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NORMAL FORMS OF INVARIANT VECTOR
FIELDS UNDER A FINITE GROUP ACTION

FERERICO SANCHEZ- BRINGAS

Abstract

Let T be a finite subgroup of GL{n, C}. This subgroup acts on the
space of germs of holomorphic vector fields vanishing at the origin
in C™ and cn the group of germs of holomorphic diffeomorphisms
of (C7,0). We prove a theorem of invariant conjugacy to a nor-
mal form and linearization for the subspace of invariant germs of
holomorphic vector fields and we give a description of this type of
normal forms in dimension n = 2.

Introduction

The goal of this paper is to show that the classic theorems of Poincaré-
Dulac [DU]| and Siegel [SI] of conjugacy to a normal form and lineariza-
tion of germs of holomerphie vector fields at 0 € C™ hold for the quotient
space C™/T", where I' is a finite subgroup of GL(n, C). In this situation
we consider the germs of holomorphic vector fields and the germs of con-
jugating diffeomorphism of C™ invariant by the action of the subgroup.

It is well known that C"/I' has the structure of an algebraic varicty
and furthermore any variety which is the quotient of a finite group of
local diffeomorphisms of C™ is of this form (in a specific system of coordi-
nates) [CA], then we obtain here results for conjugacies to normal forms
and linearizations of germs of holomorphic vector fields in this kind of
algebralc varieties.

In a different context, like bifurcation theory, sometimes conjugacy
to a normal form of germs of holomorphic vector fields which preserves
symmetries are needed, this results can also be applied.

In the first section we prove the main theorem using the algebraic
approach developed in [CH]. In the second section we analyse carefully
the case C%/T" and we give a description of normal forms.

Finally we wish to thank Xavier Gomez-Mont for His helpful comments
and remarks concerning this work.



76 F. SANCHEZ-BRINGAS

1. Invariant conjugacy to a normal form
and linearization in C"

Let x{C"™, Q) be the space of germs of holomorphic vector fields at
0 € C" vanishing at the origin. Let I’ be a finite subgroup of GL{n, C)
which acts naturally on ¥{C",0}, we say that X is invariant if ¥ is
invariant by this action, namely if for all v € I, dy"H{X(v(2)) = X{(z).
Let x{C"/I',8) be the subspace of invariant elements of x(C",0).

Given X € x{C",0} denote by X; its linear part, dX(0) and suppose
it belongs to GL{n,C). Let S be the semisimple part of X;, we say X
is a normal form if LgX = @, where Lg is the Lie derivative of 5.

X is said to be resonant if its eigenvalues satisfy a relation {resonance)
like this:

n L3
M= midu=1,...,n (m,. .. m) e N Y my 22
1 1

The vector field 27" ... 2zl 2 4 =1, .., nisthe monomial vector field

associated to this resona.nce{? -

Suppose that X € x(C"™,0) is a normal form and the coordinates of
C* are given by a basis of eigenvectors of the semisimple part 8 of X;.
Then condition LgX = 0 implies that X — X; is 2 sum of resonant
monomial vector felds.

Let THff (C™, 0} be the group of germs of holemorphic diffeormorphisms
which fix the origin of C?, [ acts by conjugation here. We say that
¢ € DIff{C", ) is invariant if it is invariant by this action, namely if for
all v € T', v '¢y = ¢. Denote by Diff(C™/T",0) the group of invariant
elements of Diff (C",0).

For any X, Y € x{C",0) we say X is conjugate to ¥V if there is a
¢ € Diff{C™,0) such that 9* X =Y, where ¢*X =d¢ ' X¢. When Y is
the linear part of X we say X is linearizable. If X and Y are invariant,
the conjugacy (linearization) is called invariant.

Theorem 1. Let [' be a finite subgroup of GL{n,C) and
X € x{C"/T",0). Suppose the linear part X; of X is invertible. Then:

1.1, X s inverantly conjugale, possibly formally to o normal form. If
X, 8 non-resonant then this conjugacy is an invariant lineariza-
t1om.

1.2. If X is holomorphically conjugate to a normal form, then it can
be conjugate in an invariant holomorphic way.

The proof of this thecrem is a conseguence of the following lemma. Let
Ogn o be the algebra of germs of holomorphic functions at 0 € C” and
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m = {f € Ognyp; f(0) = 0} its maximal ideal. For each non-negative
integer k denote J&. o = Ocn p/m" the algebra of finite dimension of
k-jets of holomorphic functions. The element X € x{C",0) defines a
derivation X" of Ognp, X*f = Lxf and in a natural way the k-jet
of X determines a derivation X; of J&.,, then X has a canonical
decomposition: X; = S5 + N , where 5} is the semisimple part and N;
is the nilpotent part. A remarkable fact proved in [CH] is that 57 is a
derivation.

