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Abstract

MINIMAL RESOLUTIONS
AND OTHER MINIMAL MODELS

AGUSTÍ RoIG

In many situations, minimal models are used as representatives
of homotopy types. In this paper we state this fact as an equiv-
alence of categories . This equivalence follows from an axiomatic
definition of minimal objects . We see that this definition includes
examples such as minimal resolutions of Eilenberg-Nakayama-
Tate, minimal fiber spaces of Kan and A-minimal A-extensions
of Halperin . For the first one, this is done by generalizing the
construction of minimal resolutions of modules to complexes. The
others follow by a caracterization of minimal objects in bifibred
categories .

Introduction

Minimal models appear in different situations as representative of ho-
motopy types . We claim that this is an intrinsic property of those objects
called "minimal", and does not depend on the particular construction
employed in each category . To this end, we propose an axiomatic defini-
tion of minimality, inspired by the definition of minimal (R, r)-algebras
of [H-TI . Our result is that the homotopy category of a model category
and the category of its minimal objects and homotopy classes of maps
are equivalent (Theorem 1.17) .
We also prove that our axiomatic definition produces the objects that

are commonly known as "minimals" . In particular, we see that the min-
imal resolutions of Eilenberg-Nakayama-Tate are minimal objects of a
category of cochain complexes . This is done by generalizing the construc-
tion of these minimal resolutions of modules to complexes ; Le ., graded
modules with differential (Theoem 2 .4 and 2 .5) . We also verify that
minimal fibre spaces of [Kan] and A-minimal A-extensions of [Hal] are
minimal objects of bifibred categories (see [Roigl]) in terms of our def-
inition (Theorem 3.2) . Other examples may be found in [Roig2] and
[Roig3] .
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1 . Minimal objects and the homotopy category

Let C be a category and S C mor C a class of morphisms of C . We will
often denote the fact that a morphism s : a --> b of C is in S by s : a -> b
and we will loosely say that s is a S-quasi-isomorphism (quism) and a is
S-quasi-isomorphic to b. We will also say that a is a S-left model for b
or that b is a S-right model for a .

Definition 1 .1 . An object m of C is S-left minimal if, for all s
x -3 m E S, there exists a section s' : m - x ; Le ., ss' = 1�v . A S-left
minimal model of an object a E obj C is a S-left model m --> a with m a
left minimal object .

By inverting arrows in the previous definition we have the notions of
S-right minimal object and S-right minimal model (see [Roig3]) . From
now en we suppose that the class S is fixed for every category and con-
sider only the "left part" of the theory, unless otherwise stated . So we
will simply say minimal object, model and minimal model. The relativo
version of definition 1.1 is the following (cf. [B-G], [Hall and [H-T]) :
let C be a category, a an object of C and S C mor C . Let a\S be the
class of morphisms of the category of objects under a, a\C, made up by
the commutative triangles of C

in which s E S.

Hypothesis 1 .3 .

c

a

b

Definition 1 .2 . A morphism a --> b of C is a minimal morphism if it
is a a\S-minimal object of a\C .

For the first results, it is necessary that the class S verifies the

(i) isomorphisms of C are in S, and
(ii) if in the diagram of C, x ~ y ~ z, two of the morphisms {f, g, gf}

are in S, then so is the third .



then

MINIMAL RESOLUTIONS AND OTHER MINIMAL MODELS

	

287

These hypothesis are fulfilled if, for instante, C is a model category
and S = we is the class of its weak equivalentes or if S is the class of
morphisms made invertible by soma functor H : C --> D. Then we can
easily prove (see [Roig3]) .

Proposition 1.4 . If m and n are minimal objects and s : m --> n is
a quism, then s is an isomorphism.

Definition 1.5 . Let C be a category with an initial object e. An
object x of C is acyclic if it is quasi-isomorphic to e.

Corollary . An object x of C is minimal and acyclic if and only if it
is initial .

Proof: An initial object e is always minimal and, since 1, is in S by
1 .3(i), it is also acyclic . On the other hand if x is minimal and acyclic
there is a morphism in S x -e which is, by 1 .4, an isomorphism .
The following is a useful criterium for minimality.

