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SHAPE THEORY INTRINSICALLY

ZvonNko CERIN

Abstract

We prove in this paper that the category HAM whose cbjects are
topological spaces and whose morphisms are homotopy classes of
muiti-nets is naturally equivaient to the shape category Sh. The
description of the category HAS was given earlier in the article
“Shape via multi-nets". We have shown there that HA{ is natu-
rally equivalent to Sh only on a rather restricted class of spaces.
This class includes all compact metric spaces where 2 similar in-
trinsic description of the shape category using multi-valued func-
tions was given by Jos€ M. R. Sanjurjo in [5] and [6].

1. Preliminaries for the description of the category HM

In this section we shall collect definitions and results from (2] that are
required for the description of the category HAM.

Normal covers.

Let Y denote the collection of all normal covers of a topological space
Y [1). With respect to the refinement relation > the set ¥ is a directed
set. Two normal covers ¢ and T of ¥ are equivalent provided ¢ > 7 and
T > o. In order to simplify our notation we denote a normal cover and
it's equivalence class by the same symbol. Consequently, V also stands
for the associated gquotient set.

Let ¥ denote the coliection of all finite subsets ¢ of ¥ which have a
unique {with respect to the refinement relation) maximal element € € Y.
We consider ¥ ordered by the inclusion relation and regard V as a subset
of single-element subsets of V. Notice that ¥ is a cofinite directed set.

Let 0 € Y. Let o™ denote the set of all normal covers 7 of ¥ such
that the star st{7) of T refines ¢. Similarly, for a natural number n, o*»
denotes the set of all normal covers 7 of ¥ such that the n-th star st™(r)
of 7 refines .
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Multi-valued functions.

Let X and Y be topological spaces. By a mulli-valued function I :
X — Y we mean a rule which associates a non-empty subset F(z} of Y
to every point z of X. Let M(X, V) denote all multi-valued functions
from X into Y.

Let F: X — Y be a multi-valued function and let o € X and ¥ € Y.
We shall say that F is an (&, v)-function provided for cvery A € « there
isa Cq €y with F{A) C C4. On the other hand, F is y-small provided
there is an & € X such that F is an {a, 7v)-function.

Let F, Z: X — Y be multi-valued functions and let «y € Y. We shall
say that F and G are v-close and we write F L & provided for every
x € X thereis a C, € v with F{z) U G(z) C C,. How one defines the
notion “{e, v}-close” is now obvious.

Let F, G : X — Y be multi-valued functions between topological
spaces and let v be a normal cover of the space ¥. We shall say that
F and G are y-homotopic and write I e provided there is a y-small
roulti-valued function H from the product X x I of X and the unit seg-
ment I = [0, 1] into Y such that F{z) C H(z, 0) and G(z) C H(z, 1)
for every x € X. We shall say that H is a v-homotopy that joins F and
G or that it realizes the rclation {or homotopy) F LG

Lemma 1. Let F, G, H : X — Y be multi-valued functions. Let
ceVondreco”. fF~@G andG ~ H, then F ZH.

Multi-nets.

Let X and Y be topological spaces. By a multi-net from X into ¥V
we shall mcan a collection ¢ = {F;|¢ € Y} of multi-valued functlons
F,: X — Y such that for every v € Y there is a ¢ € ¥ with Fd ~ F,
for every d > c¢. We use functional notation  : X — Y to indicate that
p is a multi-net from X into ¥. Let MN(X, Y) dencte all multi-nets
g: X =Y,

Two multi-nets p = {F.} and ¥ = {G.} belween topological spaces
X and Y are homolopic provided for every v € ¥ there isa ¢ € ¥ such
that Fy 2 Gy forevery d > c.

It follows from Lemma 1 that the relation of homotopy is an equiva-

lence relation on the set MN(X, ¥). The homotopy class of a multi-net
i is denoted by [] and the set of all homotopy classes by HM (X, Y).
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2. Description of the category HM

Composition of homotopy classes.

QOur goal now is to define a composition for homotopy classes of multi-
nets.

Let ¢ = {F.} : X - Y be a multi-net. For every ¢ € Y there is an
flc) € ¥ such that for all d, e > fic) there is a normal cover f(c, d, e)
of X x I and an (f(c, d, €),¢)-map joining Fy and F.

Let ¢ = {(c, d, e)]c€Y, d, ¢ > f(e)}. Then C is a subset of
Y x ¥ x ¥ that becomes a cofinite directed set when we define that
e, d, e)>(c, d, Yilfc>c,d>d,and e > €.

