SHAPE THEORY INTRINSICALLY

Zvonko Čerin

Abstract

We prove in this paper that the category $\mathcal{H}M$ whose objects are topological spaces and whose morphisms are homotopy classes of multi-nets is naturally equivalent to the shape category Sh. The description of the category $\mathcal{H}M$ was given earlier in the article "Shape via multi-nets". We have shown there that $\mathcal{H}M$ is naturally equivalent to Sh only on a rather restricted class of spaces. This class includes all compact metric spaces where a similar intrinsic description of the shape category using multi-valued functions was given by José M. R. Sanjurjo in [5] and [6].

1. Preliminaries for the description of the category $\mathcal{H}M$

In this section we shall collect definitions and results from [2] that are required for the description of the category $\mathcal{H}M$.

Normal covers.

Let \hat{Y} denote the collection of all normal covers of a topological space Y [1]. With respect to the refinement relation > the set \hat{Y} is a directed set. Two normal covers σ and τ of Y are equivalent provided $\sigma > \tau$ and $\tau > \sigma$. In order to simplify our notation we denote a normal cover and it's equivalence class by the same symbol. Consequently, \hat{Y} also stands for the associated quotient set.

Let \tilde{Y} denote the collection of all finite subsets c of \hat{Y} which have a unique (with respect to the refinement relation) maximal element $\overline{c} \in \hat{Y}$. We consider \tilde{Y} ordered by the inclusion relation and regard \hat{Y} as a subset of single-element subsets of \hat{Y} . Notice that \tilde{Y} is a cofinite directed set.

Let $\sigma \in \hat{Y}$. Let σ^* denote the set of all normal covers τ of Y such that the star $st(\tau)$ of τ refines σ . Similarly, for a natural number n, σ^{*n} denotes the set of all normal covers τ of Y such that the *n*-th star $st^n(\tau)$ of τ refines σ .

Multi-valued functions.

Let X and Y be topological spaces. By a multi-valued function $F : X \to Y$ we mean a rule which associates a non-empty subset F(x) of Y to every point x of X. Let M(X, Y) denote all multi-valued functions from X into Y.

Let $F: X \to Y$ be a multi-valued function and let $\alpha \in \hat{X}$ and $\gamma \in \hat{Y}$. We shall say that F is an (α, γ) -function provided for every $A \in \alpha$ there is a $C_A \in \gamma$ with $F(A) \subset C_A$. On the other hand, F is γ -small provided there is an $\alpha \in \hat{X}$ such that F is an (α, γ) -function.

Let $F, G: X \to Y$ be multi-valued functions and let $\gamma \in \hat{Y}$. We shall say that F and G are γ -close and we write $F \stackrel{\gamma}{=} G$ provided for every $x \in X$ there is a $C_x \in \gamma$ with $F(x) \cup G(x) \subset C_x$. How one defines the notion " (α, γ) -close" is now obvious.

Let $F, G : X \to Y$ be multi-valued functions between topological spaces and let γ be a normal cover of the space Y. We shall say that F and G are γ -homotopic and write $F \stackrel{\gamma}{\simeq} G$ provided there is a γ -small multi-valued function H from the product $X \times I$ of X and the unit segment I = [0, 1] into Y such that $F(x) \subset H(x, 0)$ and $G(x) \subset H(x, 1)$ for every $x \in X$. We shall say that H is a γ -homotopy that joins F and G or that it realizes the relation (or homotopy) $F \stackrel{\gamma}{\simeq} G$.

Lemma 1. Let $F, G, H : X \to Y$ be multi-valued functions. Let $\sigma \in \hat{Y}$ and $\tau \in \sigma^*$. If $F \stackrel{\tau}{\simeq} G$ and $G \stackrel{\tau}{\simeq} H$, then $F \stackrel{\sigma}{\simeq} H$.

Multi-nets.

Let X and Y be topological spaces. By a multi-net from X into Y we shall mean a collection $\varphi = \{F_c \mid c \in \hat{Y}\}$ of multi-valued functions $F_c: X \to Y$ such that for every $\gamma \in \hat{Y}$ there is a $c \in \tilde{Y}$ with $F_d \stackrel{\gamma}{\simeq} F_c$ for every d > c. We use functional notation $\varphi: X \to Y$ to indicate that φ is a multi-net from X into Y. Let MN(X, Y) denote all multi-nets $\varphi: X \to Y$.

Two multi-nets $\varphi = \{F_c\}$ and $\psi = \{G_c\}$ between topological spaces X and Y are *homotopic* provided for every $\gamma \in \hat{Y}$ there is a $c \in \tilde{Y}$ such that $F_d \stackrel{\gamma}{\simeq} G_d$ for every d > c.

It follows from Lemma 1 that the relation of homotopy is an equivalence relation on the set MN(X, Y). The homotopy class of a multi-net φ is denoted by $[\varphi]$ and the set of all homotopy classes by $\mathcal{H}M(X, Y)$.

2. Description of the category $\mathcal{H}M$

Composition of homotopy classes.

Our goal now is to define a composition for homotopy classes of multinets.

Let $\varphi = \{F_c\} : X \to Y$ be a multi-net. For every $c \in \tilde{Y}$ there is an $\bar{f}(c) \in \tilde{Y}$ such that for all $d, e > \bar{f}(c)$ there is a normal cover $\bar{f}(c, d, e)$ of $X \times I$ and an $(\bar{f}(c, d, e), \bar{c})$ -map joining F_d and F_e .

Let $\mathcal{C} = \{(c, d, e) | c \in \tilde{Y}, d, e > \bar{f}(c)\}$. Then \mathcal{C} is a subset of $\tilde{Y} \times \tilde{Y} \times \tilde{Y}$ that becomes a cofinite directed set when we define that (c, d, e) > (c', d', e') iff c > c', d > d', and e > e'.

Now, let $f: \tilde{Y} \to \tilde{Y}$ be an increasing function such that $f(c) > \bar{f}(c)$, c for every $c \in \tilde{Y}$. We shall use the same notation f for an increasing function $f: \mathcal{C} \to X \times I$ such that $f(c, d, e) > \bar{f}(c, d, e)$ for every $(c, d, e) \in \mathcal{C}$. Let $(c, d, e) \in \mathcal{C}$. For the normal cover f(c, d, e) of $X \times I$, by [3, p. 358], there is a normal cover $\varepsilon = \hat{f}(c, d, e)$ of X and a function $r = \hat{f}(c, d, e) : \varepsilon \to \{2, 3, 4, \ldots\}$ such that every set $E \times [(i-1)/rE, (i+1)/rE]$, where $E \in \varepsilon$ and $i = 1, 2, \ldots, rE-1$, is contained in a member of f(c, d, e).

Let $\tilde{f}: \mathcal{C} \to \hat{X}$ be an increasing function with $\tilde{f}(c, d, e) > \hat{f}(c, d, e)$ for every $(c, d, e) \in \mathcal{C}$. We shall use the shorter notation $\tilde{f}(c)$ and f(c)for the covers $\tilde{f}(c, f(c), f(c))$ and f(c, f(c), f(c)). In [2, Claim 1], the following lemma was proved.