Proposition 1 .6 . If C admits a class of objects M such that :
(a) every object has a model in M, and
(b) every morphism of S between objects ofM is an isomorphism,

(1) the objects ofM are minimal, and
(2) every minimal object of C is isomorphic to an object of M.

Proof..- See [Roig3] .

Definition 1 .7 . If C has a class of objects M that fulfiles conditions
(a) and (b) of Proposition 1 .6, we will say that C has enough minimals .

We will denote by HoC the homotopy category; Le., the category ob-
tained from C by adjoining the inversas of the morphisms in S (see [Qui]) .
It is also callad the localizad category, CS ([G-Z]), or the derived category,
in the case where C is the category of complexes of an abelian category
([Hart]) . If two objects of C are isomorphic in HoC they are said "to
have the same homotopy type" . For the moment we will assume also

Hypothesis 1.8 . S admits a calculus of right fractions .

This is the case when D is a model category with only fibrant objects,
C = 7rD being the category obtained identifying homotopy maps of
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D and S C mor C being the image of the weak equivalences of D by
the projection functor D -- irD . We will develop our results under
hypothesis 1 .8 and then restate them "up to homotopy" for a model
category . Finally, in our particular examples, all objects will be fibrant .
When S admits a calculus of right fractions, the morphisms of Ho C

from a to b can be represented by sequences or morphisms of C as

a+�1- ----> b

and the isomorphisms are exactly those sequences where both morphisms
of (1) are in S . Then, with this hypothesis, two minimal objects of C
which are isomorphic in HoC are necessarily isomorphic in C : If in (1)
a and b are minimal, we have a section of a <- - which is in S by (i)
and (ii) of 1.3 . Hence, its composition with - -> b is also in S . Thus we
have a quism between minimal objects which, by 1 .4, is an isomorphism .
Therefore, homotopy types become isomorphism classes when we use
minimal objects . We are going to state this fact as an equivalence of
categories . To begin with, we have a lifting property.

Proposition 1.9 . Let p : a => b E S _and f : m -> b a morp_hism with
m minimal. Then there exists a unique f : m -> a such that pf = f.

Proof.- Because of the properties of the calculus of fractions, for every
diagram in C,

a

there exists morphisms p' : x => m and f' : x --> a such thhat pf ' = fp' .
Thnhen, as m is minimal, p' has a section s : m -~ x . Take f = f's and so
Pf = Pf,s = fp,s = f .
_Secondly, let g : m ---> a be another morphism such that pg = f . Then
pf = pg . But p E S, and so_, by the calculus of fractions, there exists
r : z --> m E S such that fr = gr and because m is m_inima_l, this
morphism has a section s : m --> z, rs = 1 �, . So g = grs = frs = f.

Corollary . Two minimal models of an object a are isomorphic by a
unique isomorphism of C/a .

The next proposition will allow us to define the "minimal model func-
tor", when we have enough minimals .
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Proposition 1 .10 . Let f : a -> b be a morphism of C and Pa : ma
a and Pb : mb - b two minimal models . Then there exists a unique
morphism mf : ma -> mb, that renders commutative the diagram

ma
Pa->a

fl

b

Proof. Applying the calculus of fractions two times, we have a com-
mutative diagram

y -------> x--,mb
Pa

	

f'
Pb

	

-1 P,,

	

-IPb

Pa

	

f

So, by the minimality of ma, we have s : ma -> y such that pes = 1�,,a .
We let mf = f'p' s and have pbmf = Pbf'P' S = fP6Pá s = fPaPbs = fPa-

Let cp : ma -` mb be another morphism that makes commutative
diagram (2) : PbW = fPa = pbmf . Then, because Pb E S, by the calculus
of fractions, there exists r : z -> ma E S such that cpr = mfr and,
because 'ma is minimal, we have a section s : ma -+ z of r.

	

So, cp =
cprs = mfrs =Mf .

Remark 1.11 . mf is not necessarily the minimal model of f in the
sense of definition 1 .2 . For instante, unless a is a minimal object, mf
needs not to be an object of a\C .