Now, let f : Y — ¥ be an increasing function such that f(c} > f(c), ¢
for every ¢ € Y. We shall use the same notation f for an increasing
function f : C — X X I such that f(c, d, €) > flc, d, e) for every
(c, d, €} € C. Let (c, ¢, e) € C. For the normal cover f(e, d, e) of
X x I, by [3, p. 358|, there is a normal cover ¢ = f(c. d, ) of X
and a function r = f{c, d, e} : £ — {2, 3, 4,...} such that every set
Ex[(i-1)/rE, (i+1)/rE], where Eccandi=1, 2,..., rE~1,is
contained in a member of fle, d, e).

Let f:C — X be an increasing function with fle, d, ) > fle, d, €)
for every (¢, d, e) € C. We shall usc the shorter notation f{c) and Jle)
for the covers f(c, f(c), f(c)) and flc, f(e), f(c)). In [2, Claim 1], the

following lemma was proved.

Lemma 2. There is an increasing function f*:Y — X such that

(1) f~(¢) > flc) for every c €Y, and )

(2) f*is cofinalin f, i e, for every (c, d, e} €C thereisanmeY
with f*(m) > fle, d, e).

The above discussion shows that every multi-net ¢ : X — Y deter-
mines eight functions denoted by f, f, f, f. and f*. With the help of
these functions we shall define the composition of homotopy classes of
multi-nets as follows.

Let p = {F.} : X = Y and ¥ = {G,} : Y — Z be multi-nets. Let
x = {Hu}, where H, = Gy © Fpgge(uy}) for every u € Z.

It was proved in [2] that the collection y is a multi-net from X into
Z.

We now define the composition of homotopy classes of multi-nets by
the rule [{Gu}] o [{FL}] = [{Gopuy © Frig-ruyny}]- The composition of
homotopy classes of multi-nets is well-defined and associative (see [2]).
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The category HM.

For a topological space X, let «X = {I,} : X — X be the identity
multi-net defined by I, = idx for every a € X Itis easy to show that
for every multi-net ¢ : X — ¥ the following relations hold:

] o [X] = ] = ] ool

It was shown in [2] that the topological spaces as objects, the ho-
motopy classes of multi-nets as morphisms, the homotopy classes (%]
as identities, and the above composition of homotopy classes form the
category HM.

There is an obvious functor J from the category Top of topological
spaces and continuous maps into the category HM. On objects the
functor J is the identity while on morphisms it associates to a map
f: X — Y the homotopy class of a multi-net f = {Fc} : X — Y, where

F.=fforeveryceY.

3. Statement of the main theorem

Qur main result can be stated as follows. Let Sh be the shape category
of arbitrary topological spaces and let S : Top — Sh be the shape functor
[4]-

Theorem. There is a functor & from the category HM into the shape
category Sh which is an isomorphism of cetegories and such that § =
dold.

4, Preliminaries for the description of the functor §

Cofinite Cech system.

With every space X one can associate an inverse system X =
{X., [p5], X}, called the cofinite Cech system of X, where X, = |N(¢)|
is the nerve of ¢ and {p§|, for d > ¢ in X, is the unique homotopy class
to which belong the projections pg : [N(d)| — |N(@)|. Forac e X, let
[p°] :+ X — X, be the unique homotopy class of the canonical mappings

¢ : X — X, Recall that [p] = [pS] o [p?] whenever d > ¢ in X so
that p = {[p°]} : X — X is a morphism of the pro-homotopy category
pro-HTop. Since the usual Cech system is an M Pol-expansion (see [4,
p. 328]), it is easy to show by direct verification of conditions (E1) and
(E2), that p is also an HPol-expansion.
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In the rest of this paper, let X, Y, and Z be topological spaces and
let

p = {[p°l}: X = & = {X,, [pf], X},
q={¢]}:X—-Y={¥,lg ¥}

and
r={{*"}:Z2 -2 = {Z, Ir}), 2}

be cofinite Cech systems of X, ¥, and Z, respectively.

It is well-known that shape morphisms from X into Y could be con-
sidered as equivalence classes of morphisms of inverse systems & and
Y {see [4]). More precisely, the set Sh{X, ¥) of all shape morphisms
between spaces X and Y can be identified with the set pro-HPol(X, )
of all morphisins in the Grothendick’s pro-category pro-H Pol of the ho-
motopy category of polyhedra HPol between the objects A and V. In
our description of what 8 does on morphisms of the category HA we
shall view shape morphisms in this way.

