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A bstract

SHAPE THEORY INTRINSICALLY

ZVONKO CERIN

We prove in this paper that the category 9-IM whose objects are
topological spaces and whose morphisms are homotopy classes of
multi-nets is naturally equivalent to the shape category Sh . The
description of the category 'HM was given earlier in the article
"Shape via multi-nets" . We have shown there that HM is natu-
rally equivalent to Sh only on a rather restricted class of spaces.
This class includes all compact metric spaces where a similar in-
trinsic description of the shape category using multi-valued func-
tions was given by José M. R. Sanjurjo in [5] and [6] .

1 . Preliminaries for the description of the category HM

In this section we shall collect definitions and results from [2] that are
required for the description of the category 7-(M .

Normal covers.
Let Y denote the collection of all normal covers of a topological space

Y [1] . With respect to the refinement relation > the set Y is a directed
set . Two normal covers a and 7- of Y are equivalent provided v > T and
T > u. In order to simplify our notation we denote a normal cover and
it's equivalente class by the same symbol . Consequently, Y also stands
for the associated quotient set.

Let Y denote the collection of all finite subsets c of Í' which have a
unique (with respect to the refinement relation) maximal element c E Y.
We consider Y ordered by the inclusion relation and regard Í' as a subset
of single-element subsets of Í' . Notice that Y is a cofinite directed set .

Let Q E Y. Let o,* denote the set of all normal covers T of Y such
that the star st(T) of T refines u. Similarly, for a natural number n, u`
denotes the set of all normal covers T of Y such that the n-th star stn (T)
of T refines u.
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Multi-valued functions.

Let X and Y be topological spaces . By a multi-valued function F
X --> Y we mean a rule which associates a non-empty subset F(x) of Y
to every point x of X . Let M(X, Y) denote all multi-valued functions
from X into Y.

Let F : X -> Y be a multi-valued function and let a E X and -y E Y .
We shall say that F is an (a, y)-function provided for every A E a there
is a CA E y with F(A) C CA . On the other hand, F is y-small provided
there is an a E X such that F is an (a, y)-function .

Let F, G : X ---> Y be multi-valued functions and let y E Y. We shall
say that F ánd G are y-close and we write F l G provided for every
x E X there is a C., E y with F(x) U G(x) C C5 . How one defines the
notion "(a, y)-c1ose" is now obvious .

Let F, G : X --> Y be multi-valued functions between topological
spaces and let y be a normal cover of the space Y. We shall say that
F and G are y-homotopic and write F 1 G provided there is a y-small
multi-valued function H from the product X x I of X and the unit seg-
ment I = [0, 1] into Y such that F(x) C H(x, 0) and G(x) C H(x, 1)
for every x E X. We shall say that H is a y-homotopy that joins F and
G or that it realizes the relation (or homotopy) F "̂ G .

Lemma 1 . Let F, G, H : X -> Y be multi-valued functions. Let

u E Y and T E o,* . If F -- G and G "̂ H, then F ^- H .

Multi-nets .
Let X and Y be topological spaces . By a multi-net from X into Y

we shall mean a collection ep = {F, 1 c E Y} of multi-valued functions
F" : X --> Y such that for every y E Y there is a c E Y with Fd 1 Fe
for every d > c . We use functional notation cp : X ~ Y to indicate that
cp is a multi-net from X into Y . Let MN(X, Y) denote all multi-nets
~o :X -> Y.

Two multi-nets cp = {F,} and 0 = {G,} between topological spaces
X and Y are homotopic provided for every ,y E Y there is a c E Y such
that Fd

	

Gd for every d > c.

lt follows from Lemma 1 that the relation of homotopy is an equiva-
lence relation on the set MN(X, Y) . The homotopy class of a multi-net
cp is denoted by [ep] and the set of all homotopy classes by ~-íM(X, Y) .
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2 . Description of the category xM

Composition of homotopy classes .
Our goal now is to define a composition for homotopy classes of multi-

nets .
Let cp = {F,} : X , Y be a multi-net . For every c E Y there is an

f(c) E Y such that for all d, e > f (c) there is a normal cover f(c, d, e)
of X x I and an j(c,(c, d, e), é)-map joining Fd and Fe .

Let C

	

=

	

{(c, d, e) 1 c E Y, d, e > f(c) } .

	

Then C is

	

a subset

	

of
Y x Y x Y that becomes a cofinite directed set when we define that
(c, d, e) > (c', d', e') iff c > c', d > d', and e > e' .
Now, let f : Y -> Y be an increasing function such that f(c) > f(c), c

for every c E Y. We shall use the same notation f for an increasing
function f : C --~ X x I such that f(c, d, e)

	

>

	

f(c, d, e) for every
(c, d, e)

	

E C.