We have not assumed yet the existente of a minimal model for every
object . Let us suppose now that C has enough minimals : for every
a E obj C, we choose a minimal model which will be denoted by Pa
M(a) -> a. Let us also note by C, (or Cmin when we will talk about
bifibred categories) the full subcategory of minimal objects . Then we
have

Corollary . The choice of a minimal model defines a functor

M:C->C',

by M(a) =ma and M(f) = mf ; and a morphism of functors

p :M -~ 1C
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byp. :m a ~a.

Proof. Although there are different choices for M(a) and M(f), the
unicity of Propositions 1.9 and 1.10 makes the correspondence functo-
rial .

FYom what we have seen, it is clear that the functor M carries mor-
phisms of S into isomorphisms of Cm. In fact, if in (2) f E S, then
fpa : ma ~ b is a minimal model of b. Hence, there exists an isomor-
phism of C/b, cp : ma `mb, which, because of the uniqueness is equal to
mf . Therefore, M factorizes in a unique fashion through the localization
functor ,y : C --> Cs . That is to say, we have the commutative diagram of
functors

M

es
We will note also by M this factorization and call it the minimal model
functor.

Theorem 1 .12 .

	

The functor M : Cs --> Cm is an equivalente of cat-
egories.

Proof. Let c : Cm -> CS be the composition of the inclusion Cm - C
and the localization C --> Cs . We will show that c is an equivalente,
quasi-inverse of M, by defining isomorphisms rt : lcm ---> Mt and s
¿M ---> lc, Let m be minimal . Then, by corollary of Proposition 1 .9,
there exists an isomorphism ?7m : m -> Mt(m) . On the other hand,
define Ea : ¿M(a) --> a as the isomorphism in Cs induced by the choice
in C of the minimal model of a, M(a) --> a. It is easy to check that these
definitions are natural in m and a, respectively .
Remark 1.13 . We can easily dualize the previous results taking into

account that Hypothesis 1 .3 are self-duals and replacing the existente of
calculus of right fractions by that of left fractions .

As we have said, the existente of a calculus of right fractions is fullfiled
if we are working in a model category. So, from now on, we will assume,
instead of Hypothesis 1 .3 and 1 .8,

Hypothesis 1.14 . C is a model category, S = we is the class of its
weak equivalentes and all the objects of C are fibrant .

Let us recall that, as a consequence, we have properties (i) and (ii)
of Hypothesis 1.3 and a calculus of fractions in 7rC. To begin with the
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translation of previous results in this setting, we have a relative version
of 1 .9 .

Proposition 1 .15 . Let

be a commutative diagram of C in which a is a minimal object and i
is a minimal morphism . Then, if p is a weak equivalente, there exists
~3 : b ~ x, unique up to homotopies, such that p,C - ,0 and bi - a.

Proof. Let ús factorize p in a cofibration j : x -> z and a fibration
q : z --> y, both trivial ones . Take the pull-back of ~3 and q :

q~

b

r

Trivial fibrations are stable under pull-backs, so q' is a trivial fibration,
which we can consider a trivial fibration of a\C from the morphism in-
duced by ja and i, y : a ---> c, to i . But i is a minimal morphism, so
there exists s : b , c such that q's = 16 and si = y . On the other hand,
j is a trivial cofibratrion: so it has a homotopic inverse r : z --> x . Then,

r,Q's is the lifting we are looking for : ,Qi = rlo'si = r~3'-y = rja - a
and pR = qjr,C's - qO's = ,Cq's = 0 .
The uniqueness up to homotopy of /b is also an easy verification .

Corollary 1 . Let p : a Z b E we and f _: m --> b be a morphism
with m a minimal objec_t . Then there exists f : m -> a, unique up to
homotopies, such that pf - f .

Proof.. Take a = e in the previous proposition .

Corollary 2 . Two minimal models of a E C are isomorphic .

	

The
isomorphism is unique up to homotopies of C/a .