Lemma 2. There is an increasing function $f^* : \tilde{Y} \to \hat{X}$ such that

- (1) $f^*(c) > \tilde{f}(c)$ for every $c \in \tilde{Y}$, and
- (2) f^* is cofinal in \tilde{f} , i. e., for every $(c, d, e) \in C$ there is an $m \in \tilde{Y}$ with $f^*(m) > \tilde{f}(c, d, e)$.

The above discussion shows that every multi-net $\varphi : X \to Y$ determines eight functions denoted by \overline{f} , f, \hat{f} , \overline{f} , and f^* . With the help of these functions we shall define the composition of homotopy classes of multi-nets as follows.

Let $\varphi = \{F_c\} : X \to Y$ and $\psi = \{G_u\} : Y \to Z$ be multi-nets. Let $\chi = \{H_u\}$, where $H_u = G_{g(u)} \circ F_{f(\{g^*(u)\})}$ for every $u \in \tilde{Z}$.

It was proved in [2] that the collection χ is a multi-net from X into Z.

We now define the composition of homotopy classes of multi-nets by the rule $[\{G_u\}] \circ [\{F_c\}] = [\{G_{g(u)} \circ F_{f(\{g^*(u)\})}\}]$. The composition of homotopy classes of multi-nets is well-defined and associative (see [2]).

The category $\mathcal{H}M$.

For a topological space X, let $\iota^X = \{I_a\} : X \to X$ be the identity multi-net defined by $I_a = id_X$ for every $a \in \tilde{X}$. It is easy to show that for every multi-net $\varphi : X \to Y$ the following relations hold:

$$[\varphi] \circ [\iota^X] = [\varphi] = [\iota^Y] \circ [\varphi].$$

It was shown in [2] that the topological spaces as objects, the homotopy classes of multi-nets as morphisms, the homotopy classes $[\iota^X]$ as identities, and the above composition of homotopy classes form the category $\mathcal{H}M$.

There is an obvious functor J from the category Top of topological spaces and continuous maps into the category $\mathcal{H}M$. On objects the functor J is the identity while on morphisms it associates to a map $f: X \to Y$ the homotopy class of a multi-net $\underline{f} = \{F_c\}: X \to Y$, where $F_c = f$ for every $c \in \tilde{Y}$.

3. Statement of the main theorem

Our main result can be stated as follows. Let Sh be the shape category of arbitrary topological spaces and let $S: Top \to Sh$ be the shape functor [4].

Theorem. There is a functor θ from the category HM into the shape category Sh which is an isomorphism of categories and such that $S = \theta \circ J$.

4. Preliminaries for the description of the functor θ

Cofinite Čech system.

With every space X one can associate an inverse system $\mathcal{X} = \{X_c, [p_d^c], \tilde{X}\}$, called the cofinite Čech system of X, where $X_c = |N(\bar{c})|$ is the nerve of \bar{c} and $[p_d^c]$, for d > c in \tilde{X} , is the unique homotopy class to which belong the projections $p_d^c : |N(\bar{d})| \to |N(\bar{c})|$. For a $c \in \tilde{X}$, let $[p^c]: X \to X_c$ be the unique homotopy class of the canonical mappings $p^c: X \to X_c$. Recall that $[p^c] = [p_d^c] \circ [p^d]$ whenever d > c in \tilde{X} so that $\mathbf{p} = \{[p^c]\}: X \to \mathcal{X}$ is a morphism of the pro-homotopy category pro- $\mathcal{H}Top$. Since the usual Čech system is an $\mathcal{H}Pol$ -expansion (see [4, p. 328]), it is easy to show by direct verification of conditions (E1) and (E2), that \mathbf{p} is also an $\mathcal{H}Pol$ -expansion.

In the rest of this paper, let X, Y, and Z be topological spaces and let

$$\mathbf{p} = \{[p^a]\} : X \to \mathcal{X} = \{X_a, [p^a_b], X\} \\ \mathbf{q} = \{[q^c]\} : X \to \mathcal{Y} = \{Y_c, [q^c_d], \tilde{Y}\},\$$

and

$$\mathbf{r} = \{ [r^u] \} : Z \to Z = \{ Z_u, [r^u_v], \tilde{Z} \}$$

be cofinite Cech systems of X, Y, and Z, respectively.

It is well-known that shape morphisms from X into Y could be considered as equivalence classes of morphisms of inverse systems \mathcal{X} and \mathcal{Y} (see [4]). More precisely, the set Sh(X, Y) of all shape morphisms between spaces X and Y can be identified with the set $pro-\mathcal{H}Pol(\mathcal{X}, \mathcal{Y})$ of all morphisms in the Grothendick's pro-category $pro-\mathcal{H}Pol$ of the homotopy category of polyhedra $\mathcal{H}Pol$ between the objects \mathcal{X} and \mathcal{Y} . In our description of what θ does on morphisms of the category $\mathcal{H}M$ we shall view shape morphisms in this way.

Multi-valued functions B_{σ} .

We shall also be using the following natural multi-valued function B_{σ} from the nerve $|N(\sigma)|$ of a normal cover σ of X into X. The function B_{σ} associates to a point w of $|N(\sigma)|$ the intersection of members of the cover σ which span a simplex of $|N(\sigma)|$ that contains w. Hence, if w belongs to a simplex $\langle S_1, \ldots, S_n \rangle$ of $|N(\sigma)|$, where S_1, \ldots, S_n are members of σ , then $B_{\sigma}(w) = \bigcap_{i=1}^n S_i$. Observe that B_{σ} is a $(*_{\sigma}, \sigma)$ -function, where $*_{\sigma}$ denotes the (normal) cover of $|N(\sigma)|$ by open stars $*_{\sigma}^{S}$ of all vertices $S \in \sigma$ of $|N(\sigma)|$. Moreover, for every canonical mapping $p: X \to |N(\sigma)|$ (i. e., a map which satisfies $p^{-1}(*_{\sigma}^{S}) \subset S$ for every member S of σ) and every $x \in X$ there is a $V \in \sigma$ such that both x and the set $B_{\sigma} \circ p(x)$ lie in V while for every $x \in X$ and every $S \in \sigma$ with $x \in S$ the set $B_{\sigma} \circ p(x)$ is a subset of $st(S, \sigma)$. Hence, the composition $B_{\sigma} \circ p$ is $(\sigma, st(\sigma))$ -homotopic and σ -close to the identity map id_X .

Lemma 3. Let σ and τ be normal covers of a space X such that τ refines σ . Then $B_{\tau} \stackrel{\sigma}{\simeq} B_{\sigma} \circ p$ for every projection $p : |N(\tau)| \to |N(\sigma)|$.

