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Abstract

LIE ALGEBRAS OF VECTOR FIELDS
AND GENERALIZED FOLIATIONS

JANUSZ GRABOWSKI

The main result is a Pursell-Shanks type theorem describing iso-
morphism of the Lie algebras of vector fields preserving generalized
foliations . The result includes as well smooth as real-analytic and
holomorphic cases .

1 . Introduction.
A whole series of papers followed the classical result of Shanks and

Pursell [15] which states that the Lie algebra X(M) of all smooth vec-
tor fields on a smooth manifold M determines the smooth structure of
M, Le . the Lie algebras X(M1) and X(M2 ) are isomorphic if and only
if MI and M2 are diffeomorphic . Some of these papers concern special
geometric situations (hamiltonian, contact, group invariant, etc . vector
fields), as for example the results of Omori [14, Chapter X], Abe [1], or
Atkin and Grabowski [3], and for which specific tools were developed in
each case. There is however a case when the answer is more or less com-
plete in the whole generality. These are the Lie algebras of vector fields
which are modules over the corresponding rings of functions (we shall
call them modular) . Let us recall the work of Amemiya [2], our paper [5]
where developed algebraic approach made possible to consider analytic
cases as well, and finally the brilliant purely algebraic result of Skriabin
[16] . This final result states that, in case when modular Lie algebras
of vector fields contain finite families of vector fields with no common
zeros (we shall say that they are strongly non-singular), isomorphisms
between them are generated by isomorphisms of corresponding algebras
of functions, Le . diffeomorphisms of underlying manifolds . The standard
model of a modular Lie algebra of vector fields is the Lie algebra X(_F)
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of all vector fields tangent te a given (generalized) foliation P. How-
ever, if we consider not the Lie algebra of leaf preserving vector fields
X(_P) but the Lie algebra of foliation preserving vector fields £(7) (Le .
vector fields which generate local flows mapping leaves into leaves), it
is no longer modular, since vector fields of £(.P) have transversal parts
"constant" along leaves (see Lemma 1 in Chapter 4), so that the gen-
eral "modular" methods fail . It makes the description of isomorphisms a
little bit harder and only partial solutions for smooth classical (regular)
foliations were found (cf. Fukui and Tomita [4] and Rybicki [19]) . In
this note we present a purely algebraic approach to this question and
preve the Shanks-Pursell type result for the Lie algebras of vector fields
preserving foliations not only for classical, but also for a large caass of
generalized foliations . The result includes as well smooth as real-analytic
and holomorphic cases .

2 . Statement of the main result .

Since we shall be interested mainly in certain algebraic properties of
the objects in question, we shall deal at the same time with finite dimen-
sional manifolds M of different classes of smoothness C : C = C°°, C', l-L,
where C°° denotes the classical smooth case, C'-analytic case, and 7-l
denotes holomorphic case for Stein manifolds . For details we refer to [3] .
For instante, C(M) is the algebra of caass C functions on the manifold
M of caass C . Note that the algebras C°° (M) and Cw (M) are real and
the algebra 7-L(M) of holomorphic functions en the Stein manifold M is
complex . It is well-known that the corresponding Lie algebra X(M) of
all caass C vector fields can be regarded as the Lie algebra of derivations
of C(M) (in analytic cases we refer to [6]) .
Definition . A generalized foliation .P = {te%EA en a manifold M

of caass C is a partition ofM into connected submanifoldsM = UaEA .Fa
which are exactly the orbits of compositions of flows generated by local
vector fields of caass C tangent to the leaves of P .

In other words, leaves of a generalized foliation consist of maximal
integral manifolds of an involutive generalized distribution P C TM
of caass C which is invariant with respect to the flows of local vector
fields with values in P (cf. [17]) . Note also that in analytic cases the
assumption about invariance is superfluous (cf. [13]) .