The rest of the results admit analogous modifications .
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Proposition 1 .16 . Letf : a -> b be a morphism of C and pa :ma -> a
and pb : mb -> b two minimal models . Then there exists a morphism
mf : ma ` mb, unique up to homotopies, that renders commutative up
to homotopy the diagram

byp. :ma -+a.

ma
Pa . a

Let us assume that C has enough minimals . Civen a E obj C, let us
choose a minimal model : pa : M(a) -> a. Since previous results are
stated "up to homotopy", the correspondence a H M(a) is not neces-
sarily functorial and the weak equivalentes Pa do not necessarely define
a morphism of functors M -> lc . Nevertheless, we have a well-defined
functor and a morphism of functors if we take as target the category
7rC,,, which has as objects the minimal ones of C and as morphisms the
homotopy classes of morphisms of C .

Corollary . The choice of a minimal model defines a functor

M :C-+7rC,,,

by M(a) = ma and M(f) = mf, and a morphism offunctors

P :M---> l,c

We also have a unique factorization of M through the localization
functor and Theorem 1.12 now reads :

Theorem 1.17 . The functor M : HoC --> 7rC�,, is an equivalente of
categories .

Remarks 1.18 . (1) All the above facts are independent of the classes
of fibrations and cofibrations we choose . So, for a given class of weak
equivalentes, all the possible model structures share one class of cofibrant
objects in common, if they exist : the minimal ones .

(2) The last theorem could also be deduced from the fact that minimal
morphisms are necessarily cofibrations (in a closed model category, at
least) and then applying [Qui, Theorem 1', Section 1, chapter I], taking
into account that we do not need all the cofibrant objects, but only one
representative for each homotopy type (for instante, a minimal one) .

(3) In order to dualize previous results, we need only to substitute
cofibration for fibration and vice-versa .
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2. Minimal resolutions of complexes

Let R be a unitary commutative ring. A R-dg module is a graded
module M with a differential of degree +1 ; Le ., a cochain complex. Let us
take as S the class of quasi-isomorphisms ; that is to say, the morphisms
which induce an isomorphism in cohomology. Before we restrict ourselves
to local rings, let us examine some examples produced by our definition .

Proposition 2.1 . Let M be a R-dg module with zero diferential.
Then M is minimal if and only if Mi is a projective module for each i .

Proof.. LetM be a cochain complex, with a projective module in each
degree, zero differential and X => M a quism. Then, for every i, we can
choose a section of Z'X , H'X = Mi . These give us a morphism of
R-dg modules M --> X which is a section of the quism above.

Reciprocaly, assume that M is minimal and let f : X --> M i be an
epimorphism of R-modules . Consider the morphism of R-dg modules

. . .

	

> Mi-2

	

o

	

->Mi-1 ® kerf (o~j) X

	

o-~Mi+l es . . .

11

	

1(1 0)

	

J-f

	

11

> Mi-20

	

Mi-1

	

---- 0 -----> Mi

	

°

	

--> Mi+l

(where the horizontal arrows are the differentials and j : ker f y X
is the inclusion) . Obviously, it is a quism and, since M is minimal, it
has a section. In particular, f has a section and so Mi is a projective
R-module .

Corollary. Let M be a R-module, considered as a homogeneous dg
module with zero differential. Then M is minimal if and only if it is
projective .

Proposition 2.2 . Let M be a R-dg module such that HiM is a pro-
jective R-module for each i . Then HM is a minimal model ofM.

Proof. Let ZiM - HiM be the natural projection and si : HiM ->
ZiM a section. Then s = (si) : HM -> M is a quism of R-dg modules
and so HM is a model for M. Because of Proposition 2.1 it is a minimal
model.

Corollary 1. If R has zero global dimension, then :
(1) Every R-dg module has a minimal model .
(2) M is minimal if and only ifM has zero differential .
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Corollary 2 . If HZM is projective for each i, then

TorR(M, N) = HM ®R HN

This is the case, for instante, if R is a semi-simple ring (e.g ., a field
or a group algebra k[G], where G is a finite abelian group and the char-
acteristic of k does not divide the order of G) . Apart from this, min-
imal projective resolutions of modules are known to exist when R is a
noetherian local ring ([Eil], [Tate]) . We are going to show that these
resolutions are minimal objects of an appropiate category of dg modules .
To do this we will generalize the construction of minimal resolutions in
order to obtain models of graded modules with differential. So, let R be
a noetherian local ring, m its maximal ideal and k = R/m its residue
field .