	

Let (c, d, e) E C.

	

For the normal cover f(c, d, e) of
X x I, by [3, p . 358], there is a normal cover e = ¡(e, d, e) of X
and a function r = i (c, d, e) : E , {2, 3, 4, . . . } such that every set
Ex [(i - 1)/rE, (i + 1)/rE], where E E E and i = 1, 2, . . ., rE - 1, is
contained in a member of f(c, d, e) .

Let f : C ---~ X be an increasing function with f (c, d, e) > f(c, d, e)
for every (c, d, e) E C . We shall use the shorter notation f(c) and f (c)
for the covers f (c, f(c), f(c)) and f(c, f(c), f (c)) . In [2, Claim l], the
following lemma was proved .

Lemma 2 .

	

There is an increasing function f* : Y- X such that

(1) f* (c) > f(c) for every c E Y, and
(2) f* is cofinal in f, i . e., for every (c, d, e) E C there is an m E Y

with f*(m) > j(c, d, e) .

The above discussion shows that every multi-net cp : X -> Y deter-
mines eight functions denoted by f, f, f, f, and f* . With the help of
these functions we shall define the composition of homotopy classes of
multi-nets as follows .

Let cp = {F,} : X -~ Y and 0 = {Gv,} : Y --> Z be multi-nets . Let
X = {Hv}, where H,, = Gq(u) o Ff({g* (u)}) for every u E Z .

It was proved in [2] that the collection X is a multi-net from X into
Z .
We now define the composition of homotopy classes of multi-nets by

the rule [{Gu}] o [{F,}] = [{Gg(u) o Ff({g.(u)})}] . The composition of
homotopy classes of multi-nets is well-defined and associative (see [2]) .
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The category 7-íM.
For a topological space X, let J = {Io,} : X ---> X be the identity

multi-net defined by fa = idx for every a E X. It is easy to show that
for every multi-net cp : X ---> Y the following relations hold :

[(Pl - [¿XI = [(Pl = [¿Y] - [w]

It was shown in [2] that the topological spaces as objects, the ho-
motopy classes of multi-nets as morphisms, the homotopy classes (¿XI
as identities, and the above composition of homotopy classes form the
category 7-LM .
There is an obvious functor J from the category Top of topological

spaces and continuous maps into the category UM . On objects the
functor J is the identity while on morphisms it associates to a map
f : X -> Y the homotopy class of a multi-net f = {F~} : X --> Y, where
F, = f for every c E Y.

3 . Statement of the main theorem

Our main result can be stated as follows. Let Sh be the shape category
of arbitrary topological spaces and let S : Top --> Sh be the shape functor
[4] .

Theorem. There is a functor 0 from the category 7-(M into the shape
category Sh which is an isomorphism of categories and such that S =
0oJ.

4. Preliminaries for the description of the functor 0

Cofinite Cech system.
With every space X one can associate an inverse system X =

{Xc , [pd], X}, called the cofinite Cech system of X, where X, = ~N(-«
is the nerve of c and [pd], for d > c in X, is the unique homotopy class
to which belong the projections pd : ~N(d)~ -> ~N(c)~ . For a c E X, let
[p'] : X X, be the unique homotopy class of the canonical mappings
p' : X --> X, Recall that [p°] = [pd] o [pd] whenever d > c in X so
that p = {[p']} : X -> X is a morphism of the pro-homotopy category
pro-7-LTop . Since the usual Cech system is an HPol-expansion (see [4,
p. 328]), it is easy to show by direct verification of conditions (El) and
(E2), that p is also an 7-(Pol-expansion .
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In the rest of this paper, let X, Y, and Z be topological spaces and
let

and

p = {[P,]} : X -,y = {Xa, [pb], X},

r = {[r']} : Z -> Z = {Zu, [rv], Z}

be cofinite Cech systems of X, Y, and Z, respectively.
It is well-known that shape morphisms from X into Y could be con-

sidered as equivalence classes of morphisms of inverse systems X and
y (see [4]) . More precisely, the set Sh(X, Y) of all shape morphisms
between spaces X and Y can be identified with the set pro-HPol(X, y)
of all morphisms in the Grothendick's pro-category pro- -íPol of the ho-
motopy category of polyhedra UPol between the objects X and y. In
our description of what B does on morphisms of the category UM we
shall view shape morphisms in this way.

