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Abstract

ON THE PERTURBATION PROPAGATION
IN THE INITIAL-BOUNDARY VALUE
PROBLEM FOR QUASILINEAR FIRST

ORDER EQUATIONS

in the domain

with the conditions

Yu. G . RYKOV

The paper deals with initial-boundary value problem for gener-
alized solutions of single quasilinear nonautonomous conservation
law. For the case so-called "processes with aggravation" the local-
ization property and inner boundedness are studied. Also in case
when boundary function tends to zero as t => +oo the localization
effect is regarded .

1 . Introduction

This paper studies generalized solutions of the equations in the form

(1 .1)

	

Lu - ut + [A(t, x, u)],, + B(t, x, u) = H(t, x)

Q={(t,x) :te(0,T), 0<T<+oc, xER+}

u(0, x) = 0,

	

u(t, 0) = ul (t) .

such thatHere

	

A(t, x, u)

	

and

	

B(t, x, u)

	

are

	

continuous

	

functions
A(t, x, 0)

	

=

	

B(t, x, 0)

	

=

	

0; B(t, x, u) is monotonically increasing in
u; A(t, x, u) is continuosly differentiable with respect to u, x ; Au

	

>
0; A(t, 0, u)

	

# 0; Ax (t, x, u) + B(t, x, u)

	

>_ 0; H(t, x) is a measurable
function bounded for bounded t; ul E Cl ([0, T», u, > 0.
The definition of generalized solution and proofs of the existente and

uniqueness theorems can be found in [3], [4], [7], [8] or [10] .
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In Section 2 the definition of generalized solution and comparison the-
orem are given.

In Section 3 we deal with the case when there exists T < +oo such that
ui (T - 0) = +oo. According to the terminology of [1], [5] it corresponds
to the so-called "processes with aggravation" .

Definition 1.1 . One says that localization in the problem (1 .1), (1 .2)
occurs if there exists X > 0 such that u(t, x) - 0 for x >_ X, 0 <_ t <_ T.
One says that localization does not occur if for every sufficiently large
x,k > 0 there exists t* > 0 such that u(t* , x,,) :,~ 0.

In the paper [1] autonomous equations with power nonlinearities and
zero lower order term were studied . There necessary and sufficient cón-
ditions for the occurence of localization and for inner boundedness of
solutions were obtained. In Section 3 we shall study such questions for
arbitrary nonlinearities and in the nonautonomous case .

Section 4 is devoted to localization in the case when ui (t) is defined
for every t E [0, +oo) and may tend to zero as t => +oo.
Some supplementary results on the localization are given in Section 5

for the equation

(1.3)

	

ut +(T - t)p(u'''),, + (T - t)qu, = 0,

	

(t, x) E (0, T) x R+.

There are certain peculiarities of the front behavior in this case .

2 . The definition of generalized solution .
A comparison theorem

Now, let us introduce the notion of generalized solution .
Definition 2.1 . A measurable function u(t, x) bounded for bounded t

is called a generalized solution (abbreviation : g.s .) of the problem (1 .1),
(1 .2) in Q if: 1) for every w(t, x) > 0, w E Có (Q) the inequality

A{lu(t, x) - sjwt + sign(u(t, x) - s) [A(t, x, u(t, x)) - A(t, x, s)]wx-

- sign(u(t, x) - s) [Ax (t, x, s) + B(t, x, u(t, x)) - H(t, x)]w} dt dx > 0

holds, where s = const is arbitrary ; 2) there exists a set El C [0, T],
mes El = 0, such that for t E [0, T)\E,u(t, x) is defined for almost every
x E l[8+ and for every R > 0

R
lim

	

ju(t, x) 1 dx = 0;
0tE [0,T) \El
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3) there exists a set E2 C [0, +oo), mes E2 = 0, such that for x E
[0, +oo)\E2u(t, x) is defined for almost every t E [0, T) and for every
Ti , 0<T, <T,

and the stability condition

llimo o

	

Iu(t, x) - uI (t) I dt = 0 .
c

xE[O,+oo) \E2

Remark 2 .1 . If u(t, x) is a piecewise continuous g.s . of the problem
(1 .1), (1 .2) then Definition 2.1 implies (see [6]) at the line of discontinuity
x = y(t) for u(t, x) the Hugoniot condition