Definition 2.3 . We will say that M is a ENT-minimal complex if
(1) Mi is a free R-module for every i, and
(2) dM C mM.

For instante, if we have
. . .~M-2-,M-1 ~ Me~X---> 0

with X a R-module and M a ENT-minimal complex acyclic except in
dimension zero which is H°M - X, then M is a minimal resolution of
the R-module X in the sense of [Ml] and [Tate] . This kind of projective
resolutions have the property that M ®R k has zero differential . Hence
TorR(k, k) = Mi/mMi .
The following theorems show, in particular, that in the category

Mdgfg(R), of R-dg modules bounded above and finitely generated in
each degree, the ENT-minimal complexes are the minimal objects in the
sense of our Definition 1.1 .

Theorem 2.4 . Let f : L --> M be a quism between ENT-minimal
complexes bounded aboye and finitely generated in each degree . Then f
is an isomorphism .

Theorem 2.5 . Each R-dg module with bounded aboye and finite type
cohomology has a ENT-minimal model bounded aboye and finitely gen-
erated in each degree .

Corollary 1. ENT-minimal "complexes are the minimal objects of
Mdgfg (R) .

Proof.. This follows from the previous theorems and Proposition 1.6 .
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Corollary 2. The inclusion Mdgf9(R),, y Mdgfg(R) induces an
equivalente of categories

Proof. This follows from the previous corollary and Theorem 1.17 .
Remark 2 .6 . The hypothesis of bounded cohomology is not enough

for Theorem 2.4, as may be seen in the next example .

Example 2.7 . Consider the unbounded complex of Z/(4)-modules

. . . -, Z/(4)

	

Z/(4) ?, Z/(4 ) -~ . . .

It is ENT-minimal and acyclic (so it has bounded cohomology), but it is
not isomorphic to the null complex (cf. Corollary to 1 .4) .

Proof of Theorem 2.4 : The proof is not the same as that of the com-
parison theorem for minimal resolutions because our complexes are not
acyclic (see [Mat]) .
We may assume that Li = Mi = 0 for every i > 0 . By hypothesis, in

the diagram

L°

	

> L°/BOL -, L°/mL°

1 f o

	

1fo

M°

	

, M°/B°M

the middle column is an isomorphism of R-modules and, as a conse-
quence, the right one f° = f° ®R k = f° ®R k, is an isomorphism of
finite dimensional k-vectorial spaces . L° and M° are free and finitely
generated, so f° is defined by a square matrix T with det T 1 m. Hence
f° is an isomorphism .
For fi with i G 0, showing that

7rMdgf9 (R)-�,. = Ho Mdgf9 (R)

Mi

fo

M°/MM°

>0
is a quism and applying the argument employed for i = 0, enables us to
conclude that f Z is an isomorphism of R-modules . Let us assume that :
(a)i+1 fi+1 : Li+1 -, M'+1 , and
(b);+1 f+1 : Li+1/Bi+1L -, Má+1/Bi+1M
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are isomorphisms of R-modules . In degrees j < i, Hif is an isomorphism
by hypothesis . In degree i, cae have the exact sequences

0 , H'L -> LilBi,L

	

: Li1Z iL ; 0

0

0 i B'+1M

> H'M , M'IB'M , M'IZ'M , 0

The first column is an isomorphism of R-modules by hypothesis. The
third one is nothing but f'+1 : B'+1L -> Bi+1M. Hence, cae only need
to check that f'++1L is and isomorphism . And this follows from the
diagram

0

	

. B'+1L	->L'+1

	

-> L'+1/Bi+1L

	

0

1P+1

	

1P+1
> Mi+1

	

. Mi+1/B'+1

in which rocas are exact and the second and the third columns are iso-
morphisms by hypothesis .