Proof: Let $T \in \tau$ and let $x \in *_{\tau}^{T}$. Then $B_{\tau}(x)$ is a subset of T while p(x) lies in $*_{\sigma}^{S}$, where S is a member of σ which contains T. It follows that both $B_{\tau}(x)$ and $B_{\sigma} \circ p(x)$ are subsets of S. Hence, the function H from $|N(\tau)|$ into X defined by the rule $H(x) = B_{\tau}(x) \cup B_{\sigma} \circ p(x)$ for every $x \in |N(\tau)|$ is a σ -homotopy joining B_{τ} and $B_{\sigma} \circ p$.

Approximation of small functions with maps.

In the description of the functor θ we shall also need the following approximation result (see Lemma 2 in [2]).

Lemma 4. For every open cover σ of a polyhedron Y there is an open cover τ of it such that for every τ -small multi-valued function $F: X \to$ Y from a space X into Y there is a single-valued continuous function $f: X \to Y$ with $F \stackrel{\sigma}{=} f$.

5. Description of the functor θ

The functor θ will leave the objects unchanged. In order to explain how θ effects the morphisms we must work much harder.

Let $\varphi = \{F_s\}_{s \in \tilde{Y}} : X \to Y$ be a multi-net. For each $c \in \tilde{Y}$, pick an open cover σ_c of $Y_c = |N(\bar{c})|$ such that $st^3(\sigma_c)$ -close maps into Y_c are homotopic. Since the set \tilde{Y} is cofinite, we can select the covers σ_c so that σ_d refines $(q_d^c)^{-1}(\sigma_c)$ whenever d > c in \tilde{Y} . Moreover, we can assume that σ_c refines the open cover $*_{\bar{c}}$ for every $c \in \tilde{Y}$.

By Lemma 4, we can find a $\tau_c \in \sigma_c^*$ so that every τ_c -small multi-valued function into Y_c is σ_c -close to a continuous single-valued function. Let $\xi_c \in \hat{Y}$ be a refinement of $(q^c)^{-1}(\tau_c)$. Since \tilde{Y} is a cofinite directed set, we can assume that ξ_c refines ξ_e for every $e \in \tilde{Y}$ with c > e. Moreover, for every pair $c, e \in \tilde{Y}$ with c > e, the maps q^c and $q_c^e \circ q^c$ are joined by a homotopy K_c^e so that we can select a $\pi_c^e \in \hat{Y}$ and a stacked normal cover q_c^e of $Y \times I$ over π_c^e which refines $(K_c^e)^{-1}(\tau_e)$. We shall assume that ξ_c also refines π_c^e for every index e with c > e.

Since φ is a multi-net, there is an index $\varphi_c \in \tilde{Y}$ so that

(1) $F_d \stackrel{\xi_c}{\simeq} F_e$ for all $d, e > \varphi_c$

Choose an increasing function $\varphi^* : \tilde{Y} \to \tilde{Y}$ such that $\varphi^*(c) > c, \varphi_c, \{\xi_c\}$ for every $c \in \tilde{Y}$.

Since the function $F_{\varphi^*(c)}$ is ξ_c -small, there is an $\eta_c \in \hat{X}$ such that $F_{\varphi^*(c)}$ is an (η_c, ξ_c) -function. Let $\lambda_c \in \eta_c^*$. Choose an increasing function $\varphi : \hat{Y} \to \tilde{X}$ such that $\varphi(c) > \{\lambda_c\}$ for every $c \in \tilde{Y}$. The composition $q^c \circ F_{\varphi^*(c)} \circ B_{\overline{\varphi(c)}}$ is a τ_c -small multi-valued function so that it is σ_c -close to a map $\varphi^c : X_{\varphi(c)} \to Y_c$.

Claim 1. The pair $\underline{\varphi} = (\varphi, \{\varphi^c | c \in \tilde{Y}\})$ is a morphism between cofinite Čech systems \mathcal{X} and \mathcal{Y} .

Proof: We must show that for every pair c, d of elements of \tilde{Y} with d > c it is possible to find an a > x, y so that

(2)
$$\varphi^c \circ p_a^x \simeq q_d^c \circ \varphi^d \circ p_a^y,$$

where $x = \varphi(c)$ and $y = \varphi(d)$.

Let $u = \varphi^*(c)$ and $v = \varphi^*(d)$. Since $v > u > \varphi_c$, by (1), there is a normal cover ϱ of $X \times I$ such that the functions F_u and F_v can be joined by a (ϱ, ξ_c) -homotopy $M : X \times I \to Y$. Pick a normal cover π of Xand a stacked normal cover ω of $X \times I$ over π such that ω refines ϱ . For $a > \{\pi\}$, we see that $Q = q^c \circ M \circ (B_\alpha \times id_I)$ is a τ_c -homotopy joining $q^c \circ F_u \circ B_\alpha$ and $q^c \circ F_v \circ B_\alpha$, where $\alpha = \overline{a}$.

Since F_u is a (ξ, ξ_c) -function and $B_\alpha \stackrel{\xi}{\simeq} B_{\xi} \circ p_a^x$ by Lemma 3, we see that there is a τ_c -homotopy P with $P_0 = q^c \circ F_u \circ B_{\xi} \circ p_a^x$ and $P_1 = Q_0$, where $\xi = \overline{x}$. For a similar reason, there is a τ_c -homotopy R with $R_0 = Q_1$ and $R_1 = q^c \circ F_u \circ B_\lambda \circ p_a^y$, where $\lambda = \overline{y}$.

Since $F_v \circ B_\lambda \circ p_a^y$ is a ξ_d -function and ξ_d refines π_d^c , $S = K_d^c \circ ((F_v \circ B_\lambda \circ p_a^y) \times id_I)$ is a τ_c -homotopy with $S_0 = R_1$ and $S_1 = q_d^c \circ q^d \circ F_v \circ B_\lambda \circ p_a^y$.

Observe that our choices imply the existence of homotopies A, B, C, and D such that $A \stackrel{\sigma}{=} P$, $B \stackrel{\sigma}{=} Q$, $C \stackrel{\sigma}{=} R$, $D \stackrel{\sigma}{=} S$, $\varphi^c \circ p_a^x = P_0$, and $S_1 = q_d^c \circ \varphi^d \circ p_a^y$, where $\sigma = \sigma_c$. From here it follows that $\varphi^c \circ p_a^x \stackrel{\nu}{=} A_0$, $A_1 \stackrel{\nu}{=} B_0$, $B_1 \stackrel{\nu}{=} C_0$, $C_1 \stackrel{\nu}{=} D_0$, $D_1 \stackrel{\nu}{=} q_d^c \circ \varphi^d \circ p_a^y$, where $\nu = st(\sigma_c)$.

The way in which we selected the covers σ_c implies that the adjacent maps in the following long list are homotopic: $\varphi^c \circ p_a^x$, A_0 , A_1 , B_0 , B_1 , C_0 , C_1 , D_0 , D_1 , $q_d^c \circ \varphi^d \circ p_a^y$. Hence, the relation (2) holds.