Generalized foliations will be called further simply foliations, while the
classical foliations will be called regular foliations, since the dimension
of leaves is constant . Denote by X(_P) the Lie algebra of vector fields
tangent to the leaves of .`F (leaf preserving vector fields) . This Lie algebra
is modular, Le . i t has the natural structure of an C(M)-module . Consider
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the Lie normalizer

N(.F) = {x E X(M) : [x, X(.F)] c X(,F)}

of X(.F) in X(M) .
Remark 1 . A "standard" normalizer consists of foliation preserving

vector fields, but in the smooth case it can be larger . Consider for
instante the C°°-foliation F of R consisting of one 1-dimensional leaf
(-oo, 0) and non-negative points being 0-dimensional leaves . It is clear
that N(.F) = X(R), but not all smooth vector fields (e.g . generating
translations) are foliation preserving .
Given p E M denote by the .Fp the leaf containing p and by .F(p) the

tangent space Tp-Fp . For points of M the obvious equivalente relation
" ti " means that q E Fp (p and q belong to the same leaf of Y) .
Definition.

	

We call a foliation F finitely generated if the C(M)-
module X(Y) is generated by a finite family of vector fields which span
F(p) at every p E M and non-singular if the leaves of F are at least
one-dimensional .

It is not hard to prove the following (cf . [7] or [8]) .

Theorem 1 . Regular foliations of class C are finitely generated.

Note that all foliations generated by hamiltonian vector fields of local
Lie algebras of Kirillov (cf. [11]) or, in other terminology, generated by
Jacobi or Poisson structures (cf. [9]) are finitely generated .
Our main result is the following .

Theorem 2. Let .I:'2 be a finitely generated non-singular foliation on a
manifold MZ of class C and let Gi be a Lie subalgebra of N(.FZ) including
X(JT2) (e.g . Gi = G(.Iz)-the Lie algebra of class C foliation preserving
vector fields), i = 1, 2 . If lb : £1 -` £2 is a Lie algebra isomorphism
then lb = 0, for a foliation preserving diffeomorphism 0 : Ml --> M2 of
class C .

The above result may be reduced to the following .

Theorem 3 . Under the assumptions of Theorem 2 every isomorphism
lb : G1 -> ,C2 maps X(JF1) into X(Y2) .

It suffices to apply Theorem 5.5 of [5] or Theorem 3.2 of [16] to see that
every isomorphism P : X(JF1) -> X(.F2) is implemented by a foliation
preserving diffeomorphism .
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Remark that non-regular foliations have not to be finitely generated
as for example the foliation from Remark 1 or the C°°-foliation

F= {R \ {0, 1, 2 , 3, . . .}, {0}, {1}, { 2 }, { 3 }, . . .}

of R, but this assumption seems to be rather technical . However, in
analytic cases we do not oven know whether the Lie algebra X(.T) is
not trivial . We believe yes and due to the Theorem A of Cartan and
analogous result of Tognoli [18] for real-analytic case it suffices to prove
the following .
Conjecture.

	

The analytic sheaf of germs of analytic (real or com-
plex) vector fields tangent to a given analytic foliation is locally finitely
generated .

3 . Algebraic preparation .
Throughout this section A denotes an associative commutative unital

algebra over a field k of characteristic :~ 2 and X denotes a subalgebra of
the Lie algebra Der(A) of derivations of A with the commutator bracket .
Note that Der(A) is an A-module in the obvious way so that we have
the identity

(3.1)

	

[X, fY] =X(f)Y + f[X, Y]

for all X, Y E Der(A), f E A.
Definition.

	

We call X C Der(A) modular if X is an A-submodule
of Der(A) and strongly nowhere vanishing if X(A) = A (where clearly
X(A) = span{X (f) : X E Xand f E A}).

The last property may be written in the homological way as
Ho(X, A) = 0 . Our standard model is of course A = C(M)-the algebra
of caass C functions on the manifold M and X = X (.F)-the Lie algebra of
caass C vector fields on M preserving leaves of the foliation F . The Lie
algebra X(.F) is clearly modular and it is strongly non-singular if and
only if it contains a finite number of vector fields with no common zeros
(cf. [5]) . This is the case ofF being finitely generated and non-singular .
Remark that a modular Lie algebra of vector fields is (in a little bit

more general setting) called sometimes also a differential Lie algebra (cf .

By M(A) denote the set of all finite codimensional maximal ideals of A
and by M (X) the set of all finite codimensional maximal Lie subalgebras
of X.