In a similar way, we denote by Diff ({C™,0) the group of k-jets of germs
of holomorphic diffeomorphisms of C™. The definition of conjugacy to a
normal form (linearization) is extended in a natural way to the space of
k-jets of germs of vector fields, x*(C™,0).

Lemma 2. Lei T be a finite subgroup of GL{n,C), k a non-negutive
integer and X € x*(C"/T,0) then

2.1. The semisimple part S; of X; 1s invariant.

2.2. 5} is invariant linearizable if X, is invertible.

Proof: 2.1. On one hand we have the following fact [Hu]:

Let ¥ be a C-vector space of finite dimension and T an endomorphism
of V. Then the semisimple part of T has a polynomial expression in
T, p(T} with coefficients in C. On the othcr hand, as X is invariant
and v € T is linear we have dy~' X~ = v~ Xv = X then for any non-
negative integer k, v !Xy = X! and v ' X0 0 Xy=Xjo-- -0 X}
then any polynomial expression in X with coefficients in C is invariant.

2.2. Let ¢y € Diff .{C™, 0) be the Poincaré-Dulac diffeomorphism
which exists becanse X, is invertible. ¢ is tangent ((k — 1}-order) to
the identity diffeomorphism, and linearizes the semisimple part of X},
Define the average ¢y = || ZTer’Y_lﬁf’k”f‘

b is invariant and tangent ({k — 1)-order) to the identity diffeomor-
phism. Besides

*

ISy ey | (S5 = 0 S (e ) S k)

yET” yeT
— 1T Y iy
~el

where S7 is the linear part of S; which is invariant because of S;. B
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Proof of the theorem: 1.1. Lg X; =0 if and only if 0 = (Lg, Xi)" =
SYX{ — X257, then the canonical decomposition of X, implies that
conjugating to a normal form in x*(C™,0) is equivalent to linearizing
the semisimple part ;. Now let #x be like in lemma 2. Remark that if
we write

gro---ofy=1d+¢"+ -+ 6" +... then
drer0dro--ody = (Id+¢*+ -+ +0 T+ )+ A+ )+
=Id+¢*+ -+ ¢ + ...

so this two compositions have the same i-jet and ¢z o- - - o ¢ conjugates
invariantly Xy, to & normal form because as we showed, this diffeomor-
phism linearizes S5;. Finally the limit limk‘*w(qa"}k G- 0 qmﬁz) defines a
diffeomorphism ¢, eventually formal which conjugates invariantly X to
a normal form.

1.2. Let ¢ be the holomorphic conjugacy (in any system of coordi-
nates) then a similar argument as in 1 implies that [T|™' 32 ..+ "¢y €
Diff (C™, 0) conjugates X holomorphically and invariantly to the respec-
tive normal form. B

2. Description in C?: Invariant normal forms

Let X, be a linear vector field in C? with eigenvalues Ay, A3. Choose
a base of C?, {e1,e3} of eigenvectors of §, the semisimple part of X;.
We say that X, belongs to the Poincaré domain if 0 is not in the seg-
ment [A1, A2]. Otherwise we say Xy belongs to the Siegel domain. The
eigenvalues A;, Ag are of type (C, ), C, v > 0 if: |Ay — midy —mahe| >
C{jmy| + |me|)™ for all (my,mg) € (N2)*, u=1,2,

Before applying thecrem 1 in this context we point out that conditions
to X be conjugate holomorphically to a normal form have been estal-
lished in [DU] if X, is in the Poincaré domain and in [SI] if X; belongs
to the Siegel domain.

Theorem 3. Let X, be the linear part of X € ¥(C™/T,0). Let Ay, Ag
be the eigenvalues of X,.

3.1. If Xy is not resonant, then X is linearizable in a holomorphic
invarignt way in the following cases:
i) Xy belongs to the Poincard domain.

#) X belongs to the Siegel domain and Ay, Ag are of type (C,v)
for some C, v > (.
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3.2. If X, is resonant, then X is conjugate in a holomorphic invariant
way to a normal form in the following cases:
1) X; belongs to the Poincare domoin.

1) X1 belongs to the Siegel domein and the normal form is col-
inear to X1.