(2.1)

	

y = [A(t, y(t), u+ ) - A(t, y(t), u-)]/(u+ - u-)

(2.2)

	

sign(u+ - u- ) [A(t, y(t), pu- + (1 - p)u+)-

- pA(t, y(t), u) - (1- p)A(t, y(t), u+)1 >- 0

for every t, E (0,1) ; here u- = u(t, y - 0), u+ = u(t, y + 0) .
The existence of g.s . te the problem (1 .1), (1 .2) under various restric-

tions en boundary conditions and initial data was proved, for instance,
in [3], [4], [10] .

Theorem

	

2.1. Suppose h(t, x), g(t, x)

	

are

	

measurable functions
bounded for t _< Ti, where TI < T is arbitrary .

	

Suppose w(t, x) is a
g.s .

	

of the equation Lw = h(t, x) in Q with data w(0, x) = 0, w(t, 0) =
wl(t) E L-([0,T)), and v(t,x) is a g.s .

	

of the equation Lv = g(t,x)
in Q with data v(0,x) = 0, v(t,0) = vi (t)

	

E LOO ([0, T)) .

	

Suppose
wl (t) <_ vi (t) almost everywhere in [0, T) and h(t, x) <_ g(t, x) almost
everywhere in Q . Then w(t, x) < v(t, x) almost everywhere in Q .

For the proof of this theorem similar methods to those of papers [2],
[10] are used . The uniqueness of the g.s . for problem (1 .1), (1 .2) follows
from Theorem 2 .1 .
One denotes below by u(t, x) the g.s . of the problem (1 .1), (1 .2) with

II(t, x) - 0 .

3. Process with aggravation (The case T < +oo)

Theorem 3.1 . Suppose the following conditions hold
1) A(t, x, v)/v < A(t, x, w)/w, 0 < v < w, w E I[8+ ;
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2) A(t, x, v)/v <_ ao(T - t)a(v), v E 1[8 + , a E C' (R+) f1 C(R+ ), ao E
C([0, T)), ao > 0, a(0) = 0, a is increasing;

3) u, (t) < W(1/(T - t)), cp E C([1/T,+oo)), W(11T) = 0, cp is in~
creasing;

4) fo ao(s)a o W(1/s) ds < +oo .

Then localization in the problem (1.1), (1.2) occurs and u(t, x) = 0 for
x > fT t ao(s)a o cp(1/s) ds .

Proof.. Suppose the line x = y(t) is defined by the equations

A(t, x, ul (t))/ul (t),

	

if ul (t) :?É0,
y(t) _ { Au(t,x,0),

	

if u, (t) =0;

with the initial datum y(0) = 0 .

	

Let us set Al(t,x) = u, (t) for 0 <_
x < y(t) and Al (t, x) = 0 for x > y(t) .

	

It is easy to see that LA, >_ 0
when x :,A y(t) and at the line of discontinuity x = y(t) (2.1), (2 .2) hold .
Flzrther,

hence
y <- ao(T - t)a ° W( 1 /(T - t)),

	

y(0) = 0,

T
y(t) <

	

ao(s)a o cp(1/s) ds .
T-t

With the aid of assumption 4), the application of Theorem 2.1 gives the
required result .

Remark 3.1 . Suppose (1.1) has the form

.(3.1)

	

ut + Al (T - t)P(u'')x = 0,

where Al = const > 0, p E R, m > 1 and ul (t) = (T-t)`-T', ca > 0 .
Then Theorem 3.1 asserts the presence of localization when p - a(m -
1) > -1 .