Multi-valued functions B,.

We shall also be using the following natural multi-valued function B,
from the nerve |[N{z}| of a normal cover ¢ of X into X. The function B,
associates to a point w of | V()| the intersection of members of the cover
¢ which span a simplex of |N{z)}| that contains w. Hence, if w belongs
to a simplex {51,...,5,) of |N{g)|, where 51,..., 5, are members of
o, then By(w} = (., S;. Observe that B, is a (#,, o)-function, where
*s denotes the (normal) cover of |N(z)| by open stars +5 of all vertices
§ € o of |[N{o)|. Moreover, for every cancnical mapping p: X — |N{(co}|
(i. e., a map which satisfies p~!(x3) C § for every member S of ¢) and
every ¥ € X thereisa V' € o such that both z and the set B, o p(z} liein
V while for every z € X and every S € ¢ with z € Stheset B, op{z) isa
subset of st(5, ¢). Hence, the composition B, ¢ pis {&, st{c)}-hometopic
and g-close to the identity map idx.

Lemma 3. Let ¢ and 7 be normal covers of a space X such that T
refines 0. Then B ~ By op for every projection p : |[N{1)| — |N{0o)|.

Proof: Let T € 7 and let = € *L. Then B,(z) is a subset of T whilc
p{z) lies in *3, where S is a member of ¢ which contains T. It follows
that both B;(z) and B, s p{z) are subsets of S. Hence, the function H
from |N{r}| into X defined by the rule H{z} = B,(z} U By o p(z) for

every T € |N{7}| is a o-homotopy joining B, and B, cp. K
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Approximation of small functions with maps.

In the description of the functor # we shall also need the following
approximation result (see Lemma 2 in [2]).

Lemma 4. For every open cover ¢ of a polyhedron Y there is an open
cover T of it such that for every T-small multi-volued function F: X —
Y from a space X into Y there is o single-valued continuous function
f: XY with FZ f.

5. Description of the functor ¢

The functor & will leave the objects unchanged. In order to explain
how & effects the morphisms we must work much harder.

Let p = {Fs},y * X — Y be a multi-net. For each ¢ € Y, pick an
open cover g, of Y, = |N(2)| such that st3(c.)-close maps into Y, are
homotopic. Since the set Y is cofinite, we can select the covers ¢, so that
oy vefines (g5) (0.} whenever & > ¢ in Y. Morcover, we ¢an assume
that o, refines the open cover *z for every ¢ € Y.

By Lemma 4, we can find a 7. € ¢, so that every Tc-small multi-valued
function into Y, is o.-close to a continuous single-valued function. Let
¢ € Y be a refinement of (g°)~'(r,). Since Y is a cofinite directed set,
we can assume that &, refines &, for every e € ¥ with ¢ > e. Morcover,
for every pair ¢, e € Y with ¢ > e, the maps ¢° and gt o ¢° are joined
by a homotopy K¢ so thal we can select a nf € Y and a stacked normal
cover gf of Y x I over m¢ which refines (K&)~!(7.}. We shall assume
that £, also refines n8 for every index e with ¢ > e

Since i is a mulli-net, there is an index @, € Y so that

(1) Fy % E, for all d, e > ¢,

Choose an increasing function ¢ : ¥ — ¥ such that ¢*(c) > ¢, ye, {&:}
for every ¢ € Y.

Since the the function F.( is {-smoall, there is an 7, € X such
that F,... is an (., &)-fonction. Let A, € n.”. Choose an increasing
function @ : ¥ — X such that @(c) > {)\.} for every ¢ € ¥. The
composition g% o F- (g 0 Bm is a 7.-small multi-valued function so that

it is g.-close to a map v X, — Y.

Claim 1. The pair ¢ = (, {¢°|c € Y}) is @ morphism between cofi-
nite Cech systems X aend ).
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Proof: We must show that for every pair ¢, 4 of elements of Y with
d > ¢ it is possible o find an @ > x, y so that

(2) @wCopt =~ g5optopt

where z = (c) and y = (d).

Let u = w*(c) and v = @*{d). Since v > u > @, by (1), therc is a
normal cover g of X x I such that the functions F), and F, can be joined
by a (e, £.)-homotopy M © X xI — Y. Pick a normal cover 7 of X
and a stacked normal cover w of X x I over w such that w refines p. For
a > {n}, we sce that ) = ¢°o M o (B, X id;) is a 7.-homotopy joining
gcoF,0B, and ¢°o I, 0 B,, where a = a.