Now we can define that θ acts on morphisms of the category $\mathcal{H}M$ (i. e., on homotopy classes of multi-nets) by the rule $\theta([\varphi]) = [\underline{\varphi}]$, where $[\underline{\varphi}]$ denotes the equivalence class of $\underline{\varphi}$ with respect to the equivalence relation \sim (see [4, p. 6]).

Claim 2. The function θ is well-defined, i. e., it does not depend on the choices of φ , φ^* , and φ^c in our description of $[\varphi]$.

Proof: Suppose that $\psi = \{G_c\} : X \to Y$ is multi-net homotopic to φ and let the morphism $\psi = (\psi, \{\psi^c | c \in \tilde{Y}\})$ of inverse systems \mathcal{X} and \mathcal{Y} be constructed from ψ by the above procedure using in it ψ, ψ^* , and ψ^c instead of φ, φ^* , and φ^c , respectively. We must show that $\underline{\varphi}$ and $\underline{\psi}$ are equivalent, i. e., that for every $c \in \tilde{Y}$ there is an a > x, u with

(3)
$$\varphi^c \circ p^x_a \simeq \psi^c \circ p^u_a,$$

where $x = \varphi(c)$ and $u = \psi(c)$.

Let a $c \in \tilde{Y}$ be given. In order to prove (3), we shall argue the existence of indices $a, z \in \tilde{Y}$ such that

(4)
$$\varphi^c \circ p_a^x \stackrel{\sigma_c}{=} q^c \circ F_y \circ B_{\xi} \circ p_a^x,$$

(5)
$$q^c \circ F_y \circ B_{\xi} \circ p_a^x \stackrel{\tau_e}{\simeq} q^c \circ F_y \circ B_a$$

(6)
$$q^c \circ F_y \circ B_\alpha \stackrel{\tau_c}{\simeq} q^c \circ F_z \circ B_\alpha,$$

(7)
$$q^c \circ F_z \circ B_\alpha \stackrel{\tau_c}{\simeq} q^c \circ G_z \circ B_\alpha,$$

(8)
$$q^{c} \circ G_{z} \circ B_{\alpha} \stackrel{\tau_{c}}{\simeq} q^{c} \circ G_{v} \circ B_{\alpha},$$

(9)
$$q^c \circ G_v \circ B_\alpha \stackrel{\tau_o}{\simeq} q^c \circ G_v \circ B_\gamma \circ p_a^u,$$

(10)
$$q^c \circ G_v \circ B_\gamma \circ p_a^u \stackrel{\sigma_c}{=} \psi_c \circ p_a^u,$$

where $\xi = \overline{x}, y = \varphi^*(c), \gamma = \overline{u}, v = \psi^*(c)$, and $\alpha = \overline{a}$.

Once we have the relations (4)–(10), we approximate each of the τ_{c} -homotopies by a σ_{c} -close homotopy and conclude from here as in the proof of Claim 1 that (3) holds.

Add (4) and (10). This follows from the fact that φ^c and ψ^c are σ_c -close to functions $q^c \circ F_y \circ B_\xi$ and $q^c \circ G_v \circ B_\gamma$, respectively.

Add (5). It suffices to observe that F_y is a (ξ, ξ_c) -function and that $B_{\alpha} \stackrel{\xi}{\simeq} B_{\xi} \circ p_a^x$ for every a > x.

Add (6). Let z > y. Then there is a normal cover λ of $X \times I$ and a (λ, ξ_c) -homotopy L joining F_y and F_z . Pick a normal cover π of Xand a stacked normal cover ρ of $X \times I$ over π such that ρ refines λ . Let $a > \{\pi\}$. The composition $q^c \circ L \circ (B_\alpha \times id_I)$ is a τ_c -homotopy which realizes the relation (6).

Add (7). Since φ and ψ are homotopic multi-nets, there is a $b \in \tilde{Y}$ such that $F_z \stackrel{\xi_c}{\simeq} G_z$ for every z > b. Let z > b and let M be a ξ_c homotopy joining F_z and G_z . Choose normal covers λ and ϱ of $X \times I$ and π of X such that M is a (λ, ξ_c) -function, ϱ refines λ and ϱ is stacked over π . Let $a > \{\pi\}$. Then the composition $q^c \circ M \circ (B_\alpha \times id_I)$ is a τ_c -homotopy which realizes the relation (7).

Add (8) and (9). These are analogous to relations (6) and (5), respectively. \blacksquare

324

Claim 3. Let $\iota = \{I_a\}_{a \in \tilde{X}}$ be the identity multi-net on a space X, where $I_a = id_X$ for every $a \in \tilde{X}$. Then the homotopy class $[\underline{\iota}]$ associated to the homotopy class $[\iota]$ by the function θ is the identity homotopy class $[(id_{\tilde{X}}, \{I_a \mid a \in \tilde{X}\})].$

Proof: We must show that for every $a \in \tilde{X}$ there is a b > a, $\iota(a)$ such that

(11)
$$p_b^a \simeq \iota^a \circ p_b^{\iota(a)}.$$

In order to prove the above statement, observe that we can assume that the function $\iota: \tilde{X} \to \tilde{X}$ (which corresponds to the function φ in the above description) has the property that the cover ξ is a star-refinement of the cover $(p^a)^{-1}(\tau_a)$ for every $a \in \tilde{X}$, where $\xi = \overline{x}$ and $x = \iota(a)$.

Let an $a \in \tilde{X}$ be given. By construction, we have $\iota^a \circ p^x \stackrel{\sigma_a}{=} p^a \circ B_{\xi} \circ p^x$.

Since $B_{\xi} \circ p^x$ is $st(\xi)$ -homotopic to the identity map id_X on X and $st(\xi)$ refines $(p^a)^{-1}(\tau_a)$, there is a τ_a -homotopy H with $H_0 = p^a \circ B_{\xi} \circ p^x$ and $H_1 = p^a$.

Let K be a single-valued continuous function σ_a -close to H. Then $\iota^a \circ p^x$ is $\mathfrak{st}(\sigma_a)$ -close to K_0 and K_1 is σ_a -close to p^a . It follows that $\iota^a \circ p^x$ and p^a are homotopic. Finally, we can use the property (E2) of the cofinite Čech system \mathcal{X} to get a b > a, $\iota(a)$ such that (11) holds.

