_{r+1}=N+1-n$

$$
\begin{aligned}
& =f\left(a q^{N+1}\right)+\sum_{k=0}^{N}\left[\begin{array}{c}
N+1 \\
k
\end{array}\right]^{s} f\left(a q^{k}\right) \\
& \sum_{2=1}^{r+1} j_{r=N+1-k}(-1)^{r+1}\left[\begin{array}{c}
N+1-k \\
j_{1} \ldots j_{r+1}
\end{array}\right]^{s} \\
& =f\left(a q^{N+1}\right)+\sum_{k=0}^{N}\left[\begin{array}{c}
N+1 \\
k
\end{array}\right]^{s} f\left(a q^{k}\right)(-1)^{N+1-k} \beta_{N+1-k}^{(s)} \\
& =\sum_{k=0}^{N+1}\left[\begin{array}{c}
N+1 \\
k
\end{array}\right]^{s} f\left(a q^{k}\right)(-1)^{N+1-k} \beta_{N+1-k}^{(s)}
\end{aligned}
$$

which proves the proposition.

Proposition 2.

For each $s \in \mathbb{N}_{0}$, the sequence of polynomials $\left(\left(\frac{(x-a)^{(n)}}{[n]!}\right)^{s}\right)$ form a basis of $C\left(V_{q} \rightarrow K\right)$. Each continuous function $f_{*}: V_{q} \rightarrow K$ can be written as a uniformly convergent series

$$
f(x)=\sum_{n=0}^{\infty} c_{n}^{(s)}\left(\frac{(x-a)^{(n)}}{[n]!}\right)^{s} \text { with }\|f\|=\max _{n \geq 0}\left\{\left|c_{n}^{(s)}(q-1)^{n s}\right|\right\}
$$

where $c_{n}^{(s)}=b_{n}^{(s)} /\left((q-1)^{n} q^{n(n-1) / 2} a^{n}\right)^{s}$.
Proof:
This follows from the fact that $\frac{(x-a)^{(n)}}{[n]!}=\left\{\begin{array}{l}x \\ n\end{array}\right\}(q-1)^{n} q^{n(n-1) / 2} a^{n}$.
If we put s equal to one in Proposition 2, we find Jackson's interpolation formula for continuous functions from V_{q} to $K([5])$.

An example.

We have

$$
\begin{aligned}
\beta_{0}^{(s)}= & \beta_{1}^{(s)}=1 \\
\beta_{2}^{(s)}= & {[2]^{s}-1=(q+1)^{s}-1 } \\
\beta_{3}^{(s)}= & {[3]^{s}[2]^{s}-2[3]^{s}+1=\left(q^{2}+q+1\right)^{s}(q+1)^{s}-2\left(q^{2}+q+1\right)^{s}+1 } \\
\beta_{4}^{(s)}= & {[4]^{s}[3]^{s}[2]^{s}-3[4]^{s}[3]^{s}+\frac{[4]^{s}[3]^{s}}{[2]^{s}}+2[4]^{s}-1 } \\
= & \left(q^{3}+q^{2}+q+1\right)^{s}\left(q^{2}+q+1\right)^{s}(q+1)^{s} \\
& -3\left(q^{3}+q^{2}+q+1\right)^{s}\left(q^{2}+q+1\right)^{s}+\left(q^{2}+1\right)^{s}\left(q^{2}+q+1\right)^{s} \\
& +2\left(q^{3}+q^{2}+q+1\right)^{s}-1
\end{aligned}
$$

and after some calculations we find

$$
\begin{gathered}
\left\{\begin{array}{l}
x \\
1
\end{array}\right\}=\left\{\begin{array}{c}
x \\
1
\end{array}\right\}^{2}-q(q+1)\left\{\begin{array}{l}
x \\
2
\end{array}\right\}^{2}+\left(q^{2}+q+1\right)(q+1)^{2} q^{2}\left\{\begin{array}{l}
x \\
3
\end{array}\right\}^{2} \\
-q^{3}\left(q^{3}+q^{2}+q+1\right)\left(q^{2}+q+1\right)\left(q^{4}+3 q^{3}+3 q^{2}+3 q+1\right)\left\{\begin{array}{c}
x \\
4
\end{array}\right\}^{2}+\ldots
\end{gathered}
$$

which gives us a uniformly convergent series.

References

1. Y. Amice, Interpolation p-adique, Bull Soc. Math. France 92 (1964), 117-180.
2. Y. Amice, "Les nombres p-adiques," Presses Universitaires de France, Paris, Collection SUP, Le Mathématicien 14, 1975.
3. S. Caenepeel, About p-adic interpolation of continuous and differentiable functions, Groupe d'étude d'analyse ultramétrique (Y Amice, G. Christol, P. Robba) 25, 9^{e} année, 1981/82, 8 p.
4. W. H. Schikhof, "Ultrametric calculus: An introduction to p-adic analysis," Cambridge University Press, 1984.
5. L. Van Hamme, Jackson's Interpolation formula in p-adic analysis, Proceedings of the Conference on p-adic analysis, report nr. 7806, Nijmegen, June 1978, 119-125.
6. A. C. M. van Roois, "Non-Archimedean functional analysis," Marcel Dekker, Pure and Applied Mathematics 51, 1978.

Vrije Universiteit Brussel
Faculty of Applied Sciences
Pleinlaan 2
B-1050 Brussels
BELGIUM

Rebut el 2 de Juny de 1993