Since F, is a (&, & }-function and B, k3 B¢ op; by Lemma 3, we see
that there is a 7.-homotopy I’ with Fy = ¢°o F, 0 Be o pf and P, = @y,
where £ = . For a similar reason, there is a 7.-homotopy R with
Ry=¢) and By =¢°oF, 0 By op¥, where A =7%.

Since F, o By o pY¥ is a ;-function and &, refines 7§, § = Kjo((F,0B0
p¥) xids) is a T.-homotopy with Sp = By and 8} = ¢jo g0 F,0Byop¥.

Observe that cur choices imply the existence of homotopies A, B, C,
and Dsuchthat AZP, BZQ, CZ R, DZS,¢0pt =P, and
51 = g5 0 p?op¥, where ¢ = .. From here it follows that ¢° o p? = Ao,
AL % By, Bi £Co, C1 £ Do, Dy £ gS0p?opl, where v = st(o.).

The way in which we selected the covers o, implies that the adjacent
maps in the following long list are homotopic: ¢® o p, Ay, AL, Bo, B,
Co, C1, Do, D1, g5 0 p? o p¥. Hence, the relation (2) holds. W

Now we can define that 8 acts on morphisms of the category HM (i.
e., on homotopy classes of multi-nets) by the rule 8{[¢]) = [¢], where
[»] denotes the equivalence class of @ with respect to the equivalence
relation ~ (see [4, p. 6]). N

Claim 2. The function 8 is well-defined, i. e., it does not depend on
the choices of p, @*, and ©° in our description of [f]

Proof: Suppese that ¥ = {G,} : X — Y is muiti-net homotopic to ¢
and let the morphism 3 = {1, {¢/°|c € Y}) of inverse systems X and V
be constructed from % by the above procedure using in it ¥, ¥*, and ¥°
instead of @, ¢*, and °, respectively. We must show that ¢ and ¥ are

equivalent, i. e., that for every ¢ € Y there is an @ > z, u with
3) e opt = Yt o,

where z = p(c) and u = ().
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Let 2 ¢ € Y be given. In order to prove (3}, we shall argue the existence
of indices a, z € Y such that

{4) ¢ opf = ¢°o Fyo Bg opf,
(5) g0 FyoBeopl S g°o Fy 0 B,,
(6) g°o F, 0B, = g° o F, 0 By,
{(7) g o F, 0 B, s g oG, 0 B,,
(8) g°0G, 0B, = ¢°0G,0B,,
(9) gc0Gyo By = g°oG,0Byopy,
(10) g°0 Gy o Byopy = peop},

where £ =, y = ¢*(e), y =1, v = ¢¥"{¢), and o = &.

Once we have the relations (4)-{10), we approximate each of the .-
homotopies by & o.-close homotopy and conclude from here as in the
proof of Claim 1 that {3} holds.

Add {4) and (10). This follows from the fact that ©° and ¥° are
ge-close to functions ¢° o F, 0 B and ¢° o G, o B,, respectively.

Add (5). It suffices to observe that Fj is a (£, £ )-function and that

B, £ Beopl for every a > z. .
Add {6). Let z > y. Then there i3 a normal cover A of X x I and
a {A, £&.)-homotopy L joining F, and F,. Pick a normal cover m of X
and a stacked normal cover p of X x I over w such that p refines A. Let
a > {#}. The composition ¢¢o L o (B, x id;) is a 7,-homotopy which
realizes the relation (6).
Add (7). Since ¢ and ¢ are homotopic multi-nets, there is a b € 1%

such that F, 2 G, for every z > b Let z > b and let M be a £
homotopy joining F, and G,. Choose normal covers dand gof X x T
and 7 of X such that A is a (A, &;)-function, p refines A and p is stacked
over m. Let a > {m}. Then the composition g% o M o (B, x id;} is a
T-homotopy which realizes the relation (7).

Adq {8) and {9). These are analogous to relations (8} and (3), respec-
tively. B
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Claim 3. Let v = {I;},c% be the identity multi-net on a space X,
where I, = idx for everya € X. Then the homotopy class {t] associated
to the homotopy class [¢] by the function § is the identity homotopy class
idg, {Iala € X}))

Proof: We must show that for every @ € X there is a b > a, 1{a) such
that

{11} Pt op‘(a)

In order to prove the above statement, observe that we can assume
that the function ¢ : X — X (which corresponds to the function  in the
above description) has the property that the cover £ is a star-refinement
of the cover {p®) () for every a € X, where £ = F and z = i(a).

