POINTWISE CONVERGENCE OF THE FOURIER TRANSFORM ON LOCALLY COMPACT ABELIAN GROUPS

MARIA L. TORRES DE SQUIRE

Abstract

We extend to locally compact abelian groups, Fejer's theorem on pointwise convergence of the Fourier transform. We prove that \(\lim_{\mu_U} f(y) = f(y) \) almost everywhere for any function \(f \) in the space \((L^p, L^q)(G) \) (hence in \(L^p(G) \)), \(2 \leq p \leq \infty \), where \(\{\mu_U\} \) is Simon's generalization to locally compact abelian groups of the summability Fejer Kernel. Using this result, we extend to locally compact abelian groups a theorem of F. Holland on the Fourier transform of unbounded measures of type \(q \).

1. Notation and Preliminary Results

Throughout, \(G \) is a locally compact abelian group, with dual group \(\Gamma \), and Haar measure \(m \). By the structure theorem, \(G \) is represented by \(\mathbb{R}^a \times G_1 \), where \(a \) is a nonnegative integer and \(G_1 \) is a group which contains an open compact subgroup \(H \). The set of basic neighbourhoods of \(x \in G \) is denoted by \(N_x(G) \). We write \(C_c(G), C_0(G) \) for the spaces of functions on \(G \) that are continuous, with compact support and vanish at infinity, respectively. We consider the amalgam spaces \((L^p, L^q)(G), (C_0, L^q)(G) \) \((1 \leq p, q \leq \infty) \) as defined in [S]. The Fourier transform (inverse Fourier transform) of a measure \(\mu \) is denoted by \(\hat{\mu} \) (\(\check{\mu} \)). We let \(A_c(G) \) be the set of all functions \(f \) in \(C_c(G) \) such that \(\hat{f} \in L^1(\Gamma) \). The characteristic function of a subset \(E \) of \(G \) is denoted by \(\chi_E \). The conjugate \(p' \) of a number \(p \) is such that \(1/p + 1/p' = 1 \). For each \(U \in N_0(G) \), A.B. Simon [Si] defined a function \(\varphi_U \) as the product of two functions \(\alpha_U \) and \(\beta_U \) defined on \(\mathbb{R}^a \) and on \(G_1 \), respectively.

*1980 Mathematics Subject Classification (1985 Revision). Primary 43A55, 43A25. Research supported by NSERC grant 7914.
The function β_U is continuous, nonnegative, with $L^1(G)$-norm equal to 1, and

\begin{equation}
\sup_G |\beta_U(x)| = B_U \leq 2m(U)/1 - 2m(U) \quad \text{finite.}
\end{equation}

Hence $B_U \to 0$ as $U \to 0$.

The function α_U is defined as follows.

Let $(-\delta_1, \delta_1) \times \cdots \times (-\delta_a, \delta_a) \times U_H$ be a product neighbourhood contained in U, where $\delta_i > 0 \ (i = 1, \ldots, a)$, and U_H is an element of $N_0(G)$ included in H. For $i = 1, \ldots, a$ we set $U_i = (-\delta_i, \delta_i), N_i = 1/\delta_i$, and define the function α_{U_i} on \mathbb{R} by

$$\alpha_{U_i}(t) = \frac{1 - \cos(N_i t)}{\pi N_i t^2}$$

For $t = (t_1, \ldots, t_a)$ in \mathbb{R}^a, the function α_U is given by $\alpha_U(t) = \Pi_{i=1}^a \alpha_{U_i}(t_i)$. Clearly α_U is continuous, nonnegative, and its $L^1(\mathbb{R}^a)$-norm is equal to 1. Each φ_U has the following properties. For a proof see [Si].