It is well-known that in case of A = C(M) we haveM(A) - M, where
the correspondence is given by

ME)p-J(p)={f EC(M) :f(p)=0}EM(A)
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(cf. [5, Proposition 3.5]) .
ForICAputXI :={XEX :X(A)CI},V(I) :={JEM(A) :

I C J}, ¡ := nJEV(z) J, and In := span{fi

	

. . .

	

fn : fi, . . ., fn E I} . For
L C X put V(L) := {K E M(X) : L C K} .
Due to [5, Theorem 5.1] elements of M(X(.F)) (.F finitely generated

and non-singular) are of the form

X(_F)p := {X E X(.F) : X(p) = 0}

for certain p E M. However, for our purposes we shall need a little bit
stronger result . Its algebraic version is the following .

Theorem 4. Let X be a modular strongly non-singular Lie subalgebra
of Der(A) . Then for any k = 1, 2, 3, . . . there exists n(k) such that for
any Lie subalgebra L of X of codimension < k we have IX C L C Xp
for an ideal I of A of codimension < n(k) .

Proof: Since X(A) = A, there are Xl, . . ., X,�,, E X and fI, . . ., f7� E A
such that r_'j Xj(fi) = 1 . Put n(k) = 2m(k + k2 ) . If L is a Lie
subalgebra of codimension <_ k, then U := {X E L : [X, X] C L} is a Lie
subalgebra of X of codimension <_ (k + k2) as the kernel of the adjoint
representation of L in X/L.
Put

W := {f E A : fXi E U and ffiXi E U,¡ = 1, . . ., m} .

Since dim(A/W) <_ 2m(k + k2) = n(k), J := AW = span{gf : g E
A, f E W} is an ideal of A of codimension < n(k) . For X E X and
f E W the brackets [fXi , fiX] and [X, ffiXi] belong to L, so calculating
their sum with the help of (3.1) we get fXi(fi)X + fX (fi )Xi E L.

Since X = AX, we conclude that

(3.2)

	

J(Xi(fi )X + X(fi)Xj) CL

	

for all X E X, i = 1, . . ., m.

In particular,

(3 .3)

	

JXi(fi)X, C L

	

for i = 1, . . ., m.

On the other hand, putting X := Xi (fi)X in (3.2), we get

J((X,(fi))2X+X¡(fi)X(fi)Xi) C L

and due to (3.3)

(3.4)

	

J(X,(fá)) 2X C L

	

for all X E X, i = 1, . . .,m .
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Since E ' 1 Xi(fi) = 1, the ideal generated by {(Xi(fi))2 : i = 1, . . .,m}
equals A and (3 .4) implies finally JX C L. The ideal I := {f E A
fX C L} includes J and is therefore of codimension <_ n(k) .

	

Clearly
IX C L and L is a Lie algebra, so in view of (3.1)

and hence L(I) C I . This in turn implies L(A) C I as shows Lemma 4.2
in [5] .

Corollary 1. Every L E M(X) is of the form Xj for a unique J E
M(A) .

The proof is straightforward .

L(I)X C [L, IX] + I[L, X] C L

Corollary 2 .

	

Given B C M(A) and k = 1, 2 . . . . there is n(k) such
that (nB)n(k)X C L for every at most k codimensional Lie subalgebra
L ofX satisfying V(L) C {Xj : J E B}.

Proof. Take L as above . According to Theorem 4 there is n(k) and
an ideal I of A of codimension <_ n(k) such that IX C L and L(A) C I.
Since V(L) C {Xj : J E B} implies V(L(A)) C B, we have nB C I.
Because of the codimension of I, the descending series A D (I+I) D (I+

(Í)2) D . . . stabilizes at at most n(k)-th step, so I+(I)n(k) = I+(I)n(k)+1

and by the Nakayama's Lemma (I)n(k) C I, Le . (n B)n(k)X C IX C
L . a

Theorem 5 . Given finitely generated non-singular foliation ., on a
manifold M of class C and a positive integer k the intersection naEA La
of a family of at most k codimensional Lie subalgebras of X(.97) is finite
codimensional if V(La ) =V(Lp) for all cx,~3 E A .