Let an a € X be given. By construction, we have tfop® 2
P o Beop®.

Since B o p® is st{£)-homotopic to the identity map idx on X and
st(€) refines (p®)~'(7,), there is a 7,-homotopy H with Hy = p® o Bg o p®
and H 1= _‘pa.

Let K be a single-valued continuous function og-close to H. Then
t* o p® is st{cg}-close to Ko and K, is gg-close to p®. It follows that
% o p* and p? are homotopic. Finally, we can use the property (E2) of
the cofinite Cech system X to get a b > g, t{a) such that (11) holds.

Claim 4. For multinets ¢ = {F.} oy : X =Y and ¢ = {Gu}uez' :

Y - Z,
o] o [el} = 6([¥]) o 8([ee])-

Proof: Let x ={H,} : X — Z, where Hy, = Ggu) © Fi((g-(u)})
for every u € Z. Then [x] = [¥]efe] Let ¢ = (9, {¢°}.cv)s

Y= (¥, {¥*},ez)h and x = {x, {X*},ez) be obtained from ¢, ¥, and x
by the above procedure. We must show that x and 4 o ¢ are homotopic.

Since Yoy = (poy, {10 (p""(“)}ueé), this amounts to show that for
every u € Z there is an @ > #, = such that

(12) X¥opl ~ oyt opt,

where t = w o ¥{u), k£ = ¢¥{u), and b= x(u).

Let 2 u € Z be given. In order to prove the above statement, we shall
argue the existence of large enough indices w € Z, z€ Y, and a € X
such that

(13) Xuopga:%‘r“oH;OBgopg
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(14) r o H,oBgopl & r* o H, o B,,
(15) o Hy 0o B, g_‘“‘ r* oGy oF, 0By,
(16} roGyoF, 0B, ﬁ"_"“ oG, 0 F, 0By,
(17} rtoG,cF. 0B, ﬁ_N“ rtolf, 0 F,0B,,
(18} o, 0 F, 0B, ?i roG.o0FoB,,
(19) r0G,0F; 0By % r0G.oF, 0B, op,

(20) r“o0G.oF0B,op! S oG, 0Beog o Fy0B, 0p!,

{21) ?‘uOGeOBKngOFiOBTOp;%TUOGeOBNO(pk‘
and
(22) THOGQOB,EOL,Q:C E 'gl';“O{pkopZ;

where o =@, o = x*{(u), B =b, y = ¥(u), e = ¥*(u), i = p*(k), 7 =1,
& = k&, and a,, and 8, are covers of Z,, analogous to covers o, and 7. of
Y., respectively.

(Once we have the relations {13)—(22), we approximate each of the 3,-
homotopies by an a,,-close homotopy and conclude from here as in the
proof of Claim 1 that (12) holds.

Add (13) and (22). This follows from the fact that x* and ¥* are
a,-close to functions r* o Hy o By and r* o G, o By, respectively.

Add (21). Gbserve that r* o G, is a (&, o, )-function, B,; is a (%, &)-
function, the cover o}, refines the cover #;, and the map " is ox-close to
the composition ¢* ¢ F} o B,, where *; denotes the normal cover of Yi
by the open stars of all vertices.

Add (14). Notice that r™ o H, is a (3, 3, )-function and B, £ Bzopt
for every @ > b.
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Add (15). Recall that H; = G, o F;, where s = f{{g*(z)}). Since
r* oGy is a (g*(z), B, )-function, it suffices to take z > s because then
F, and F, are joined by the g*{u)-homotopy L so that the composi-
tion 0 Gy 0 L o (B, x idy) will be a 8,-homotopy which realizes (15)
whenever a is sufficiently large.

Add (18). Let w > y. Then G, and G,, are joined by a £-homotopy
M, where £ = Z. But, the cover £ refines the cover v, = (v*)~1(8,). It
follows that v o M is a §,-homotopy joining ¥ o G, and r* o G,,. Since
for every normal cover A of ¥ we can find indices o and z such that the
composition F; o B, is a A-small function, it is ¢lear that there are indices
z and a such that 7 o M o (F, o B, x td;) realizes the relation (16).

Add (17). Let w > e. Then G, and G, are joined by a 7y,-small
homotopy N. As in the proof of (16}, we get the existence of large
enough indices z and a such that v o N o (F, 0 B, x id;) realizes the
relation (17).