Multi-valued functions B,
We shall also be using the following natural multi-valued function BQ

from the nerve IN(o-)1 of a normal cover o, of X into X . The function BQ
associates to a point w of IN(u)1 the intersection of members of the cover
u which span a simplex of IN(o,)1 that contains w. Hence, if w belongs
to a simplex (S l . . . . . . n) of IN(o,) I, where SI, . . . . Sn are members of
Q, then B,(w) = (ji= 1Sz . Observe that BQ is a (*Q, o,)-function, where
*Q denotes the (normal) cover of ~N(a)I by open stars *Q of all vertices
S E u of 1 N(o-)1 . Moreover, for every canonical mapping p : X -> ~N(u)~
(i . e., a map which satisfies p- '(*S) C S for every member S of Q) and
every x E X there is a V E o, such that both x and the set BQ o p(x) lie in
V while for every x E X and every S E o, with x E S the set BQ o p(x) is a
subset of st(S, o" ) . Hence, the composition BQ op is (Q, st(o,))-homotopic
and Q-close to the identity map idx.

Lemma 3. Let u and r be normal covers of a space X such that r
refines Q. Then B, . ^BQ op for every projection p : I N(-r) 1 --> IN(o,) 1 .

Proof. Let T E T and let x E *T . Then B, (x) is a subset of T while
p(x) lies in *Q, where S is a member of o, which contains T. It follows
that both B, (x) and BQ o p(x) are subsets of S. Hence, the function H
from ~N(T)j into X defined by the rule H(x) = BT (x) U BQ o p(x) for
every x E IN(,r)1 is a u-homotopy joining BT and Bv op.
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Approximation of small functions with maps.
In the description of the functor B we shall also need the following

approximation result (see Lemma 2 in [2]) .

Lemma 4. For every open cover o, of a polyhedron Y there is an open
cover T of it such that for every T-small multi-valued function F : X
Y from a space X into Y there is a single-valued continuous function
f :X--> YwithF--f .

5. Description of the functor B

The functor B will leave the objects unchanged . In order to explain
how B effects the morphsm we must work much harder .

Let cp = {Fs}SEY : X --> Y be a multi-net . For each c E Y, pick an
open cover ac of Y, = IN(c)l such that st3 (u,)-close maps into Y, are
homotopy . Since the set Y is cofinite, we can select the covers u, so that
Ud refines (gá) -1 (aj whenever d > c in Y. Moreover, we can assume
that u, refines the open cover *-j for every c E Y.
By Lemma 4, we can find a T, E ac * so that every Tc-small multi-valued

function into Y, is uc-close te a continuous single-valued function . Let
~c E Y be a refinement of (q°)-1 (7j . Since Y is a cofinite directed set,
we can assume that ~c refines ~e for every e E Y with c > e. Moreover,
for every pair c, e E Y with c > e, the maps qe and q' o qc are joined
by a homotopy K,' so that we can select a 7r' E Y and a stacked normal
cover p' of Y x I over 7r' which refines (K1)-1(Te) . We shall assume
that ~ c also refines 7r . for every index e with c > e.

Since cp is a multi-net, there is an index cp, E Y so that

£` Fe

	

for all d, e > cpc

Choose an increasing function cp* : Y

	

Y such that cp*(c) > c, W, { ~}
for every c E Y.

Since the the function F.. (,) is ~c-small, there is an 97, E X such
that F,.(,,) is an (ri, jj-function . Let Ac E rh* . Choose an increasing
function cp : Y �+ X such that W(c) > {Ac } for every c E Y. The
composition q° o F. . (,)

o
Bw(T)

is a T,-small multi-valued function so that
it is ac-close te a map cp' : Xw(C) , Ye .

Claim 1 .

	

The pair _ep = (cp, {cp°l c E Y}) is a morphism between cofi-

nite Cech systems X and y.
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Proof. We must show that for every pair c, d of elements of Y with
d > c it is possible to find an a > x, y so that

(`Z)

	

~Pc ° pa = qd °
~d

°

	

aY

where x = W(c) and y = W(d) .
Let u = cp*(c) and v = cp*(d) . Since v > u > cpc , by (1), there is a

normal cover p ofX x I such that the functions F� and Fz, can be joined
by a (q, ~,)-homotopy M : X x I ---> Y . Pick a normal cover 7r of X
and a stacked normal cover w of X x I over 7r such that w refines p . For
a > {7r}, we see that Q = qc o Mo (BIX x id,) is a T,-homotopy joining
qc o F,,, o Ba and qc oF� o B,, where a = á .