Claim 4. For multi-nets $\varphi = \{F_c\}_{c \in \dot{Y}} : X \to Y \text{ and } \psi = \{G_u\}_{u \in \bar{Z}} : Y \to Z,$

$$\theta([\psi] \circ [\varphi]) = \theta([\psi]) \circ \theta([\varphi]).$$

Proof: Let $\chi = \{H_u\}$: $X \to Z$, where $H_u = G_{g(u)} \circ F_{f(\{g^{\bullet}(u)\})}$ for every $u \in \overline{Z}$. Then $[\chi] = [\psi] \circ [\varphi]$. Let $\underline{\varphi} = (\varphi, \{\varphi^c\}_{c \in \overline{Y}}),$ $\underline{\psi} = (\psi, \{\psi^u\}_{u \in \overline{Z}})$, and $\underline{\chi} = (\chi, \{\chi^u\}_{u \in \overline{Z}})$ be obtained from φ, ψ , and χ by the above procedure. We must show that $\underline{\chi}$ and $\underline{\psi} \circ \underline{\varphi}$ are homotopic. Since $\underline{\psi} \circ \underline{\varphi} = (\varphi \circ \psi, \{\psi^u \circ \varphi^{\psi(u)}\}_{u \in \overline{Z}})$, this amounts to show that for every $u \in \overline{Z}$ there is an a > t, x such that

(12)
$$\chi^u \circ p_a^b \simeq \psi^u \circ \varphi^k \circ p_a^t,$$

where $t = \varphi \circ \psi(u)$, $k = \psi(u)$, and $b = \chi(u)$.

Let a $u \in \tilde{Z}$ be given. In order to prove the above statement, we shall argue the existence of large enough indices $w \in \tilde{Z}$, $z \in \tilde{Y}$, and $a \in \tilde{X}$ such that

(13)
$$\chi^u \circ p_a^b \stackrel{\alpha_u}{=} r^u \circ H_x \circ B_\beta \circ p_a^b$$

(14)
$$r^{u} \circ H_{x} \circ B_{\beta} \circ p_{a}^{b} \stackrel{\beta_{u}}{\simeq} r^{u} \circ H_{x} \circ B_{\alpha},$$

(15)
$$r^{u} \circ H_{x} \circ B_{\alpha} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{y} \circ F_{z} \circ B_{\alpha},$$

(16)
$$r^{u} \circ G_{y} \circ F_{z} \circ B_{\alpha} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{w} \circ F_{z} \circ B_{\alpha},$$

(17)
$$r^{u} \circ G_{w} \circ F_{z} \circ B_{\alpha} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{e} \circ F_{z} \circ B_{\alpha},$$

(18)
$$r^{u} \circ G_{e} \circ F_{z} \circ B_{\alpha} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{e} \circ F_{i} \circ B_{\alpha},$$

(19)
$$r^{u} \circ G_{e} \circ F_{i} \circ B_{\alpha} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{e} \circ F_{i} \circ B_{\tau} \circ p_{\alpha}^{t},$$

(20)
$$r^{u} \circ G_{e} \circ F_{i} \circ B_{\tau} \circ p_{a}^{t} \stackrel{\beta_{u}}{\simeq} r^{u} \circ G_{e} \circ B_{\kappa} \circ q^{k} \circ F_{i} \circ B_{\tau} \circ p_{a}^{t},$$

(21)
$$r^{u} \circ G_{e} \circ B_{\kappa} \circ q^{k} \circ F_{i} \circ B_{\tau} \circ p_{a}^{t} \stackrel{\alpha_{u}}{=} r^{u} \circ G_{e} \circ B_{\kappa} \circ \varphi^{k},$$

and

(22)
$$r^{u} \circ G_{e} \circ B_{\kappa} \circ \varphi^{k} \stackrel{\alpha_{u}}{=} \psi^{u} \circ \varphi^{k} \circ p_{a}^{t},$$

where $\alpha = \overline{a}$, $x = \chi^*(u)$, $\beta = \overline{b}$, $y = \psi(u)$, $e = \psi^*(u)$, $i = \varphi^*(k)$, $\tau = \overline{t}$, $\kappa = \overline{k}$, and α_u and β_u are covers of Z_u analogous to covers σ_c and τ_c of Y_c , respectively.

Once we have the relations (13)–(22), we approximate each of the β_{u} -homotopies by an α_u -close homotopy and conclude from here as in the proof of Claim 1 that (12) holds.

Add (13) and (22). This follows from the fact that χ^u and ψ^u are α_u -close to functions $r^u \circ H_x \circ B_\beta$ and $r^u \circ G_e \circ B_\kappa$, respectively.

Add (21). Observe that $\tau^u \circ G_e$ is a (κ, α_u) -function, B_{κ} is a $(*_k, \kappa)$ -function, the cover σ_k refines the cover $*_k$, and the map φ^k is σ_k -close to the composition $q^k \circ F_i \circ B_{\tau}$, where $*_k$ denotes the normal cover of Y_k by the open stars of all vertices.

Add (14). Notice that $r^u \circ H_x$ is a (β, β_u) -function and $B_\alpha \stackrel{\beta}{\simeq} B_\beta \circ p_a^b$ for every a > b.

326

Add (15). Recall that $H_x = G_y \circ F_s$, where $s = f(\{g^*(x)\})$. Since $r^u \circ G_u$ is a $(g^*(x), \beta_u)$ -function, it suffices to take z > s because then F_s and F_z are joined by the $g^*(u)$ -homotopy L so that the composition $r^u \circ G_y \circ L \circ (B_\alpha \times id_I)$ will be a β_u -homotopy which realizes (15) whenever a is sufficiently large.

Add (16). Let w > y. Then G_y and G_w are joined by a ξ -homotopy M, where $\xi = \overline{x}$. But, the cover ξ refines the cover $\gamma_u = (r^u)^{-1}(\beta_u)$. It follows that $r^u \circ M$ is a β_u -homotopy joining $r^u \circ G_y$ and $r^u \circ G_w$. Since for every normal cover λ of Y we can find indices a and z such that the composition $F_z \circ B_\alpha$ is a λ -small function, it is clear that there are indices z and a such that $r^u \circ M \circ (F_z \circ B_\alpha \times id_I)$ realizes the relation (16).

Add (17). Let w > e. Then G_w and G_e are joined by a γ_u -small homotopy N. As in the proof of (16), we get the existence of large enough indices z and a such that $r^u \circ N \circ (F_z \circ B_\alpha \times id_I)$ realizes the relation (17).

Add (18). Observe that G_e is a (κ, γ_u) -function. Also, we can always assume that the cover ξ_k was selected so that it refines the cover κ . Then for z > i the functions F_z and F_i are joined by the ξ_k -homotopy P. Hence, for a large index a, the composition $r^u \circ G_e \circ P \circ (B_\alpha \times id_I)$ realizes the relation (18).

Add (19). The argument for this relation is similar to the one given for the relation (14).

Add (20). Notice that $r^u \circ G_e$ is a (μ, γ_u) -function, where μ is a normal cover of Y such that $st(\kappa)$ refines μ . Also, there is a $(\kappa, st(\kappa))$ -homotopy R joining id_X with the composition $B_{\kappa} \circ q^k$. Once again, if we choose the cover ξ_k so that it refines the cover κ , then $r^u \circ G_e \circ R \circ (F_i \circ B_\tau \circ p_a^t \times id_I)$ will be a β_u -homotopy that realizes the relation (20).

Claim 5. θ is a functor and the relation $S = \theta \circ J$ holds.