Add (18). Observe that G, is a2 (&, ¥, )-function. Also, we can always
assume that the cover £, was selected so that it refines the cover &.
Then for z > 1 the functions F, and F; are joined by the £.-homotopy
P. Hence, for a large index o, the composition v* o G, o o (B, X id;)
realizes the relation {18).

Add (19). The argument for this relation is similar to the one given
for the relation (14).

Add (20). Notice that v oG, is a (y, 7, )-function, where g is
a normal cover of ¥ such that st(x) refines p. Also, there is a
(%, stix))-homotopy R joining idx with the composition B, c ¢*. Once
again, if we choose the cover £, so that it refines the cover k, then
r* oG, o0Ro{F; 0B, op, xid;) will be a B,-homotopy that realizes the
relation (20). W

Claim 5. @ is a functor and the relation S = 6 o J holds.

Proof: That @ is a functor follows from the Claims 3 and 4. It remains
toseethat S =00 .J. Let f: X — Y be a map, i. e., a morphism of the
category Top. Then J(f) is represented by a multi-net ¢ = {F.} ¢ :
X — Y, where F, = f for every ¢ € Y. It follows that f0 J(§) is
represented by a morphism ¢ = (p, {¢°}cy) between inverse systems
X and Y, where ° is a map which is o.-¢lose to ¢° o f o B, for a suitable
index @ € X and the cover o = & of X. We shall now prove that

(23) @ op® = g% f.
Observe that
(24) ¢ op” E g0 foBgop”.
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But, B, op® is a-close to idx. Hence, had we chosen o so that o
refines the cover (¢°o )~ (o), we would get

(25) g0 foBaop® Eg°of.
From (24) and {25) it follows that ¢° ¢ p* and ¢° o f are st{s.)-close and
we get the relation (23).

In order to conclude now that S(f) = § o J{f) we must recall (see [4]}
that S{f) is a unique morphism f such that qo f= fop. B

We shall now prove that § is a category isomorphism by constructing
for every pair of objects X and Y of the shape category 2 function

§: Morsa(X,Y) - Moryu(X,Y)
such that §o{ = id and { 0 & = id.

6. Preliminaries for the description of the functor ¢
Factorization through canonical mappings.

Lemma 5. Let X be an arbitrary space, let Y be o polyhedron (en-
dowed with the CW topology), let & be an open covering of Y, and let
F: X =Y be a map. Then there ezist @ normal cover 7 of X such
that for every normal cover p of X which refines T there ezist a may
.k |N{g}| = Y with the following properties:

(i} For any canonical map p: X — |N(p)| the maps kop and [ are
o-close.
{(ii) Each R € p admils an Sp € ¢ such that

(a) k(*QR) C Sg, and
{b) f(R) C S&.

Proof: Let § € o*. By [4], there is an ANR space M and maps u :
Y — M and d: M — Y such that

(26) dou Z idy.

Let 8 =d '{(8). Let h =uo f. By Lemma 2 on p. 316 of [4], there is
a normal cover 7 of X and a map g : |N{r)| - M with the following
properties:

(i"} For any canonical map 7 : X — |N(7)| the maps gor and h are

F-close,

(ii" Each T € 7 admits a By €  such that

() g(xT} C Sr,and

{b" K(T) C St.
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Let g € X be a refinement of 7 and let ¢ : [N{g)| — |N(7)| be a simplicial
projection mapping induced by the selection of & member v(R) of 7 with
R C v{R) for every member Rof p. Let k =dogogq.

In order to check {i}, let p : X — |N{g)| be a canonical map. By
Theorem 6 on p. 326 of [4], the composition r = g o p is also a canonical
map. By (i’}, the maps gor and h are F-close. Composing with the
map d we see that kop and douo f are §-close. But, by (26), douo f
is 6-close to fsothat f Z kop.

Finally, to verify (ii), let R € g. By (i’), there is a D,y € & such
that

() ¢(:+™) C d7Dy(my), and

{(d) R(¥(R) C d™H{Dy(my).
For each R € p choose an Sp € & such that Sy contains the star
st{Dyry, 8} of D,(py with respect to the cover §. Then

k(xg) =dogoq(xF) C dog(»¥'®y C D,p) C Sr.

On the other hand, from (d') we get douo f(R) C D,py for every
R € g. But, by (26), for each y € f(R), some member of § contains both
y and d o u{y). Hence, f{R) C Sg. A

Hooked and small implies homotopic.