Proof of the Theorem 2.5: Let X be a R-dg module with bounded
above and finite type cohomology. We may ássume, for instante, H'X =
0 for all i > 0 . Then the subcomplex T<-1X �+ X

Xi ifi<0
(T<_ 1 X) i =

	

Z°X

	

if i = 0
{O ifi>0

is quasi-isomorphic to X and bounded above itself . Hence, cae may
assume that X' = 0 for all i > 0 . We will make use of the following
lemma in our construction of the ENT-minimal model of X (see [Mat]) :

Lemma. Let X be a finitely generated R-module, L a free R-module
over a minimal base of X and e : L --> X the canonical morphism . Then
ker e C mL .

Let M° be a free R-module over a minimal base of H°X and e : M° -3
H°X the canonical morphism . We define M(0) to be the R-dg module

M(0)i = M° ifi=0
0 otherwise
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Then, the morphism of complexes s(0) : M(0) -> X,

> 0

	

) 0

where so : Mo ~ Z°X is a lifting of e, verifies :
(a)o M(0) is ENT-minimal and finitely generated in each degree,
(b)o s; is an isomorphism for every i > 0 and an epimorphism for

i = 0, and
(c)o ker s° C mM°, because of the lemma .
Assume we have constructed a R-dg module M(p+1) = {Mi}, Mi = 0

for i < p + 1 and a morphism of R-dg modules s(p + 1) : M(p + 1) ->
X, s(p + 1) = {si,}, s i = 0 for i < p + 1,

0

	

--., 0 ;Mp+1

	

dP+1
-->

Mp+2

.

	

> Xp-1

	

d

	

> Xp d> Xp+1

	

d

	

>
Xp+2

in such a way that

(a)p+1
(b)p+1

(c)p+1

Then, take

M(p + 1) is ENT-minimal and finitely generated in each degree,
s* is an isomorphism for every i > p + 1 and an epimorphism for
i=p+1, and
ker sP+1 C MMp+ 1 .

(1) Lp a free R-module over a minimal base of kersp+1 and s1

Lp - ker s*+1 the canonical morphism . Since Mp+1 and Hp+1X
are finitely generated, and R is noetherian, Lp is also finitely
generated,

(2) dp the composition Lp "'~ kersP+1 y Hp+1M yMp+1
(3) sp : Lp -> Xp a liting of sp+1dp : Lp -> imdp,
(4) L2 a free R-module over a minimal base of coker(sp) * and e2

L2 -> coker(sp) * the canonical morphism, and
(5) s2 : L2 -> ZPX a lifting Of e2 : L2 -> coker(sp)* .
Given (1)-(5), we define the R-dg module M(p) as

mi ifi>p+1
M(p) i =

	

Mp = Lp ®Lz

	

if i = p
0 otherwise
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and the morphism of complexes s(p) : M(p) -> X, as

0 0

. . .

	

Xp-2	d--dP-2

	

Xp-1

	

dP-1

Now, it is straighforward to verify (a)p , (b)p and (c)p . Finally, we take
M = limm(p) .

p

3 . Minimal objects in bifibred categories

A bifibred category is a family of categories parametrized by another
category, together with a pair of functors (direct and reciprocal images)
between the categories of the family, for each morphism of the category
of "parametres" . To fix our ideas, we may think of the category of
modules over any ring . Objects of this category are couples (R, M)
where R is a ring and M a R-module . Morphisms are also couples
(f, cp) : (R, M) - (S, N), where f : R --> S is a morphism of rings
and cp : M --> f*N is a morphism of R-modules . We have an evident
projection functor (R, M) ~--> R, whose "fibre" over R is the category of
R-modules : Mod(R) . Finally, for every morphism of rings f : R ----> S
we have the well-known functors restriction and extension of scalars

f* : Mod(S) ---> Mod(R)

	

and

	

f* : Mod(R) -> Mod(S)

More generally (see [SGA1]),

Definition 3.1 . A bifibred category is a functor

P : A ---> £

together with the following structure :

Lp ® Lp
dP-(dp 0)

>Mp + 1

	

dp
' 1

	

. .
1 2

I SP_(SP 52)

	

SP+1

Xp

	

d 1 Xp+1
dP+1

. . .