Since F,,, is a (~, ~,)-function and Ba á, B~ o pá by Lemma 3, we see
that there is a T,-homotopy P with Po = q' o F,, o Bg opa and Pl = Qo,
where ~ = x. For a similar reason, there is a T,-homotopy R with
Ro = Q1 and Rl = qc o F� o Ba opá, where A = y.

Since F� o B,, opá is a ~d-function and ~d refines 7rd, S = Kdo((FvoBao

Pá) x id,) is a T,-homotopy with So = Rl and Sl = qd o qd o F� o B,, opá .
Observe that our choices imply the existente of homotopies A, B, C,

and D such that A Q P, B -- Q, C -- R, D
Q S, cpc o pá = Po, and

Sl = qd o Wd o pá, where o = a, . From here it follows that cp ° o pá -_' Ao,
A1

v
Bo, Bl

v
Go , C, v

Do, DI
v

qd °
Wd

°pá , where v = st(Q,) .
The way in which we selected the covers uc implies that the adjacent

maps in the following long list are homotopic : ~oc o p', Ao, Al , Bo, BI ,
Co, Cl, Do, Dl, qd o cpd o pá . Hence, the relation (2) holds .

Now we can define that B aets on morphisms of the category HM (i .
e., on homotopy classes of multi-nets) by the rule B([cp]) = [cp], where
[cp] denotes the equivalente class of _cp with respect to the equivalente
relation - (see [4, p . 6]) .

Claim 2. The function 9 is well-defined, i . e ., it does not depend on
the choices of ep, ep*, and cp' in our description of [ep] .

Proof.. Suppose that ~/b = {G,} : X ---> Y is multi-net homotopic to ~o
and let the morphism _~b = (0, {Ocic E Y}) of inverse systems X and y
be constructed from ~b by the above procedure using in it 0, 0*, and 0'
instead of cp, cp*, and cp', respectively . We must show that cp and _0 are
equivalent, i . e ., that for every c E Y there is an a > x, u with

where x = W(c) and u =0(c) .

wc o pa

	

21
� ,c o Pa 5



324

	

Z. CERIN

Let a c E Y be given . In order to prove (3), we shall argue the existente
of indices a, z E Y such that

(4)

	

We opá °-_` q° o Fy o Bg o pá,

(5)

(6)

(7)

(8)

(9)

gC oFy oBlopá ^` q'oFyoB.,

q'oFy oB. -` q°oFzoB.,

q'oFz oBa --' q'oGzoB.,

q'oG.-B. ^` q°oGvoB.,

q' oG, oBa ~` q'oG� oB.yopá,

(10)

	

q'oG� oB,yopa-Ocopa,

where 1 = x, y = cp* (c), -y = ú, v = 0* (c), and a = á.
Once we have the relations (4)-(10), we approximate each of the T,-

homotopies by a u,-close homotopy and conclude from here as in the
proof of Claim 1 that (3) holds .
Add (4) and (10) . This follows from the fact that cpc and oc are

o ,,close to functions q° o Fy o Bg and qc o G� o B.y , respectively .
Add (5) . It sufices to observe that Fy is á (1, Jj-function and that

B, >, l B~ o pá for every a > x .
Add (6) . Let z > y . Then there is a normal cover A of X x I and

a (A, ~,)-homotopy L joining Fy and Fz . Pick a normal cover 7r of X
and a stacked normal cover p ofX x I over 7r such that P refines A . Let
a > {7r} . The composition q° o L o (Ba x id,) is a r,-homotopy which
realizes the relation (6) .
Add (7) . Since cp and 0 are homotopic multi-nets, there is a b E Y

such that Fz £` Gz for every z > b . Let z > b and let M be a ~,-
homotopy joining Fz and G, Choose normal covers A and p of X x I
and 7r of X such that M is a (A, ~,)-function, o refines A and o is stacked
over 7r . Let a > {7r} . Then the composition q' o M o (B,,, x id,) is a
T,-homotopy which realizes the relation (7) .
Add (8) and (9) . These are analogous to relations (6) and (5), respec-

tively. 0



Claim 3. Let c = {Ia}a,X be the identity multi-net on a space X,
where fa = idX for every a EX. Then the homotopy class [~] associated
to the homotopy class [¿] by the function B is the identity homotopy class
[(idx, {Ia l a E X})]

Proof. We must show that for every a E X there is a b > a, ¿(a) such
that
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pa = ~a . pb(a) .

In order to prove the above statement, observe that we can assume
that the function e : X -j X (which corresponda to the function cp in the
above description) has the property that the cover 1 is a star-refinement
of the cover (pa) -1 (Ta ) for every a E X, where 1 = x and x = e(a) .

Let an a

	

E X be given .