Theorem 3.2 . Suppose the following conditions hold
1) A(t, x, v)/v <_ A(t, x, w)/w, 0 < v <_ w, w E R+;
2)

	

A,; (t, x, v) + B (t, x, v) > bo(T - t) v, v E l[8+ , bo E C([0,T)), bo >_

0;
3) A� (t,x,v) < ao(T - t)a(v), ao E C([O,T), ao > 0, a(0) = 0,

a E C' (R+ ) n C(R+), a increases,
4) a(a3) < x(a)a(a), a E [0,1], a E R+, x E C, x(O) = 0, x in-

creases ;
5) ul(t) < ~o(1/(T - t)), cp E C([1/T,+oo)), w(11T) = 0, cp in-

creases ;
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6) fo g(s) ds

	

<

	

+oo, a(v) fo'(v) g(s) ds

	

<

	

C

	

<

	

+oo, v

	

E

	

1[8+ ,

C = const > 0, g(s) = ao(s)X (exp (-fTbo(o,)do,» , v, (s)

,p(s) exp (f~s bo(a) da) 1
WI(v) = 1/vi 1(w) .

Then localization in the problem (1 .1), (1 .2) occurs .

Proof.. Let us consider the function

T
w0(t, x) - v (t, x) exp (-

	

bo(s) ds) ,
T-t

where v(t, x) is defined by the relation

T-t
(3.2)

	

0 = x + a(v)

	

g(s) ds =- x + G(t, v) .
wl (v)

The equation G(t, v) = 0 with respect to v has two roots : v = 0, v =
vl(1/(T - t)) . When x varies the solution of (3.2) may stop to exist if
G� (t, v) = 0 . Consequently the set of (t, x) where the solution of (3.2)
does not exist can be described by the system

(3.3)

	

x+ G(t, v) = 0,

	

Gv (t, v) = 0 .

Now, let us consider the function y(t) defined in the following way
y = A (t, y, wo(t, y))/wo(t, y), y(0) = 0 . Then

y :~ Av(t, y, wo) ::~ ao(T - t)a(wo) < g(T - t)a(v) .

From the system (3.3) for its solution x = z(t) one has :

z = -Gt - Gvv = -Gt = g(T - t)a(v),

so y < z and lines x = y(t) and x = z(t) do not intersect . Suppose
A2(t,x) = wo(t,x) for x < y(t) and \2(t,x) = 0 for x > y(t) . It is easy
to see that

T
exp ~-

	

bo(s) ds
\

i Lwo > [a(v)g(T - t) - a(wo)ao(T - t)]IGv .
T-t

Hence with the aid of assumption 4) and Gv >_ 0 for x < z(t) one obtains
L,\2 >_ 0 for x < y(t) . Besides, at the line x = y(t) (2.1), (2.2) hold .
Since u(0, x) < A2 (0, x) we have u(t, x) < A2 (t, x) in Q .
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Let us rewrite (3.2) :

Hence

¡T-t

	

¡wl(v)
x +

a(v)

	

0

	

0J

	

g(s) ds -
a(v) J

	

g(s) ds = 0.

by virtue of assumption 6) . When x is sufficiently large there is no
solution of (3.2) and z(T - 0) < +oo . This ends the proof .

Corollary 3.l . If in addition to assumptions of Theorem 3.2 the fol-
lowing inequality holds

for fixed x 7~ 0 and t => T - 0 .

f
oT-t

0
x + a(v)

	

g(s) ds <_ C = const

wl(v)
a(v)

	

g(s) ds < rl(v),

	

v E R+ ,
0

where 77(v) decreases, rl(+oo) = 0 then u(t, x) is bounded as t => T - 0
for every fixed x :y~ 0.

Proof. Indeed, from (3.2) we have

¡wl (v)

	

¡T-t
rl(v) >

a(v) J

	

g(s) ds = x +
a(v) J

	

g(s) ds > x,
0

	

o

or v < rl -1 (x). Since u(t, x) < A2(t, x) one gets the boundedness u(t, x)

Remark 3.2 . For the equation (3.1) Theorem 3.2 gives the localiza-
tion presence when p - a(m - 1) >_ -1, while Corollary 3.1 gives the
boundedness of g.s . for x 7~ 0 and t =~> T - 0 when p - a(m - 1) > -1.