Proof: That θ is a functor follows from the Claims 3 and 4. It remains to see that $S = \theta \circ J$. Let $f: X \to Y$ be a map, i. e., a morphism of the category Top. Then J(f) is represented by a multi-net $\varphi = \{F_c\}_{c \in \hat{Y}}$: $X \to Y$, where $F_c = f$ for every $c \in \tilde{Y}$. It follows that $\theta \circ J(f)$ is represented by a morphism $\underline{\varphi} = (\varphi, \{\varphi^c\}_{c \in \hat{Y}})$ between inverse systems \mathcal{X} and \mathcal{Y} , where φ^c is a map which is σ_c -close to $q^c \circ f \circ B_\alpha$ for a suitable index $a \in \tilde{X}$ and the cover $\alpha = \bar{a}$ of X. We shall now prove that

(23)
$$\varphi^{c} \circ p^{a} \simeq q^{c} \circ f.$$

Observe that

(24)
$$\varphi^c \circ p^a \stackrel{\sigma_c}{=} q^c \circ f \circ B_\alpha \circ p^a.$$

But, $B_{\alpha} \circ p^{\alpha}$ is α -close to id_X . Hence, had we chosen a so that α refines the cover $(q^c \circ f)^{-1}(\sigma_c)$, we would get

(25) $q^{c} \circ f \circ B_{\alpha} \circ p^{a} \stackrel{\sigma_{c}}{=} q^{c} \circ f.$

From (24) and (25) it follows that $\varphi^c \circ p^a$ and $q^c \circ f$ are $st(\sigma_c)$ -close and we get the relation (23).

In order to conclude now that $S(f) = \theta \circ J(f)$ we must recall (see [4]) that S(f) is a unique morphism f such that $\mathbf{q} \circ f = \underline{f} \circ \mathbf{p}$.

We shall now prove that θ is a category isomorphism by constructing for every pair of objects X and Y of the shape category a function

 $\zeta: Mor_{\mathcal{S}h}(X, Y) \to Mor_{\mathcal{H}M}(X, Y)$

such that $\theta \circ \zeta = id$ and $\zeta \circ \theta = id$.

6. Preliminaries for the description of the functor ζ

Factorization through canonical mappings.

Lemma 5. Let X be an arbitrary space, let Y be a polyhedron (endowed with the CW topology), let σ be an open covering of Y, and let $f: X \to Y$ be a map. Then there exist a normal cover τ of X such that for every normal cover ρ of X which refines τ there exist a map $k: |N(\rho)| \to Y$ with the following properties:

- (i) For any canonical map p: X → |N(ρ)| the maps k ∘ p and f are σ-close.
- (ii) Each $R \in \rho$ admits an $S_R \in \sigma$ such that
- (a) $k(*_{\rho}^{R}) \subset S_{R}$, and
- (b) $f(\bar{R}) \subset S_R$.

Proof: Let $\delta \in \sigma^*$. By [4], there is an ANR space M and maps $u : Y \to M$ and $d : M \to Y$ such that

$$(26) d \circ u \stackrel{b}{=} id_Y.$$

Let $\beta = d^{-1}(\delta)$. Let $h = u \circ f$. By Lemma 2 on p. 316 of [4], there is a normal cover τ of X and a map $g : |N(\tau)| \to M$ with the following properties:

- (i') For any canonical map $r: X \to |N(\tau)|$ the maps $g \circ r$ and h are β -close.
- (ii') Each $T \in \tau$ admits a $B_T \in \beta$ such that
- (a') $g(*_{\tau}^{T}) \subset S_{T}$, and
- (b) $h(T) \subset S_T$.

Let $\varrho \in \hat{X}$ be a refinement of τ and let $q : |N(\varrho)| \to |N(\tau)|$ be a simplicial projection mapping induced by the selection of a member $\nu(R)$ of τ with $R \subset \nu(R)$ for every member R of ϱ . Let $k = d \circ g \circ q$.

In order to check (i), let $p: X \to |N(\varrho)|$ be a canonical map. By Theorem 6 on p. 326 of [4], the composition $r = q \circ p$ is also a canonical map. By (i'), the maps $g \circ r$ and h are β -close. Composing with the map d we see that $k \circ p$ and $d \circ u \circ f$ are δ -close. But, by (26), $d \circ u \circ f$ is δ -close to f so that $f \stackrel{\sigma}{=} k \circ p$.

Finally, to verify (ii), let $R \in \rho$. By (ii'), there is a $D_{\nu(R)} \in \delta$ such that

(c')
$$g(*_{\tau}^{\nu(R)}) \subset d^{-1}(D_{\nu(R)})$$
, and
(d') $h(\nu(R) \subset d^{-1}(D_{\nu(R)})$.

For each $R \in \rho$ choose an $S_R \in \sigma$ such that S_R contains the star $st(D_{\nu(R)}, \delta)$ of $D_{\nu(R)}$ with respect to the cover δ . Then

$$k(\ast^R_{\varrho}) = d \circ g \circ q(\ast^R_{\varrho}) \subset d \circ g(\ast^{\nu(R)}_{\tau}) \subset D_{\nu(R)} \subset S_R.$$

On the other hand, from (d') we get $d \circ u \circ f(R) \subset D_{\nu(R)}$ for every $R \in \varrho$. But, by (26), for each $y \in f(R)$, some member of δ contains both y and $d \circ u(y)$. Hence, $f(R) \subset S_R$.

Hooked and small implies homotopic.

The following notion and lemma are from [2]. Let σ be a normal cover of a space Y. Two multi-valued functions $F, G : X \to Y$ are σ -hooked provided for every $x \in X$ there is an $S_x \in \sigma$ such that S_x has non-empty intersection with both F(x) and G(x). Observe that σ -close multi-valued functions are σ -hooked.

Lemma 6. Let $F, G : X \to Y$ be multi-valued functions and let σ be a normal cover of Y. If F and G are σ -small and σ -hooked, then $F \stackrel{st(\sigma)}{\simeq} G$.

7. Description of the functor ζ

Let $\underline{f} = (f, \{f^c\}_{c \in \tilde{Y}})$ be a morphism between cofinite Čech systems \mathcal{X} and \mathcal{Y} associated to spaces X and Y, respectively. For every $c \in \tilde{Y}$, define a multi-valued function $f_c : X \to Y$ to be the composition $B_{\gamma} \circ f^c \circ p^x$, where γ denotes the normal cover \bar{c} and x = f(c). Let $\overline{f} = \{f_c\}_{c \in \tilde{Y}}$. Claim 6. The family \overline{f} is a multi-net from X into Y.

Proof: Let a $\sigma \in \hat{Y}$ be given. We must find an index $c \in \tilde{Y}$ such that

(27)
$$f_c \stackrel{\sigma}{\simeq} f_d$$
 for every $d > c$.