(1) For every x E obj £ we call the fibre-category over x the category
Ax whose objects are those a E obj A such that Pa = x and
whose morphisms are those cp E mor A such that PW = 1x .

(2) For every f : x --> y E mor £ and every b EAy we have a cartesian
morphism

bf :a---> b

which is a f-morphisms, Le., P(bf ) = f, determined by the follow-
ing universal property : for every f-morphism w : a' --> b E mor A,
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there exists a unique morphism of A., cp : a' -+ a, such that
bf cp = w . Dually, for every f : x --> y E mor E and every a E Ax
we have a cocartesian morphism

af :a - --> b

which is a f-morphism, such that for every f-morphism B : a
b' E mor A, there exists a unique morphism of Ay ,

	

: b --> b',
such that Oaf = 9 .
In the first case, a is called the reciprocal image of b by f and
denoted by f*b . In the second case, b is called the direct image
of a by f and denoted by f* a . Both f*b and f*a are unique
up to canonical isomorphisms and the definitions are functorial :
if 0 : b -> b' E mor Ay its reciprocal image f*o is the unique
morphism of A., that renders commutative the diagram of A,

f*b'
b'f

bl

f*b bf -> b

Analogously, we can define the direct image of a morphism cp
a' -j a E morA,: . These functors

f * : Ay -~ A~

	

and

	

f* : A~, -> Ay

are subjected to verify the following conditions : for every pair of
morphisms x -f> y -g-> z of E, there are canonical isomorphisms of
functors f*g* = (gf)* and g *f* = (gf) * .

Remark 3 .2 . As an immediate consequence of the definition of carte-
sian morphism, every morphism w : a --> b of A may be factorized in a
morphism of the fibre over Pa and a cartesian morphism . We will call
it the source factorization and denote it by

f*b -'-' -> b
Twf

	

/w
a

where f = Pw. Obviously, there is a dual factorization (the target fac-
torization) which we will not use in this paper (see [Roigl]) .
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Example 3 .3 . Let R be a unitary commutative ring, Adgc(R) the
category of R-dgc algebras and Adgc(R)2 the category of morphisms of
R-dgc algebras . The objects of this category are morphisms a : A , B
of R-dgc algebras and the morphisms commutative squares

B

Af C

of Adgc(R). We take as P the domain functor Adgc(R) 2 -+ Adgc(R)
which sends a to A. Then the fiber categories are the categories of A-
dgc algebras : Adgc(A) = A\Adgc(R) . For each morphism of R-dgc
algebras f : A - C we have a reciprocal image functor and a direct
image functor

f* : Adgc(C) ----> Adgc(A)

	

and

	

f* : Adgc(A) ---> Adgc(C)

defined by f* (l0) = /3f and f* (a) = _ ®1 : C ` C®A B.
The cartesian morphism ,(3f and the cocartesian morphism af are the

commutative squares

D1) D

	

B

	

1®- ) C ®A B

1af=f- (a) 1,3

Afi C

and

C

[Roigl] shows how to endow A with a model structure from given
structures en £ and A., . Nevertheless, in order te talk of minimal objects
in A we only need a class of distinguished morphisms, which we define as
follows : suppose we are given classes S£ C mor £ and S,, C mor A,, for
every x E obj £ in such a way that they are compatible with reciprocal
images ; Le ., for every f : x --> y E mor £, one has f* (S9) C S. . Then,
put

S = {W : a -> b E mor AI Po, E SE and o,Pa E SPQ}

For instance, a cartesian morphism belongs to S if and only if its pro-
jection is in SE, and a fibre-morphism co E mor Ax belongs to S if and
only if it is in S,, . It is clear that this choice of S agrees with that of
weak equivalences made in [Roigl, Theorem 5.1], considering SE and S,,
the weak equivalences of the model categories £ and A.,, respectively. In
particular, if for the category Adgc(R)2 we take SAdgc(R) and SA the
classes of quism of Adgc(R) and Adgc(A), respectively, the morphism
(1) is in S if and only if f and g are quism .
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Theorem 3 .4 . Let m E obj A. Then, m is a minimal object of A if
and only ifm E obj Apm and Pm E £ are minimal objects.