Remark. There exist cases where the invariant conjugacy to a normal
form is only formal. For example if T" is a diagonal group {i.e. each of
its elements are diagonal) we are going to show there are normal forms
with linear part in the Siegel domain which do not verify condition 2,it).
In this case the conjugating diffeomorphism ¢ may be divergent because
one of its coordinate functions can have coefficients which grow like the
Euler function, [Br]:

niz) = i(& - 1)1,
=1

We express the invariance condition in x{CZ,0) with an average mor-
phism of the group action. Let IT : x(CZ%,0) — x(C?/T",0) be the mor-
phism of C-vectorial spaces defined by II{X} = |T|=' 3°_ . v*X. Then
X is invariant if and only if II{ X} = X.

There are two different cases for the family of finite subgroups of
GL(2,C):

i) If ' is diagonal, the monomial vector fields are eigenvectors of II
and TI{X) =0 if X is not invariant.

i) If I is not diagonalizable the eigenvectors of II are not monomials
and I1 does not vanish monocmials.

Let us regard first the case of diagonalizable groups.

Proposition 4. If T is not dicgonalizable and Xy 15 a linear vector
field, then TI{X,) = X, if and ondy if X1 = Az, 22).

Proof: Suppose X; is given in its Jordan canonical form. If X, has

different eigenvalues the condition X,y = X3 implies v is diagonal,
therefore I' must be diagonal.

1t
A1
=5 3)

Xy =~X, implies

but [ is finite then ¥™ = Id and b must be 0. W
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Remark. This proposition implies that for non diagonalizable groups
our theorem is a linearizing theorem illustrated by the following example:
Let T" be the binary dihedral group generated by

(i 0 (0 -
TR0 (A G
The vector field X(z1,22) = (21, 22) + (23, 23) is not a multiple of the
radial vector field which belongs to x{C?%/T,0).

Suppose now the group is diagénal. In erder to simplify the description
of invariant normal forms we will suppose I is cyclic and generated by

e(Q?rEI\/—_l)/'n.l 0
0 el2mla/=T) /2

ny €Nl € Z, (ly,ne) = 1, u=1,2.

I X{21,22) = 3,1 2( 20 520 €121 73 )ew, the equivariance condition is
imposed independently for monomial vector fields. The next proposition
describes invariant vector fields.

Proposition 5. Let n be the least common muliiple of ny, ny and
e = nly/n,. The monomial vector field z, (2t 20)e,, v =1,2, u# v, i >
—1,7 20,9+ 7 =0 is invariant i and only if i = —n,j(modn).

Proof: Suppose

belongs to [ then [{zizle,) = (1/n2 . er v i) 2} ey, thercfore

i.d, e : : g1 —1iad _
Zizhe, 1s invariant if and only if n aner"Yu ive = 1. Ifw =1,

Ewer ’Yi_l”fg = Z:Zl62“"/“_”“(“1/“1)("_1)+“2/“2)j}‘ This sum is n if

(n/r1)l1t + (n/nataj = (n/n1 ) {modn} and vanishes otherwise. Simi-
larly for u = 2.

When X, belongs to the Poincaré domain and its eigenvalues are reso-
nant, then the origin, Ay and Ay are colinear, besides § ¢ [, A, there-
fore there is only one possible type of resonance: A, = m,A,, v # v.

When X; belongs to the Siegel domain the resonance A, = myAy +
WMy, Ay generates an infinite family of resonances of type:

AH = k((mu - 1}Au + mv)‘v) + ’\u/\v = k((mu - 1)’\u + mv/\v) + /\m
' keN,u#v. B

Finally let us make the following classification:
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Proposition 6. Let T be a finite diagonal cyclic subgroup of
GL(2,C). The inveriant normal forms are:

1. If X, belongs to the Poincaré domain.
X(Zl., 22) = X](zl, 22) + a,;zieu

where m,1 = nu(modn}, u v and u, v=1,2.
2. If X, belongs to the Siegel domain.,

o0 o0
X(z1,20) = Xa(z, 22) + (21 (Z aszizgj) s %2 (Z bsziz?))
k=1 k=1

where mit = —nej(modn) or & = O{modn) and i, § are like in
proposition 5.
For oll cases if li/ny — la/ng ¢ Z, then X, is diagonel

This section can be applied to obtain conjugacies to normal forms in
surfaces of type C?/T" where I is a finite subgroup of S¥/(2). These
surfaces are embedded in C? with an isclated singularity at the origin
[KLE]. If T is diagonal, then it is cyclic and generated by

8211'\/—_1/71 0
( 0 2w v=i/n

Proposition 6 applies in this case: m = —1z = 1, {)/n) — lafne =
2n¢Zifn#2

When T is non-diagonalizable, we have the groups which are the in-
verse image of the covering surjection p: SU{2) — SO{3) of the groups
of index 2 (preserving orientation) of triangular spherical groups [MIL].
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