	

By construction, we have

	

ta o p, °--°
paoBe op' .

Since Be o p' is st(I)-homotopic to the identity map idX on X and
st(l;) refines (pa)-l(7a), there is a Ta-homotopy H with Ho =p' o Be o p'
and Hl = pa.

Let K be a single-valued continuous function Qa-close to H. Then
¿a o p, iS st(ua)-close to Ko and Kl iS Qa-close to pa . It follows that
¿a op' and pa are homotopic . Finally, we can use the property (E2) of
the cofinite Cech system X to get a b > a, ¿(a) such that (11) holds .

Claim 4. For multi-neta cp = {F,}reY : X -> Y and

	

_ {Gu}ucZ
Y -> Z,

Proof: Let X = {Hu}

	

: X -+ Z, where Hu = Gg(u) o Ff({9'(u)»
for every u E Z .

	

Then [X] = [0] o [cp] .

	

Let cp = (cp, {Wc}LEY ),

_-0 = (0 , {1Pu}UEZ), and _X = (X, {Xu}u,k) be obtained from cp, 0, and X
by the above procedure . We must show that _X and _0 o _cp are homotopic .
Since

	

o cp = (cp o 0, {0u oW~P(u)}uEk), this amounts to show that for
every u E Z there is an a > t, x such that

(12 )

	

Xu opa = Ou o ~o

	

opa,
where t = cp o O(u), k = O(u), and b = X(u) .

Let a u E Z be given. In order to prove the above statement, we shall
argue the existente of large enough indices w E Z, z E Y, and a E X
such that

(13)

e([0] o [~P]) = 9([0]) 0 6([w]) .

Xu o pa = ru oH~ o BQ opa
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(14)

	

ru oHx oB,9op,, Rw ru oHx oBIX ,

(15)

	

rv'oH,: o B,, Pu ruoGyoF.oB.,

(16)

	

ruoGyoF_,oB., áv ruoG�,oFzoBa,

(17)

	

ruoG�,oF,oB,
Qu

ruoGeoFz_oBcti,

(18)

	

ruoG,oF,oB, Ru
r'oC,oF¡oBa,

(19)

	

ruoG,oFioBa
pu

ruoG,oFioBTopá,

(20)

	

ruoC,oFioBTopá
P

ru oG,oB,ti ogk oFioB, opá,

(21) ru oGe oB,ogk oFioBT Opa au ru 0G,oB,ocpk ,

and

(22)

	

ru o G, o B,~ o Wk áu 0u o Wk opa,

where a = á, x_

	

X*(u), Q = b, y = O(u), e = 0* (u), i = cp*(k), -r = t,
n = k, and au and ~3u are covers of Zu analogous to covers u, and T, of
Y, respectively.
Once we have the relations (13)-(22), we approximate each of the Ou-

homotopies by an au-close homotopy and conclude from here as in the
proof of Claim 1 that (12) holds .
Add (13) and (22) . This follows from the fact that xu and 4

,/,u are
au-close to functions ru o Hx o Bp and ru o Ge o B, respectively.
Add (21) . Observe that ru o G, is a (r,, LYu)-function, B,ti is a (*k, r,)-

function, the cover Qk refines the cover *k, and the map cok is Qk-close to
the composition qk o Fi o BT , where *k denotes the normal cover of Yk
by the open stars of all vertices .

Add (14) . Notice that ru o H., is a (0, /3u)-function and Ba ! Ba o pd
for every a > b.



Proof. That 0 is a functor follows from the Claims 3 and 4 . It remains
te sea that S = 0 o J. Let f : X -> Y be a map, i . e ., a morphism of the
category Top . Then J(f) is represented by a multi-net cp = {Fc}cEY
X -j Y, where Fc = f for every c E Y . It follows that 0 o J(f) is
representad by a morphism co = (co, {(Pc }cEY) between inverse systems
X and y, where cpc is a map which is o,,-close to qc o f o Ba for a suitable
index a E X and the cover a = á of X. We shall now prove that
(23)
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Add (15) .

	

Recall that H., = Gy o Fs, where s = f({g* (x)}) .