Theorem 3.3 . Suppose the following conditions hold:
1) A(t, x, v)/v < A(t, x, w)/w, 0 < v <_ w, w E R+;
2) A,, (t, x, v)

	

>_

	

ao(T - t)a(v), v

	

E

	

l[8+ , ao

	

E

	

C([O, T)), a0

	

>_
0, a(0) = 0, a E Cl (I[8+ ) n C(&+ ), a increases;

3) 52ao(T - t)a(v) _< A(t, x, v)/v <_ blao(T - t)a(v), v E I[8+, 0 <
62 <51 <1 ;

4) px(a)a(a) ? a(afl) >_ X(n)a(0), w >_ 1, 61p < 1, a E [0,1], a E
R+, X E C([0,1]), X(0) = 0, X increases;

5) B(t,x,v)+A.,(t,x, v) <_ bo (T-t)v, v E I[8+ , bo E C([O,T]), bo >_ 0;
6) u, (t) > cp(1/(T - t)), cp E C([1/T,+oo)), w(11T) = 0, cp in-

creases
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7) g(s)s < 01(s) fo g(o,) da, 0 < s < T; cp'(s)s > 02(s);p(s), s >
1/T ; sa'(s) > 03(s)a(s), s > 0;'04(s) = bo(1/s)/s + 02(s), where
o¡ (s) (i = 1, 2, 3) are monotonic (in particular may be constante)
and 1 - Y'1 0 wl(v)/[03(v)04(1/wl(v))] > M(v), v E R+, p E
C(R+ ), ft > 0, lt # 0, M, does not increase;

8) fo H(s)ds=+oo, H(s)-ao(s)a(exp(fTbo(a)da) v-1 (fo g(a)lo))
V(V) - m(v) fo

1(v) g(s) ds, e = const > 0, fo g(s) ds < +oo .

Then there is no localization in the problem (1 .1), (1 .2) and u(t, x) > 0
for 0 < x < 52 fT t H(a) da .

Proof. Let us consider the function wo(t, x) introduced in the proof
of Theorem 3.2 . Suppose y(t) is defined by the equation y =
A(t, y, wo(t, y))/wo(t, y) with the initial datum y(0) = 0 . By analogy
with the proof of Theorem 3.2 one states that the curve x = y(t) is
contained in the domain of existente of the solution to equation (3.2) .
Let us regard the same comparison function \2(t,x) as in the proof of
Theorem 3.2 . As G, > 0 for x < z(t) one has Lwo < 0 for x < y(t) and
U(t, x) > >12 (t, x) in Q .
Now the equation G(t, v) = 0 has two roots and the root of the equa-

tion Gv = 0 lies between them by virtue of Rolle's Theorem . Conse-
quently the solution v > 0 of the equation (3.2) with fixed x, t always
exceeds the solution of the equation Gv = 0 with the same fixed t . Hence

T-t wi(v)
0 = G� = á (v) (1

	

g(s) ds -

	

g(s) ds) +
0

	

0

or
+ a(v)g o wl(v)(v1 1 ) I (v)wl(v) 2 ,

T-t

	

wi (v)

f g(s) ds = f g(s) ds -
a(v)

g ° wl(v)(vi 1y(V)W1(V)2.
o

	

o

	

a'(v)
Using conditions 7) one estimates :

T-t
g(s) ds >

fwi (v)
9(s) ds [1 - a'(v) vi o v(1)(v)	1

	

wl(v)] ,

T
svi(s) = exp (£

	

bo(o,) do,
)

[s-1bo(1/s)cp(s) + sw (s)] ? VI(S)04(8) ;
lis

l

T-t

	

wl(v)

	

a(v)

	

P1 o w, (v)
g(s) ds > ~

	

g(s) ds [1 - a(V) v04(1/W1(v))]
wi(v)

	

'~~

	

wi(v)
f

	

g(s) ds
~1
-

	

Y51 0 wl(v)

	

g (s) dsp(v)=v(v) .
o

	

03(v)V)4( 1/wl(v)) o
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Since p(s) and w1(s) do not increase v(s) does not increase too.
Consequently v(t, x) > v-1 (fo-t g(s) ds) , hence

T

	

T-t
wo(t, x) > exp ~-

	

bo(s) ds

	

v-1

	

g(s) ds

	

- H1 (T - t) .
T-t

	

)

	

( 0

Further,
y = A(t, y, w0)/w0 ? 62ao(T - t)a(wo)

T

	

I'-t
>_ S2ao(T-t)a (exp(~

	

bo(s) d
)
s v-1

(0
g(s) ds

	

=62H(T-t) .
T-t

This inequality implies y(t) > 52 fT t H(u)_

	

du and we obtain the re-
quired result with the aid of assumption 8) .