Proof.. According to Corollary 1 and our remarks at the beginning of
this section, V(La ) = {X(.F)pi : i = 1, . . .,r} for some p1, . . . . pr E M
and all a E A. Due to Corollary 2, we have the inclusion J'(k) X(,T) C

naEA La for J = n2-1 J(pi) being the ideal of functions vanishing at
p1, . . ., pr . This ideal is Cearly finite codimensional and one can see that
J,(k) is finite codimensional as well (cf . Note 1.4 in [6] or [10] for
C°°case) . The C(M)-module X(.97) is finitely generated, so Jn(k)X(.F)
and hence n l EA La is finite codimensional .
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4. Proof of Theorem 3 .
Suppose now that .F is a finitely generated non-singular foliation on a

manifoldMof class C . For any Lie algebra L of vector fields on M and
any p E M denote Lp := {X E L : X(p) = 0}, Lp := {X E L : X(p) E

_F(p)}, L(p) := {X(p) : X E L} .

Recall that N(.F) is the Lie normalizer of X(Y) in X(M) and that
"~" is the equivalente relation given by F.

Lemma 1 . If p - q, then N(.7)P = N(.F)e .

In other words, a vector field of L is tangent to the whole leaf if at one
point .

Proof- Take Y E N(T)' and X E X (_T),X(p) ~ 0 . Choosing local co-
ordinates (xl, . . .xn) at p E M such that X = aal and xr+1 = . . . = x, = 0
describes locally a component of JPp, we can write Y = ~ 1 fi(x) axi ,
where fi (p) = fi (0) = 0 for i = r+1, . . ., n. Since the vector field [X, Y] _
j
:ii ax, a~ti belongs to X(.F), we have ál (xl , . . ., x, 0, . . ., 0) = 0 for

i = r+ 1, . . ., n. It shows that fi, i = r + 1, . . ., n, are constant (and hence
=0) along trajectories of X(F) through p, so Y is tangent to the leaf Yp
at any its point .

Lemma 2 . If L is a Lie ideal of N(.F) with L(p) ¢ _F(p) for certain
p E M, then for any q - p we have Y(q) C L(q) and V(Lq ) = V(Lp),
where V(L, q) = {K E M(L) : Lq C K} . Moreover nge.~,p Lq is infinite
codimensional in L .

Proof.. Take Y E L with Y(p) 1 .7(p) . According to Lemma 1 we
have Y(q) 0 .F(q) for any q E Fp . Civen a finite set {q1, . . ., qs} of
points of Fp we can find f E C(M) vanishing at ql, . . ., qs and such that
Y(f)(gi) = ai, i = 1, . . .,s, are arbitrarily chosen . For any X E X(F)
the vector field [Y, fX] belongs to L. Since [Y, fX](qi) = ajX(gi), the
intersection ngEFP Lq is infinite codimensional and .F(q) C L(q) for any
q E .Fp. Take now K E V(Lq) . We claim that LQ C K. Indeed, LQ is
a Lie subalgebra including Lq and Lq ~ K means that .7(q) ¢ K(q) .
K(q) C .97(q) would imply that K C Lq, but by the assumption L9 É L,
so by the maximality of K we would have K = Lq and Y(q) C K(q) .
Assume therefore that there is Z E K, Z(q) q .F(q) . Since L is a Lie ideal
of N(.F), [Y, fX] E Lq and hence [Z, [Y, fX]] E K for any X E X(.F)
and any f E C(M) vanishing at q and such that Y(f)(q) = 0. Chosing
such an f satisfying additionally Z(f)(q) = 0 and Z(Y(f))(q) = 1 we
have [Z, [Y, fX]](q) = X(q) and hence .77(q) C K(q) . Therefore V(Lq ) =
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{K E M(L) : LQ C K} and since Lq = LP , we get V(Lq) = V(Lp ) for
q -p.

Proof of Theorem 3 : Suppose L = -P(X(.P1)) is not included in X(.P2) .
Then L is a Lie ideal of N(F2) with L(p) ¢ .P2(p) for certain p E M2 .
According to Lemma 2, V(Lq ) = V(Lp) for all q E ( .P2)p and ngF(F2)P Lq
is infinite codimensional . On the other hand, L is isomorphic to X(PI)
and due to Theorem 5 this intersection should be of finite codimension,
since dim(L/Lq ) < dim(M2) .
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