	

Since
ru o Gu is a (g* (x), O.)-function, it suffices to take z > s because then
F5 and Fz are joined by the g*(u)-homotopy L so that the composi-
tion ru o Gy o L o (Ba x id,) will be a ~3u-homotopy which realizes (15)
whenever a is sufficiently large .
Add (16) . Let w > y . Then Gy and G�, are joined by a ~-homotopy

M, where 1 = x. But, the cover 1 refines the cover w = (ru)-1(0u). It
follows that ru o M is a,3u-homotopy joining ru o Gy and rv o G, Since
for every normal cover \ of Y we can find indices a and z such that the
composition Fz o Ba is a \-small function, it is clear that there are indices
z and a such that ru o Mo (F, o BIX x id,) realizes the relation (16) .
Add (17) . Let w > e. Then G�, and Ge are joined by a -yu-small

homotopy N. As in the proof of (16), we get the existente of larga
enough indices z and a such that ru oN o (Fz o Ba x id,) realizes the
relation (17) .
Add (18) . Observe that Ge is a (r,, `yu)-function . Also, we can always

assume that the cover Ik was selected so that it refines the cover n .
Then for z > i the functions Fz and Fz are joined by the Sk-homotopy
P . Hence, for a large index a, the composition ru o Ge o P o (Ba x id,)
realizes the relation (18) .
Add (19) . The argument for this relation is similar to the one given

for the relation (14) .
Add (20) .

	

Notica that ru o Ge is a (M, i'u) -function, where g, is
a normal cover of Y such that st(n) refines te . Also, there is a
(K, st(n))-homotopy R joining idx with the composition B,, o qk . Once
again, if we choose the cover ~k so that it refines the cover r., then
ru o Ge o R o (Fi o BT o pa x id,) will be a Nu-homotopy that realizes the
relation (20) .

Claim 5. 0 is a functor and the relation S = 0 o J holds .

cpc o pa - q' o f.

Observe that

(24)

	

(Pc 0 pa a~
qc o ,f o B. op

a.
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But, B,,, o pa is a-close to idx .

	

Hence, had we chosen a so that a
refines the cover (q° o f)-1 (oc), we would get

(25)

	

q' o f o Ba opa °--` q' . f.

From (24) and (25) it follows that cp, o pa and qc o f are st(QJ-close and
we get the relation (23) .

In order to conclude now that S(f) = B o J(f) we must recall (see [4] )
that S(f) is a unique morphism f such that q o f = f o p .

We shall now prove that B is a category isomorphism by constructing
for every pair of objects X and Y of the shape category a function

such that B o ( = id and ( o B = id .

( : Morsh(X, Y) -> Mor'k,1,1(X, Y)

6. Preliminaries for the description of the functor

Factorization through canonical mappings .

Lemma 5. Let X be an arbitrary space, let Y be a polyhedron (en-
dowed with the CW topology), let u be an open covering of Y, and let
f : X -> Y be a map. Then there exist a normal cover r of X such
that for every normal cover P of X which refines T there exist a map
k : IN(o)j -> Y with the following properties :

(i) For any canonical map p : X -> ~N(p) 1 the maps k o p and f are
Q-close .

(ü) Each R E P admits an SR E Q such that
(a) k(*é) C SR, and
(b) f(R) C SR.

Proof.. Let 6 E o,* . By [4], there is an ANR space M and maps u
Y ---> M and d : M ---> Y such that

(26)

	

d o u
6

idy .

Let ~3 = d-1 (S) . Let h = u o f . By Lemma 2 on p . 316 of [4], there is
a normal cover -r of X and a map g : IN( ,r)j -> M with the following
properties :

(i') For any canonical map r : X ---> IN (T)1 the maps g o r and h are
~3-close .

(ii') Each T E T admits a BT E 0 such that
(a') g(*T) C ST, and
(b') h(T) C ST .
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Let P EX be a refinement of 7 and let q : ~N(g) j - jN(T) j be a simplicial
projection mapping induced by the selection of a member v(R) of T with
R C v(R) for every member R of P . Let k = d o g o q .
In order to check (i), let p : X --> I N(P) j be a canonical map.

	

By
Theorem 6 on p . 326 of [4], the composition r = q op is also a canonical
map.

	

By (i'), the maps g o r and h are ~3-Glose .

	

Composing with the
map d we see that k o p and do uo f are 6-Glose . But, by (26), d o u o f
is ó-Glose to f so that f

	

' k op .
Finally, to verify (ii), let R E P. By (ii'), there is a D,(R) E S such

that

(c') 9(*T(R) ) C d-1(Dv(R)), and
(d') h(v(R) C d-1(Dv(R)) .

For each R E g choose an SR E o, such that SR contains the star
st(D �(R ), 6) of D,(R) with respect to the cover 6 . Then

k(*R)) = dog oq(*0) C d o g(*T(Rl ) C D,(R) C SR .

On the other hand, from (d') we get d o u o f(R) C D,(R) for every
R E P. But, by (26), for each y E f (R), some member of 6 contains both
y and d o u(y) . Hence, f(R) C SR.