Corollary 3.2 . Suppose conditions 1)-7) of the Theorem 3.3 hold, but
instead of condition 8) assume limH1 (T -t) = +oo. Suppose u(t, xo) >t=>T
0 for some xo and t close to T . Then u(t, x0) unbounded as t => T - 0 .

Proof.. In the proof of Theorem 3.3 we had the estimate w0 (t, x) >_
H1 (T - t) . Since u(t, x) >_ wo(t, x) for x < y(t), the assertion of the
corollary is true .
Remark 3.3 . For the equation (3.1) Theorem 3.3 asserts the local-

ization absence when p - ca(m - 1) < -1, p > -1.

	

Indeed, in this
case ao(s) = A1sP, bo(s)

	

0, X(s) = sm-1 , a(s) = msm-1 , g(s) _
AlsP, 01 (s)

	

p + 1, 02 (s)

	

a, Y'4(8) = 02(s), 03 (s) = m- 1, P(s)
1 - (p + 1)/(a(m - 1)),

v(s) = A1 [a(m - 1) - p - 1] (s + T-«)-(P+1)/«,
a(m - 1) (p + 1)

H(s) = mA1sP I s-«
(

	

a(m- 1)

	

)

-

	

- T-«
a(m-1)-p-1

It follows from Corollary 3.2 that u(t, x) is unbounded as t => T - 0 and
x fixed, since

-«

	

n(m- 1)

	

1 -«/(P+1)
Hl (S)

-
s

	

la(m

	

1)

	

1
Suppose p - a(m - 1) = -1 . Then Theorem 3.3 is invalid because of

assumption 8) . But one can choose 02(8) = as«/(s« -T-«),
v(s) = A1(p+ 1)-1T-«(s+T-«)-m, H1(s) = T-«[(T/s)«(m-1)/m - l] .
The unboundedness of u(t, x) as t => T- 0 and x is not too large follows
from Corollary 3.2 .
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Theorem 3.4 . Suppose conditions 1)-6) of Theorem 3.3 hold and

fo g(s) ds = +oo . Then there is no localization in the problem (1 .1),

(1 .2) and u(t, x) > 0 for 0 < x < const (fTt g(s)
ds)62 .

Proof. Let us consider the function A2(t, x) defined in the proof of
Theorem 3.2 . We have y = A(t, y, w0)/w0, y(0) = 0. The solution
of this Cauchy problem is not identically zero since A(t, 0, wo) # 0 by
assumption . Hence, there exist such x* > 0, t* > 0 that y(t*) = x* .
F urther, for t > t* one obtains

y > 62ao(T - t)a(wo) > 62g(T - t)a(v) .

It is obvious that wl (v) < T by the definition of function w, (v) . So we
have from (3 .2)

Now,

y = a(v) f -1

v

g(s) ds < a(v) fT

	

g(s) ds
T t

	

T-t

7,

t

	

1 - 1

y > 62yg(T - t) ~f

	

g(s) ds
J

	,
T-

Y(t) > x*

	

¡T

	

g(s) ds1

-bz

~
J

¡7.

	

g(s) ds

16z

~
J

	

=> +oo
T-t*

	

T-t J

as t => T - 0. This ends the proof.

y(t*) =

Remark 3.4 . In the case of equation (3 .1) Theorem 3.4 states the
absence of localization for p < -1.

Theorem 3.5 . Suppose assumptions 1)-6) of Theorem 3.3 hold and

fo g(s) ds = +oo. Suppose the following conditions hold:

1) f,T g(T) dT < sg(s)O1(s), 0 < s < T; W'(s)s > cp(s)02(S), s >
1/T; sa'(s) > a(s)03(s), s > 0; 04(s) - bo(1/s)/s+02(s), where
o¡ (s) (i = 1, 2, 3) are monotonic functions (in particular may be
constante) and 01 o wl(v) +

	

3(v) 4(l/wl(v))
< M(v), v E 1I8+ , M ElPlP

C(R+), f,t > 0, lt 9~ 0, ti increases;
2) v(v) - g(wi(v))w,(v)p(v) =* +oo as v =:> +oo ;

3) H2 (s) - exp (- fs bo(o-) do) v -i (fs g (u) do,	==>+oo as s

+0.
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Then u(t, x) is unbounded as t ==> T - 0 for every fixed x.