Let $\tau \in \sigma^{*2}$. Put $c = \{\tau\}$. Let d > c. Since \underline{f} is a morphism between \mathcal{X} and \mathcal{Y} , there is an index a > x, y and a homotopy H with

(28)
$$H_0 = f^c \circ p_a^x \quad \text{and} \quad H_1 = q_d^c \circ f^d \circ p_a^y$$

where x = f(c) and y = f(d). Moreover, there are homotopies G and K with

(29)
$$G_0 = p^x$$
, $G_1 = p_a^x \circ p^a$, $K_0 = p_a^y \circ p^a$, $K_1 = p^y$

Let $\gamma = \overline{c}$ and $\delta = \overline{d}$. Let *L* be a τ -homotopy joining $B_{\gamma} \circ q_d^c$ and B_{δ} (for this see Lemma 3). The compositions $A = B_{\gamma} \circ f^c \circ G$, $C = L \circ (f^d \circ p_a^y \circ p^a \times id_I)$, $B = B_{\gamma} \circ H \circ (p^a \times id_I)$, and $D = B_{\delta} \circ f^d \circ K$ are τ -homotopies such that $f_c = A_0$, $A_1 = B_0$, $B_1 = C_0$, $C_1 = D_0$, and $D_1 = f_d$. Hence, $f_c \stackrel{\sigma}{\simeq} f_d$.

Now we can define the function ζ by the rule $\zeta([f]) = [\overline{f}]$.

Claim 7. The function ζ is well-defined, i. e., the value $\zeta([\underline{f}])$ does not depend on the choice of the representative \underline{f} of the equivalence class $[\underline{f}]$.

Proof: Let $\underline{g} = (g, \{g^c\}_{c \in \overline{Y}})$ be another morphism from \mathcal{X} into \mathcal{Y} equivalent to \underline{f} and let $\overline{g} = \{g_c\}_{c \in \overline{Y}}$ be a multi-net constructed from \underline{g} by the above procedure. We must show that \overline{f} and \overline{g} are homotopic, i. e., that for every $\sigma \in \hat{Y}$ there is an index $c \in \tilde{Y}$ such that

(30)
$$f_d \stackrel{\circ}{\simeq} g_d$$
 for every $d > c$.

Let a $\sigma \in \hat{Y}$ be given. Let $\tau \in \sigma^*$. Put $c = \{\tau\} \in \tilde{Y}$. Let d > c. Since morphisms \underline{f} and \underline{g} are equivalent, there is an index a > x, y and a homotopy H with

(31)
$$H_0 = f^d \circ p_a^x \quad \text{and} \quad H_1 = g^d \circ p_a^y.$$

Moreover, there are homotopies G and K with

(31)
$$G_0 = p^x$$
, $G_1 = p_a^x \circ p^a$, $K_0 = p_a^y \circ p^a$ and $K_1 = p^y$,
where $x = f(d)$ and $y = g(d)$. Let $\delta = \overline{d}$.

The compositions $A = B_{\delta} \circ f^d \circ G$, $B = B_{\delta} \circ H \circ (p^a \times id_I)$, and $C = B_{\delta} \circ g^d \circ K$ are τ -homotopies such that $f_d = A_0$, $A_1 = B_0$, $B_1 = C_0$, and $C_1 = g_d$. Hence, $f_d \stackrel{\sigma}{\simeq} g_d$.

8. Verification that ζ is an inverse of θ

Claim 8. For every morphism $\underline{f} = (f, \{f^c\}_{c \in \check{Y}}) : \mathcal{X} \to \mathcal{Y}$ we have $[\underline{f}] = \theta \circ \zeta([\underline{f}]).$

Proof: Let $\zeta([\underline{f}]) = [\varphi]$, where $\varphi = \{f_c\}_{c \in \overline{Y}}$, $f_c = B_{\gamma} \circ f^c \circ p^x$, $\gamma = \overline{c}$, and x = f(c) for every $c \in \overline{Y}$. Let

$$\theta(\zeta([\underline{f}])) = \theta([\varphi]) = [(\varphi, \{\varphi^c\}_{c \in \tilde{Y}})],$$

where φ^c is a map which is σ_c -close to $q^c \circ f_b \circ B_{\varepsilon}$, $b = \varphi^*(c)$, $e = \varphi(c)$, and $\varepsilon = \overline{e}$. Hence, φ^c is a map which is σ_c -close to $q^c \circ B_\beta \circ f^b \circ p^d \circ B_{\varepsilon}$, where $\beta = \overline{b}$ and d = f(b).

Let us apply Lemma 5 in the case X = Y, $M = Y_c$, $\sigma = \tau_c$, and $h = q^c$ to get a cover μ_c of Y such that for every refinement ρ of μ_c there exist a map $g_{\rho}^c : |N(\rho)| \to Y_c$ with the following properties:

- (32) For any canonical map $p: Y \to |N(\varrho)|$ the maps $g_{\varrho}^c \circ p$ and q^c are τ_c -close.
- (33) Each $R \in \rho$ admits a $T_R \in \tau_c$ such that $g_{\rho}^c(*_{\rho}^R) \subset T_R$ and $q^c(R) \subset T_R$.

Without loss of generality, we can assume that the function φ^* also satisfies the condition $\varphi^*(c) > \{\mu_c\}$ for every $c \in \tilde{Y}$. By assumption, there is a map $g_b^c : Y_b \to Y_c$ such that

(34)
$$q^c \stackrel{\tau_c}{=} g^c_b \circ q^b,$$

and each $R \in \beta$ admits a $T_R \in \tau_c$ such that $g_b^c(*_\beta^R) \subset T_R$ and $q^c(R) \subset T_R$. But, the function B_β satisfies $B_\beta(*_\beta^R) \subset R$ for every $R \in \beta$ so that both $g_b^c(*_\beta^R)$ and $q^c \circ B_\beta(*_\beta^R)$ are contained in T_R for every $R \in \beta$. It follows that g_b^c and $q^c \circ B_\beta$ are $(*_\beta, \tau_c)$ -close. This means that by selecting the function φ carefully, we can achieve that the map B_ε is small enough so that

(35)
$$g_b^c \circ f^b \circ p^d \circ B_{\varepsilon} \stackrel{\tau_c}{=} q^c \circ B_{\beta} \circ f^b \circ p^d \circ B_{\varepsilon}.$$

Now we can apply Lemma 5 again, this time in the case X = X, $M = X_d$, $\sigma = \kappa_c$, where $\kappa_c = (g_b^c \circ f^b)^{-1}(\tau_c)$, and $h = p^d$ to get a cover ν_c of X such that for every refinement ρ of ν_c there exist a map $h_{\rho}^d: |N(\rho)| \to X_d$ with the following properties:

- (36) For any canonical map $p: X \to |N(\varrho)|$ the maps $h_{\varrho}^d \circ p$ and p^d are κ_c -close.
- (37) Each $R \in \rho$ admits a $K_R \in \kappa_c$ such that $h_{\rho}^d(*_{\rho}^R) \subset K_R$ and $p^d(R) \subset K_R$.