Hooked and small implies homotopic .
The following notion and lemma are from [2] . Let o, be a normal cover

of a space Y . Two multi-valued functions F, G : X - Y are Q-hooked
provided for every x E X there is an S,, E o, such that Sx has non-empty
intersection with both F(x) and G(x) . Observe that u-Glose multi-valued
functions are a-hooked .

Lemma 6. Let F, G : X --> Y be multi-valued functions and let o,
be a normal cover of Y . If F and G are v-small and Q-hooked, then

F
ac(o)

G .

7. Description of the functor

Let f = (f, { fe }LEY) be a morphism between cofinite Cech systems X
and y associated to spaces X and Y, respectively. For every c E Y, define
a multi-valued function f, : X -> Y to be the composition B., o f, o p"
where 7 denotes the normal cover c and x = f(c) . Let f = {fc~cEY'
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Claim 6. The family f is a multi-net from X into Y.

Proof. Let a a E Y be given. We must find an index c E Y such that

(27)

	

f. ~, fd

	

for every d > c .

Let T E u*2 . Put c = {T} . Let d > c . Since _f is a morphism between
X and y, there is an index a > x, y and a homotopy H with

(28)

	

Ho = f° opa

	

and

	

Hl = qd o fd opy

where x = f(c) and y = f (d) . Moreover, there are homotopies G and K
with

(29)

	

GO = p',

	

Gl = pa opa,

	

Ko = pá o 1)a,

	

Kl = py .

Let ,y = c and S = d .

	

Let L be a T-homotopy joining B.y o qd and
Bó (for this sea Lemma 3) .

	

The compositions A = B.y o f' o G, C =
Lo(fd opáopaxidi),B=B,y oHo(paxid,),andD=Bóofd oK
are T-homotopies such that f, = Ao, A 1 = BO, Bl = Co, Cl = Do, and

Q
Dl = fd . Hence, f, - fd .
Now we can define the function ( by the rule «[f]) = [Y] .

Claim 7. The function ~ is well-defined, i . e ., the value «[f]) does
not depend on the choice of the representativa f of the equivalente class
[f] .

Proof. Let g = (g, {9C}cEY) be another morphism from X into Y
equivalent to f and let y_ {g,},EY be a multi-net constructed from g

by the above procedure. We must show that f and y are homotopic, i .
e ., that for every o, E Y there is an index c E Y such that

(30) fd 9d for every d > c .

Let a u E Y be given .

	

Let T E o- * .

	

Put c = {T} E Y.

	

Let d > c .
Since morphisms _f and g are equivalent, there is an index a > x, y and
a homotopy H with

(31)

	

Ho = fd o pd

	

and

	

Hl = g d o pá

Moreover, there are homotopies G and K with

(31)

	

CO = p, ,

	

G1 = Pa o pa,

	

KO = pá opa

	

and

	

Kl = py,
where x = f(d) and y = g(d) . Let S = d .
The compositions A = Bb o fd o G, B = Bó o H o (pa x id,), and C =

Ba o gd o K are T-homotopies such that fd = Ao, A1 = BO , Bl = col
and Cl = 9d . Hence, fd á, 9d .



Claim 8 . For every morphism f = (f,

	

X -~ y we have

[f1=8-C([f) .

Proof.. Let

	

where W = {fc}cEY~ fe = B, , fc op
x

, y = c,
and a = f(c) for every c EY. Let

where ep' is a map which is u,-close to q° o fb o B, b = cp*(c), e = cp(c),
and E = é. Hence, cp° is a map which is Q,-close to q' o BO o fb o pd o BE ,
where ,C3 = b and d = f(b) .

Let us apply Lemma 5 in the case X = Y, M=Y, a = T, and h = q'
to get a cover g,, of Y such that for every refinement o of p, there exist
a map gé : ~N(P)I -> Y, with the followin.g properties :
(32) For any canonical map p : Y

	

IN(P)1 the maps gé op and q' are
T,-Glose .

(33) Each R E P admits a TR E T, such that g,(*é ) C TR and
qc(R) C TR .