Proof. In the proof of Theorem 3.3 we have established the estimate
u(t, x) >_ A2(t, x) . Now, it is enough to get a lower estimate for the
function v(t, x) defined in (3.2) . By analogy with the proof of Theorem
3.3 it sufflcies to get a lower estimate for the root of the equation Gv = 0
with t fixed . We find

T

	

-
T

0 = Gv = a,(V)
(f., i(v)

g(s) ds

	

ft-
g(s) ds I +

or
+ a(v)g o wl(v)(vl

1),(v)wl(v) 2

~T-t g(s) ds - .iv,~(v) g(s) ds + a(v~ g o wi (v) (vi l ), (v)wl (v)2.

Now using assumption 1) one evaluates
T

	

r
g(s) ds<g o wl(v)wl(v) /ojowl(v)+ a

w)T-t

	

v~1 o v1-1 (v)vl-1 v, .( )
T

svi(s) = exp (

	

bo(u) dtr
1
l [s-lbo(11s)W(s) + (P'(s)s] ? vl(s)04(s) ;

1/s

T

T

-t
g(s) ds < g o wl(v)wl(v) [Ip1 o

w1 (v)
+ a(v) v 4(1/w1(v)J <

gowl(v)wl(v) [4'lowl(v)+
4'3v)4'4(1~w1(v))J Cgowl(v)wl(v)

~(v)=V(v) .

It follows from the last inequality that v > v-1 (fT-t g(s) ds), since
v(v) is monotonic because of 2) . Using the form of function X2 (t, x) and
assumption 3) one gets the statement of the Theorem 3.5 .
Remark 3.5 . Suppose that in equation (3.1) p < -1 . We have ao =

A1sP, bo(s) =- 0, X(s) = s"`-1 , a(s) = ms--1 , g(s) = A1sP , 01(s) = Ip+
1 1 -1 , 02(S) --- a, 04(s) --- 02(s), 03(s) ---m-1 , P(s) --- Ip+11-1+[a(m,-
1)] -l , v(s) = Alp(s)(s+T-a)-(P+1)/a H2(s) = [(tt(s)IP+ 11)-l(SP+1 -
TP+1)]-al(P+1) -T-a .
Then u(t, x) is unbounded as t =~> T - 0.
Suppose p = -1 . Then ao, bo, X, a, g, 02, 03, 04 are not changed,

but
01(s) = ln(T/s), u(s) = a-1 ln(sT"+1)+[n(m-1)]-1, v(s) = Altt(s),

H2(s) = s-a exp{-1 /[Al(m - 1)]} - T-a .
It follows from these equalities that u(t, x) is again unbounded as t
T-0.
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4. The case T = +oo

For the space of this paragraph we asume T = +oo, 0 <_ uI (t) <_ M
for t E 1[8+ .

Theorem 4.1 . Suppose the following conditions hold:

1) A� (t, x, v) < ao(t)a(v), a E C([0, M]), a(0) = 0, a increases, ao E
C(R+ ), ao > 0;

2) B(t, x, v) + A,,(t, x, v) >_ bo (t)b(v), b E C([0, M]), b(0) = 0, b in-
creases, bo E C(1I8+), bo > 0;

3) bo(t) > ao(t), t E 1I8+;
4) fa a(s)/b(s) ds < +oo, E = const > 0.

Then localization in problem (1 .1), (1 .2) occurs and u(t, x) = 0 for x >_
fo a(s)/b(s) ds .

Proof.. Let us consider the function A3(x) defined by relations
f3(x) a(s)/b(s) ds = x for x < fo a(s)/b(s) ds, >13(x) = 0 for x >
f̀u a(s)/b(s) ds .