The following notion and lemma are from (2]. Let ¢ be a normal cover
of a space Y. Two multi-valued functions F, G : X — Y are o-hooked
provided for every z € X there is an S, € o such that S, has non-empty
intersection with both F(z} and G(z). Observe that o-close muiti-valued
functions are o-hooked.

Lemma 6. Let F, G : X — Y be mudti-valued functions and let o
be a normal cover of Y. If F and G are o-small and o-hooked, then
st{o)

F ~ G.

7. Description of the functor ¢

Let f = (f, { f° }.cy) be & morphism between cofinite Cech systems X
and ) associated to spaces X and Y, respectively. For every c € ¥, define
a multi-valued function f, : X — Y to be the composition B, o f¢op®,
where <y denotes the normal cover Z and z = f(c). Let f = {fc} .y
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Claim 6. The family f is @ multi-net from X into Y.

Proof Let a ¢ € ¥ be given. We must find an index ¢ € Y such that
(27) fo = fy for every d > ¢

Let 7 € ¢*?. Put ¢ = {7}. Let d > c. Since f 1s a morphism between
A and ¥, there is an index @ > z, ¥ and a homotopy H with
(28) Ho = fGop] and Hi=gjof%opl,
where 7 = f{c) and y = f(d). Morcover, there are homotopies G and K
with
(29)  Go=p*, Gi=piop’, Ko=pfop*,  Ki=p"

Let vy = Zand § = d. Let L be a -homotopy joining By ogf and
B (for this see Lemma 3). The compositions 4 = B, o f°a G, C =
Lo(ffopYop® xids), B=B,0Ho(p® xid;), and D = Bso fPo K
are T-homotopies such that f. = 4y, 4 = By, By = (. €1 = Dy, and
Dy = fy. Hence, fo = fy. W

Now we can define the function { by the rule {{[f]) = (7]

Claim 7. The function ( is well-defined, i. e., the volue {([f]) does
not depend on the choice of the representative f of the equivalence class

sl

Proof: Let g = (g, {¢°}.cp) be another morphism from X into Y
equivalent to f and let § = {¢.} ..y be a multi-net constructed from g

by the above procedure We must show that f and g are homotopic, 1.
e., that for every ¢ € ¥ there is an index ¢ € ¥ such that

(30 fi % ga for every d > .

Let a o € ¥V begiven. Let 7 € ¢”. Pute={7} € Y. Let d > ¢
Since morphisms f and g are equivalent, there is an index ¢ > 2, y and
a homotopy H with

(31} Ho=f%op® and H,=g%0pl.
Moreover, there are homotopies G and K with
{31) Go=p°, Ci=plop*, Ky=plop® and K,=
where z = f{d) and y = g(d). Let § = d.
The compositions A = Bso f0 G, B=Bso Ho(p* xid;), and C =

By og‘i o K are T»homotopies such that fy = Ag, 41 = By, By = Cy,
and C; = g4. Hence, fy4 = gq- 1
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8. Verification that ¢ is an inverse of ¢

Claim 8. For every morphism f = (f, {f}.cv}: X — ¥V we hove
[f] =8 L{l£])-

Proof: Let ({[£]) =[], where v = {fc},ey: fo = Byo fCop®, v =7,
and x = fic) for every ¢ € Y. Let

8(C((F1)) = 8(le]) = (o, {¢°}ecy )]s

where ¢° is a map which is o.-close to ¢° o fy 0 B, b = ¢*(c), e = p(c),
and & = €. Hence, ¢° is a map which is ¢.-close to ¢° 0o Bg o f® 0o p% 0 B,,
where 8 = b and d = f(b).

Let us apply Lemma S mthecase X =Y, M =Y, c =1, and h = ¢°
to get a cover y. of ¥ such that for every refinement g of u, there exist
a map g5 : |[N(g)| — Y. with the following properties:

(32) For any canonical map p: Y — |N{g}j the maps g o p and ¢° are
Te-close,
{33) Each R € ¢ admits a Tp € 7, such that gi(x%) C Tr and
g°(R} C Tr.
Without loss of generality, we can assume that the function ¢* also
satisfics the condition ¢*(c) > {p.} for every ¢ € Y. By assumption,
there is a2 map gf : Y3 — Y, such that

(34) ¢ Zgpog,

and each R € f admits a Tp € 7. such that gf(+f} C Tr and
¢°(R) C Tg. But, the function Bg satisfies B,g(*g) C Rforevery He 3
so that both gf{+%) and ¢¢ Bg(#) are contained in T for every R € 8.
It follows that gf and ¢° o Bg are {sg, 7.)-close. This means that by se-
lecting the function ¢ carefully, we can achieve that the map B, is small
encugh so that

{(35) gioffop?oB, Z¢coBso fPopeB,.

