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Abstract

A COUNTEREXAMPLE

IN OPERATOR THEORY

ANTONIO CÓRDOBA

The purpose of this note is te give an explicit construction of
a bounded operator T acting en the Space L2[0,1] such that
~Tf(x) j

	

<

	

fo f(y)(dy for a.e .

	

x

	

E

	

[0,11

	

and,

	

nevertheless,
JITIls, = oo for every p < 2. Here 11

	

~Isp denotes the norm
associated te the Schatten-von Neumann classes

A. Definitions and statement of the problem

The purpose of this note is to give an alternative and direct construc-
tion to the one presented in referente [1] and we shall follow closely the
lines of introduction contained in that paper :

Let (X, Y, M) be a measure space and let S, T be two bounded linear
operators on L2 (X,-F,p) . The operator S dominates pointwise T if it
happens that JTf(x) j _<

S(Ifl)(x) a.e . x, for every function f e L2 .

For example: if T = TK is an integral operator associated to a M® p-
measurable kernel K then obviously TIKI dominates TK. For an operator
T on a Hilbert space Hwe have the singular numbers

S,, (T) :=inf{11T-T,,jj ; rank(Tn ) < n} .

If T is compact then it is known that Sn (T) = \,,(

	

T*T), where A1 >_

A2 >_ - - - >_ An >_ . . . denotes the sequence of eigenvalues of

	

T*T
arranged in non-increasing order and repeated according to their multi-
plicities .
The Schatten-von Neumann classes Sp = Sp (H) are defined by

00

Sp = {T bounded 1 Y~[Sn (T)]p < oo} if 0 < p < oo
n=1
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and
Soo = {T bounded 1 lim S,, (T) = 0} .

ir, -. oo

Among them the more important ones are S,, 52, S,,,, which corre-
spond, respectively, to nuclear, Hilbert-Schmidt and compact operators .
Suppose that we have the information that the operator S E Sp(H)

pointwise dominates T. Does it follows necessarily that T E Sp? .
This is a natural question whose answer is known to be YES when p =

2n is an even natural number . In the paper quoted above a construction
of a probabilistic nature is introduced to observe that the answer to our
question is NO when 0 < p < 2 . Here we present an explicit example
where such situation occurs .

Then we have :

B. The counterexample

In the following we shall consider X = [0,1] and tt = dx is Lebesgue
measure. Let us define the operator T by the formula:

1Tf(x)

	

e21ri(x-y) - v(y)f (y) dy
0

where v(t) = [e=] and [x] denotes the integer part of the real number x
Le .

1
v(x) = n if x E In =

	

1
(log(n+ 1)' log(n)]

n=3,4, . . ., 12 =

1

T*f(x)

	

e-27ri(y-x)-v(x) f(y) dy
0

and
T*Tf(x) _

	

e-2Triz .v(x)f
(z) dzJ e27rixv(x) .

~IV(X)

Let us consider the family of functions

fk(x) = e27rik-xXIk(x)

where XI,, is the indicator function of the interval Ik Le .
x E Ik and XI,_ (x) = 0 otherwise .



Then we have :
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T*Tfk(x) = M(Ik)fk(x)

Le., fk is an eigenfunction corresponding to the eigenvalue p¿(Ik) _

log(k+1) - k(log k)2,

Therefore

	

T*T has eigenvalues

	

p,(Ik) ^' kli2iogk and, by well
known results, the decreasing sequence of singular values of T must sat-
isfy

S, (T) >

	

1
n 1 / 2 1og n

which implies T 1 Sp , if p < 2 . On the other hand it is clear that

lITf(x)1 <_ f lf(y)1 dy = S(jf1)
0

and rank(S) = 1 which yields S E Sp for every 0 < p .
Remark. There is nothing particularly special about the division

points lognn and the reader may consider the more general operator

This yields

Tf(x) =

T*Tf (x) =

/'xn
e27ri(x-y)'nf

(y) dy

00
e-21rin(x-y)Xn (x)

-27rinxXn(x)
xn

-2,inyXn(y) dy .
Xxn_1

1 /p
~IT11S � ? ~~ ~n

./2/

	

.
n-

00

1

1
logk

where xn is any increasing sequence with x0 = 0 and xn tending to 1

as n -+ oo . It has the kernel

	

e21r¡n(x-y)Xn(y) where Xn denotes the
n=1

characteristic function of the interval (xn-1, xn) while the adjoint kernel
is

It follows then that the functions fn (x) = e-27rinxXn(x) are eigenfunc-
tions with corresponding eigenvalues given by An = xn

l
- xn_1 . And this

yields the estimate
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