	

It is easy to see that LA3 >_ 0 in the points where
'\3(x) is smooth and A3(0) = M >_ ul(t) . With the aid of Theorem
2.1 we obtain u(t, x) <_ >13(x) . The required statement follows from this
inequality.

Theorem 4.2 . Suppose the following conditions hold:

1) A(t, x, v)/v < A(t, x, w)/w, 0 < v <_ w < M;
2) Sla(v)ao(t) < A,(t, x; v) < a(v)ao(t) ; A(t, x, v)/v > 62ao(t)a(v),

0 <_ v <_ M, 0 < 6i <_ 1(i = 1, 2), a E C([0, M]), a(0) = 0, a
increases, ao E C(R+ ), ao >_ 0;

3) 53a(a)X(~3) < a(aO) :5 a(a)X(~3), 0 < 63 < 1, a E [0,1], fl E
[0, M], X E C, X(0) = 0, X increases;

4) B(t, x, v) + A,, (t, x, v) < bo(t)b(v), v E [0, M], b(aO) < O(O)b(a),
a E [0,1], ~3 E [0, M]; 0, b E C([0, M]), bo E C(R+), bo >_
0, b(0) = 0, 0(0) = 0; b, 0 increase ;

5) bo(t) :5 5163ao(t), t E R+ ; 0(v) :5 X(v)v, v E [0, M] ;
6) fo+°° ao(T) d-r = +oo, fo a(s)/b(s) ds = +oo, E = const > 0;
7) ul (t) monotonically decreases, ul (+oo) = 0, uI (0) = ti > 0.

Then there is no localization in the problem (1.1), (1 .2) .

Proof. Let us introduce the functions g(x) and h(x) : f9(.)a(s)/b(s) ds=
x, h(x) = fsf' (',; ) ds/b(s)anddefine thefunctionv( t, x) bytherelation

Cf0u1

1(v)
(4 .1)

	

X(v)

	

ao(T) d7- -

	

ao(T)dT

	

+h(x)=O,

	

0 G v G_ ~

lo
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for h(x)

	

<

	

X(M) fo ao(T) dr .

	

It follows from 6) that g(+oo)

	

_
0, h(+oo) = +oo.

	

Now set v(t, x) = M for h(x) >_ X(p) fot ao(T) d-r .
Consider the curve x = ,y(t), defined by the relations y =
A (t, y, g(y)v(t, y))/(g(y)v(t, y))y(0) = 0 . Let us set A4(t, x) = 9(x)v(t, x)
for x <_ y (t) and A4 (t, x) = 0 for x > y(t) .

It is easy to see that LA4 < 0 at the points where \4(t, x) is smooth
while at the line of discontinuity x = y(t) relations (2.1), (2 .2) are valid .
With the aid of Theorem 2 .1 it follows that u(t, x) > A4(t, x) in 1[8+ x R+.

Since A(t, 0, w)

	

5á- 0 then there exists a point (t * , x * ) with t*	>
0, x* > 0 and y(t*) = x* .

	

Further, at the set v = p, one has
y ? 6253ao(t)a(g(y))X(M) or h(y)* > 6263ao(t)X(p) . Hence

t
h(y) > h(x*) + 62 63	X(M)ao(T)d-r for t > t* .

ft .
1

When v (t, x) is defined by (4.1) the inequality y > 62 63ao(t) (foao(T)dT)

a(g(y))h(y) holds true because X(v)

	

>

	

h(y)/ fot ao(T) dT by virtue
1

of (4.1) . Now, (lnh(y))' > 62S3ao(t)(foao(T)dT)

	

or h(y) >

h(x*) (f0* a0 (T) dT)

	

baba

(fo ao(T) dT)
6 6á3

Applying assumption 6), one gets the required result .

Remark 4.1 . For the equation

ut + (u'),, + un = 0, m>1, n>0.

Theorems 4 .1, 4.2 give the presente of localization with bounded data
ul (t) for m > n and the absence of localization even with

	

lim u1 (t) = 0
t=>+oo

for m < n.