Now we can apply Lemma 5 again, this time in the case X = X,
M = X4, 0 = &, where . = (g0 f*} "), and h = p% to get a
cover ¥, of X such that for every refinement g of v, there exist a map
he - |N{g)| — X4 with the following propertics:

(36) For any canonical map p : X — |N{g)| the maps h?op and p®

are rc.-close.

(37) Bach R € ¢ admits a Kg € k. such that h%(=5) C Kp and

Pd(R) C Kpg.
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Without loss of generality, we can assume that the function ¢ also
satisfies the condition @{c) > {v.} for every ¢ € Y. Recall that e = ¢(c).
By assumption, there is a map k% : X, — Xy such that

(38) p? E Riop”,

and each £ € ¢ admits & Kg € &, such that hg(*f) C Kg and
p*(E} C Kg. But, the function B, satisfies B, (+F} C Eforevery E€ ¢
so that both R%(+F) and p? o B.(xE) are subsets of K for every E c ¢.
It follows that hg' and p? o B, are x.-close. Hence,

(39) goffoploB, Egfoflohl.

Since 7, € ¢}, the relations (35) and (39) give that the map gf o f% o k¢
is g.~close to the composition ¢g°o Bgo fb op®o B,. Therefore, we can
take g§ o f® o h? as the map ¢°.

It remains to see that the morphisms f and (i, {¢°}.c¢) are equive-
lent, i. e., that for every c € Y thereisan a > e, x such that

(40) feors =~ g5o fPohg o,
The relations (38) and (34) imply

(41) ghofPohfop® = giofop?,
and

(42) ¢~ gfog”.

_From the relation (42} and the property {E2)} for the expansion q, we
get the existence of an index ¢ > b, ¢ with

(43) ¢ = gfog.

On the other hand, since f is a morphism, we have

(44) fPop® = gtofiop,

where y = f{i). Thus,

(48)  giofor’ ~ gogoflopt = gfofiopt & fPopt.

It follows from {41) and (45} that fCop® = gfo f2o Ao p®. Now, we
can use the property (E2) for the expansion p to get an index a such
that {40} holds. &
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Claim 8. For every multi-net ¢ = {F,} : X — Y we have

¢ o 8{[¢]) = [¢l.

Proof: Let &{lp]) = {0, {¢°}cep )], where ¢° : X oy — Y, is a map
such that

se¥

(46} W E¢o Fpuieyo BHT:')" for every c€ Y.

Then { o 8{[¢]) = (@), where § = {@.} .y is 2 multi-net from X into ¥
and @, = Bz o ¢ 0 p¥() for every ¢ € Y.

We must show that multi-nets ¢ and @ are homotopic, 1. e., that for
every g € Y there is a ¢ € Y such that

(47) Fy Xy for every d > c.

Let a o € Y be given. Let 7 € ¢*3. Since ¢ is a multi-net there is a
¢ > {7} such that

(48) F. %~ F; foralle d>ec.

Let d > ¢. Let § = d. Since By is a (*s, 8)-function and o, refines #3,
from {46) we get

(49) ‘Pd;BéequFmoBvopna

where m = p*(d), n = {d), and ¥ = 7. Also, 4 is a T-small function
while the right hand side of (49} is a 7-small function provided we make
sure that the functions ¢* and ¢ increase sufficiently fast (so that m > ¢
and v is such that F,, is a (¥, 7)-function). It follows from Lemma 6
that

t
(50) Yd ‘9,(_:) BéoqdoFmoBuopn'

Since the composition Bs o g? is (8, st{§))-homotopic to the idx, we
see again that by a careful selection of functions ¢* and ¢, we can achieve
that
(51} Bsog®oF,oB,op® St’(;:'r) F,oB,op"

Since m > ¢, there is a normal cover A of X such that F,, is a (), 7)-
function. Hence, if we require in addition that st(v) refines A, then

(52) FpoB,op" &~ Fp,

because B, o p™ is st{v}-homotopic to the idx.
Finally, since m, d > ¢ from (48} we get

(53) Fr = Fy.
The relations (50)—{53) together imply the relation {47). &
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