Without loss of generality, we can assume that the function φ also satisfies the condition $\varphi(c) > \{\nu_c\}$ for every $c \in \tilde{Y}$. Recall that $e = \varphi(c)$. By assumption, there is a map $h_e^d : X_e \to X_d$ such that

$$(38) p^d \stackrel{\kappa_c}{=} h^d_e \circ p^e,$$

and each $E \in \varepsilon$ admits a $K_E \in \kappa_c$ such that $h_e^d(*^E_{\varepsilon}) \subset K_E$ and $p^d(E) \subset K_E$. But, the function B_{ε} satisfies $B_{\varepsilon}(*^E_{\varepsilon}) \subset E$ for every $E \in \varepsilon$ so that both $h_e^d(*^E_{\varepsilon})$ and $p^d \circ B_{\varepsilon}(*^E_{\varepsilon})$ are subsets of K_E for every $E \in \varepsilon$. It follows that h_e^d and $p^d \circ B_{\varepsilon}$ are κ_c -close. Hence,

(39)
$$g_b^c \circ f^b \circ p^d \circ B_{\epsilon} \stackrel{\tau_e}{=} g_b^c \circ f^b \circ h_e^d$$

Since $\tau_c \in \sigma_c^*$, the relations (35) and (39) give that the map $g_b^c \circ f^b \circ h_e^d$ is σ_c -close to the composition $q^c \circ B_\beta \circ f^b \circ p^d \circ B_\epsilon$. Therefore, we can take $g_b^c \circ f^b \circ h_e^d$ as the map φ^c .

It remains to see that the morphisms \underline{f} and $(\varphi, \{\varphi^c\}_{c\in \tilde{Y}})$ are equivalent, i. e., that for every $c\in \tilde{Y}$ there is an a > e, x such that

(40)
$$f^{c} \circ p_{a}^{x} \simeq g_{b}^{c} \circ f^{b} \circ h_{e}^{d} \circ p_{a}^{e}.$$

The relations (38) and (34) imply

(41)
$$g_b^c \circ f^b \circ h_e^d \circ p^e \simeq g_b^c \circ f^b \circ p^d,$$

and

(42)
$$q^c \simeq g_b^c \circ q^b.$$

From the relation (42) and the property (E2) for the expansion \mathbf{q} , we get the existence of an index i > b, c with

(43)
$$q_i^c \simeq g_b^c \circ q_i^b.$$

On the other hand, since f is a morphism, we have

(44)
$$f^b \circ p^d \simeq q_i^b \circ f^i \circ p^y,$$

where y = f(i). Thus,

(45)
$$g_b^c \circ f^b \circ p^d \simeq g_b^c \circ q_i^b \circ f^i \circ p^y \simeq q_i^c \circ f^i \circ p^y \simeq f^c \circ p^x.$$

It follows from (41) and (45) that $f^c \circ p^x \simeq g_b^c \circ f^b \circ h_e^d \circ p^e$. Now, we can use the property (E2) for the expansion **p** to get an index *a* such that (40) holds.

Claim 9. For every multi-net $\varphi = \{F_s\}_{s \in \bar{Y}} : X \to Y$ we have $\zeta \circ \theta([\varphi]) = [\varphi].$

Proof: Let $\theta([\varphi]) = [(\varphi, \{\varphi^c\}_{c \in \tilde{Y}})]$, where $\varphi^c : X_{\varphi(c)} \to Y_c$ is a map such that

(46)
$$\varphi^c \stackrel{\sigma_c}{=} q^c \circ F_{\varphi^*(c)} \circ B_{\overline{\varphi(c)}}$$
 for every $c \in \tilde{Y}$.

Then $\zeta \circ \theta([\varphi]) = [\overline{\varphi}]$, where $\overline{\varphi} = \{\varphi_c\}_{c \in \overline{Y}}$ is a multi-net from X into Y and $\varphi_c = B_{\overline{c}} \circ \varphi^c \circ p^{\varphi(c)}$ for every $c \in \overline{Y}$.

We must show that multi-nets φ and $\overline{\varphi}$ are homotopic, i. e., that for every $\sigma \in \hat{Y}$ there is a $c \in \tilde{Y}$ such that

(47)
$$F_d \stackrel{\sigma}{\simeq} \varphi_d$$
 for every $d > c$.

Let a $\sigma \in \hat{Y}$ be given. Let $\tau \in \sigma^{*3}$. Since φ is a multi-net there is a $c > \{\tau\}$ such that

(48)
$$F_e \stackrel{\tau}{\simeq} F_d$$
 for all $e, d > c$.

Let d > c. Let $\delta = \overline{d}$. Since B_{δ} is a $(*_{\delta}, \delta)$ -function and σ_d refines $*_{\delta}$, from (46) we get

(49)
$$\varphi_d \stackrel{\tau}{=} B_\delta \circ q^d \circ F_m \circ B_\nu \circ p^n,$$

where $m = \varphi^*(d)$, $n = \varphi(d)$, and $\nu = \overline{n}$. Also, φ_d is a τ -small function while the right hand side of (49) is a τ -small function provided we make sure that the functions φ^* and φ increase sufficiently fast (so that m > cand ν is such that F_m is a (ν, τ) -function). It follows from Lemma 6 that

(50)
$$\varphi_d \stackrel{st(\tau)}{\simeq} B_\delta \circ q^d \circ F_m \circ B_\nu \circ p^n.$$

Since the composition $B_{\delta} \circ q^d$ is $(\delta, st(\delta))$ -homotopic to the id_X , we see again that by a careful selection of functions φ^* and φ , we can achieve that

(51)
$$B_{\delta} \circ q^{d} \circ F_{m} \circ B_{\nu} \circ p^{n} \stackrel{st(\tau)}{\simeq} F_{m} \circ B_{\nu} \circ p^{n}.$$

Since m > c, there is a normal cover λ of X such that F_m is a (λ, τ) -function. Hence, if we require in addition that $st(\nu)$ refines λ , then

(52)
$$F_m \circ B_\nu \circ p^n \stackrel{\tau}{\simeq} F_m$$

because $B_{\nu} \circ p^n$ is $st(\nu)$ -homotopic to the id_X .

Finally, since m, d > c from (48) we get

(53)
$$F_m \simeq F_d.$$

The relations (50)–(53) together imply the relation (47). \blacksquare

References

- 1. R. A. ALÓ AND M. L. SHAPIRO, "Normal Topological Spaces," Cambridge Univ. Press, Cambridge, 1972.
- 2. Z. ČERIN, Shape via multi-nets, preprint.
- 3. A. DOLD, "Lectures on Algebraic Topology," Springer-Verlag, Berlin, 1972.
- 4. S. MARDEŠIĆ AND J. SEGAL, "Shape Theory," North Holland, Amsterdam, 1982.
- 5. J. SANJURJO, Shape morphisms and small multivalued maps, *Math. Japonica* **35** (1990), 713-717.
- 6. J. SANJURJO, An intrinsic description of shape, Trans. Amer. Math. Soc. 329 (1992), 625-636.

Kopernikova 7 41020 Zagreb CROATIA

Rebut el 12 de Gener de 1993