Without loss of generality, we can assume that the function cp* also
satisfies the condition cp*(c) > {M,} for every c E Y . By assumption,
there is a map gb : Yb -> Y, such that

(34)
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8 . Verification that ~ is an inverse of B

B«([fD) = B([~ol) = [(w, {~c }cEY)~~

qC ?` 96 o qb ,

and each R E

	

admits a TR E T, such that gb(*p) C TR and
q'(R) C TR . But, the function Bp satisfies Bp(*p) C R for every RE ~3
so that both gb (*p) and qc o Bp (*p) are contained in TR for every R E0.
It follows that gb and q° o B,3 are (*Q, -rJ-Glose . This means that by se-
lecting the function cp carefully, we can achieve that the map B, is small
enough so that

(35) 96o
fb opd oBE -Te q° -Bpofb opd oB,

Now we can apply Lemma 5 again, this time in the case X = X,
M = Xd, o, = r,,, where n, = (gb o fb )-1 (TJ, and h = pd to get a
cover vc of X such that for every refinement o of v, there exist a map
hd : N(o) I -> Xd with the following properties :
(36) For any canonical map p : X --> IN(g)1 the maps hdd o p and pd

are K,-Glose .
(37) Each R E 9 admits a KR E Kc such that hdd (*R) C KR and

pd(R) C KR.
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Without loss of generality, we can assume that the function cp also
satisfies the condition ;o(c) > {ve } for every c E Y. Recall that e = W(c) .
By assumption, there is a map hé : Xe -> Xd such that

(38)

and each E E E admits a KE E r., such that hé(*E) C KE and
pd (E) C KE. But, the function Be satisfies BE(*E) C E for every E E E
so that both hé(*E) and pd o BE (*E) are subsets of KE for every E E E.
It follows that hd and pd o BE are rc-close. Hence,

(39)

The relations (38) and (34) imply

and

(42)

(44)

d ~~ d

	

ep = he op >

gbofb opd oBe Tc bofb ohe .

Since Te E v*, the relations (35) and (39) give that the map gb o fb o hd
is ve-close to the composition qc o Bp o fb o pd o BE . Therefore, we can
take gv o fb o hd as the map cpc .

It remains to see that the morphsm f and (cw, {cp°}oEr") are equiva-
lent, i . e., that for every c E Y there is an a > e, x such that

(40)

	

.f c o pa

	

= gb o f
b o he o pá .

(41 )

	

gbofbohe e gbofbopd,

q° - gb o qb .

Erom the relation (42) and the property (E2) for the expansion q, we
get the existence of an index i > b, c with

(43 )

	

q~ = gb o qb .

On the other hand, since f is a morphism, we have

fb opd - qb o fa opl,

where y = f (i) . Thus,

(45)

	

9b°fb °pd = gbogbofZ Opy - qi ofi op, = fCop, .

It follows from (41) and (45) that f° o p 2' - gb o f
b o he o pe . Now, we

can use the property (E2) for the expansion p to get an index a such
that (40) holds.



Claim 9. For every multi-net cp = {Fs},,eY : X --> Y we have
C o 0([ ,P]) = [,P]-

Proof. Let B([cp])

	

{cp°}LEY)], where cp' : Xq(,) -> Y, is a map
such that
(46)
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wc Q̀
qC o F,w . (.) o

B-(~) for every c E Y.

Then C o O(W1) = [ip], where ip = {cp,},EY is a multi-net from X into Y
and cp. = B-E o cpc o pw(°) for every c E Y.
We must show that multi-nets cp and cp are homotopic, i . e ., that for

every a E Y there is a c E Y such that

(47)

	

Fd ^- cpd

	

for every d > c.

Let a a E Y be given . Let T E U*3 . Since cp is a multi-net there is a
c > { ,r} such that

(48)

	

Fe "̂ Fd

	

for all e, d > c.

Let d > c . Let 6 = d. Since B6 is a (*6, 6)-function and Qd refines * 6,
from (46) we get

(49)

	

(Pd T B6ogdoF.oB� op',

where m = cW*(d), n = ~o(d), and v = ñ. Also, cpd is a T-small function
while the right hand side of (49) is a r-small function provided we make
sure that the functions cp* and cp increase sufficiently fast (so that m > c
and v is such that F� , is a (v, T)-function) . It follows from Lemma 6
that

(50)

	

cpd

	

st(T)

	

B6 o qd o Fn,, o B� o p" .

Since the composition B6 o qd is (6, st(6))-homotopic to the idX, we
see again that by a careful selection of functions cp* and cp, we can achieve
that

(51)

	

B6ogdoF,,,,oB� op'
st(T)

F,,oB� opn

Since m > c, there is a normal cover A of X such that F,�, is a (A, r)-
function . Hence, if we require in addition that st(v) refines A, then

(52)

	

F�,, o Bv opn

	

-

	

F�,.,

because B� o pn is st(v)-homotopic to the idX .
Finally, since m, d > c from (48) we get

(53)

	

F�,. ^, Fd .

The relations (50)-(53) together imply the relation (47) .
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