Let us Consider the equation

5 . Supplementary example

(5.1)

	

ut + (T - t)P(un'')x + (T - t)qun = 0,

	

(t, x) E Q,

where m > 1, 0 < n < 1, q < -1, p E R. One will find the solution of
(5.1) in the form u(t, x) _ (T - t)` f(~), 1 = x(T - t)-Q, x >_ 0, 0 <_ t <
T, a = (q + 1)/(1 - n), ,Q = p + 1 + a(m - 1) . Substituting u(t, x) into
(5.1) one gets

- a(T -
t)`1f

(1) + fi(T - t) ce-1
.f~( ) +

+ m(T - t)cti--/3+P
fm-1(S)f'(S) + (T - t) an+gfn(j) = 0 .



Now the equation for f(f) follows :

or in another form

Consequently,

Flrther,

Then
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df
_

	

af- fn
d~

	

~31 + mfm-1
f(0)=N>0

m 1=
a
fa- +

f

	

fn ,

	

j(N) = 0.

1

	

I

IaIs+sn
exp C- fs Ia1T+Tn

dT

	

ds.
)

i

	

~

	

~

	

i (1

	

Tn-2
dT=-

	

-

	

l dT=-ln-+
IalT + Tn

	

la

	

T

	

Ial_+T-1 /

	

a

	

S

a

	

¡al
+fn-1	a

	

Ialf 1-n+1
+

ln -In
Ial(1 - n)

	

lo,¡ + Sn-1

	

Ial(1 - n)

	

IajS1-n + 1 ,

N
(5.2)

	

_ (lalfl-n + 1)-R/1e+11 f
S

MSm-n- 1(Ials
1-n + 1)p/1a+1 1-1 ds

a) The case ,l > 0 .
Let us denote

N
N, -

	

msn`-n-1 (Ials 1-n + 1)a/1e+11-1 ds .
0

Let us define the function w1 (t, x) in the following way : w1 (t, x) = 0 for
x > N* (T - t)a, t < T; w1 (t, x) = (T - t)' f(1) for 0 < x < N* (T -
t)O, t > 0 . Suppose y1 (t) is the solution of the equation

(5.3)

	

y = (T - t)1'-1 f--'(y, (T - t)-13)

with datum y1 (0) = 0.

	

Let us introduce the function z1(t, x) by the
relations :

	

z1 (t, x)

	

= w1(t, x) for 0 < x < y1 (t) and z1 (t, x)

	

= 0 for
x > y1 (t) . Fllnction z1 (t, x) is the g.s . of the problem (5.1), (5.2) with
u1 (t) = N(T - t)a . Indeed, z1 (t, x) satisfies (5.1) for x < y1 (t) due to
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the definition and at the line of discontinuity x = y1(t) relations (2 .1),
(2 .2) are valid ; z1 (0, x) = 0, z1 (t, 0) = N(T- t)a . Hence, the g.s . of the
boundary problem equals zero for x >_ N*(T - t) Q, that is the width on
x of the g.s . support tends to zero as t =:> T - 0 .

b) The case ,Q = 0.
Now (5.2) has the form x = ff MS -n-1 Oa1sl-n + 1) -1 ds .

	

Set
w1 (t, x) = 0 for x > N* , 0 <_ t < T. The equation (5.3) has the form
yl = (T -t)-1fm-i(y,) . One gets for y1 (t)

"rther, f(0) = N, f(N,,) = 0 and f(x) - (N, - x) 1/(m-n) as x =* N: .
So fo` ds/fm-1 (s) < +oo, and there exists T < T such that y1 (T) _

N* . We have that the line x = y1 (t) of discontinuity for z1 (t, x) is defined
only for t < T, but for T < t < T the function z1 (t, x) is continuous .

c) The case ,l < 0.
Then there exists such lo that f(l) is defined only for 0 <_ l < lo, f >_

f(lo) . Let us consider the curve x = lo(T - t)a ; differentiating with
respect to t one finds x = -0lo(T - t)Q -1 =mf(lo)m-1(T - t)p-1 . At
this curve y = (T - t)a-1 f(jo)m-1 < x, hence the line x = y1 (t) lies
below the line x = lo (T - t)0 and the definition of z1 (t, x) is correct.
Rlrther,

y1 >- (T - t) 1'-1 f(SO)m-1

References
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