Proof. Let us assume that m is a minimal object of A. Let us show
that it is so in Apm . Let a : a -> m E Spm . Then u E S and, as m is
minimal in A, there exists u' : m ---> a E mor A such that uu' = lm . The
only thing we have to prove is that a' E mor Apm and this follows by
evaluating P on both sides of the last equality, which gives us Po,' = lpm .

Let us see that Pm E obj £ is also a minimal object .

	

Let s : x -->
Pm E S£ . Consider the cartesian morphism ms : s*m -> m. It belongs
to S because P(ms) = s . Then, since m is minimal in A, there exists
p : m --> s*m such that msp = lm . Hence s(Pp) = lpm .

Conversely, let m be a minimal object of Apm, Pm a minimal object
of £ and u : a -> m a morphism of S . Then s = Pa : Pa -> Pm E SE
and, as Pm is minimal, there exists t : Pm --> Pa such that st = lpm .
Let us consider the source factorization of a : o, = m'u' . Then vs E SPa
and so t * (m') : t*a ---> t*s*m = m is in Spm . Because of the minimality
ofm in Apm , this morphism has a section cp : m --> t*a and at (p : m -> a
is a section of a .

Corollary 1 . If for all x E obj £, Ax and £ have enough minimals,
then A has enough minimals .

Proof- Let us build a minimal model for a E obj A: take a minimal
model of Pa, which exists by hypothesis : s : m' -> Pa. Take a minimal
model of s*a in ..4�,, : p : m ---> s*a . Then asp : m --> a is a minimal
model for a in A.

Corollary 2. Let A be endowed with a model category structure such
as in [Roig1, Theorem 5.1] . Assume also that, for every x E obj £, A,
and £ have enough minimals . Then the inclusion Ami,, ---> A induces an
equivalente of categories

7rAmin = HoA

The following result could also be proved for any suitable category of
morphisms directly from the definitions :

Corollary 3 . A morphism of R-dgc algebras f : A -> B is a minimal
object of Adgc(R)2 if and only if A is a minimal R-dgc algebra and f
is a minimal morphism .

Adgc(R)2 has enough minimals, for instante, if we take R a zero
global dimension ring and restrict ourselves to non-negative homologi-
cally connected R-dgc algebras (see [Hal, Chapter 9]) . A minimal model
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for f : A -> B in the category of morphisms is constructed as in Corol-
lary 1 : we take a minimal model for A in Adgc(R), p : MA - A, and
a minimal model for fp : MA -> B in Adgc(MA) ; that is to say, a
commutative triangle of Adgc(R),

f

Referentes

B

where o, is a quism of R-dgc algebras . In [Hal], MA -~ Mfp is called a
A-minimal A-extension .
Dualizing the previous results to right minimal objects and right mod-

els, we see that in the category 0°Set of simplicial sets, taking S to be
the morphisms which induces isomorphisms in all the homotopy groups,
minimal Kan complexes are the minimal objects in terms of (the dual
of) our Definition 1.1 . This follows from (the dual of) our Proposition
1.6 and [May, 9.5 and 9.7] . The same proposition and [May, 10.6, 10.7
and 10 .13], taking into account that we do not peed the deformation
retracts to be strong, show that the minimal Kan fibrations with base B
are the minimal objects of AlSet/B . These results and the dual of our
Theorem 3.2, give us

Corollary 4. Minimal fibre spaces constitute the minimal objects of
(AOSet)2 .

Here, (AOSet)Z is the category of morphisms of simplicial sets, bifibred
with the codomain functor and minimal fibre space means a minimal Kan
fibration p : E --> B with B a minimal Kan complex . This last corollary
could also be deduced from the dual of 1 .6 and [May, 10.11 and 10 .16] .
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