1.1) φ_U is continuous, nonnegative and bounded
1.2) φ_U is integrable and $\|\varphi_U\|_1 = 1$
1.3) $\varphi_U \in C_c(\Gamma)$ and $\|\varphi_U\|_\infty \leq 1$
1.4) $\varphi_U(x) = \int_\Gamma \varphi(\gamma) \gamma(x) d\gamma$ by 1.3)
1.5) For $\varepsilon > 0$ and $U \in N_0(G)$ given, we can find a V such that if $V' \leq V$ and $x \notin U$, then $\varphi_V(x) < \varepsilon$ and $\int_{G-V} \varphi_{V'}(x) dx < \varepsilon$.
1.6) $\lim_{U} \varphi_U(\gamma) = 1$.
1.7) the family $\{\varphi_U | U \in N_0(G)\}$ is an approximate identity in $L^1(G)$.

We add to this list the fact that each φ_U belongs to the Wiener algebra $(C_0, l^1)(G)$ [W].

Proposition 1.1. For each U in $N_0(U)$, the function α_U belongs to $(C_0, l^1)(\mathbb{R}^a)$.

Proof: Since $\alpha_{U_i}(i = 1, \ldots, a)$ is an even function we have for n in $\mathbb{Z} - \{0, -1\}$ that

$$\sup_{t \in [0,1]} \alpha_{U_i}(t + n) = \sup_{t \in [0,1]} \alpha_{U_i}(t - (1 + n)) \leq \frac{2}{N_i \pi} \frac{1}{n^2}.$$

If $n \in \{0, -1\}$, then there exists a constant C_i such that

$$\sup_{t \in [0,1]} \alpha_{U_i}(t + n) \leq \frac{N_i}{\pi} C_i$$
because the limit
\[
\lim_{t \to -n} \frac{1 - \cos N_i(n + t)}{(N_i(n + t))^2}
\]
exists.

Therefore for all \(i = 1, \ldots, a \) and all integer \(n \) we have that
\[
\sup_{t \in [0, 1]} |\alpha_{U_i}(t + n)| \leq c \alpha_n
\]
where
\[
c = \max_{1 \leq i \leq a} \left(\frac{2}{N_i \pi}, N_i C_i / \pi \right)
\]
and \(\alpha_n \) is equal to \(1/n^2 \) if \(n \in \mathbb{Z} - \{0, -1\} \), and to \(1 \) if \(n \in \{0, -1\} \).

Finally, for \(i = 1, \ldots, a \) we have that
\[
\|\alpha_{U_i}\|_{\infty 1} = \sum_{Z} \sup_{t \in [n, n+1]} |\alpha_{U_i}(t)| = \sum_{Z} \sup_{t \in [0, 1]} |\alpha_{U_i}(t + n)| \leq C \sum_{Z} \alpha_n < \infty.
\]

From the definition of the norm \(\| \|_{\infty 1} \), it is easy to see that
\[
\|\alpha_U\|_{\infty 1} = \Pi_{i=1}^a \|\alpha_{U_i}\|_{\infty 1}.
\]

Corollary 1.2. For each \(U \) in \(\mathcal{N}_0(G) \), the function \(\varphi_U \) belongs to \((C_0, l^1)(G) \).

Proof: By (1) we have for all \((t, s) \) in \(G \) that
\[
\varphi_U(t, s) = \alpha_U(t) \beta_U(s) \leq B_U \alpha_U(t),
\]

hence
\[
\|\varphi_U\|_{\infty 1} \leq B_U \sum_{n \in \mathbb{Z}^a} \sup_{t \in [0, 1]^a} |\alpha_U(t)| = B_U \|\alpha_U\|_{\infty 1}.
\]

For the rest of this paper \(\varphi_U, \alpha_U, \) and \(\beta_U \) are as indicated in this section.
2. Main Theorem

In this second section we want to prove that

\[\lim_{U \to 0} (\phi_u * f)(y) = f(y) \quad \text{almost everywhere} \]

for all \(f \) in \((L^p, l^\infty)(G)(2 < p \leq \infty) \).

First, we prove two lemmas.

Lemma 2.1. Let \(V \) and \(K \) be two elements of \(N_0(G) \) of the form

\[V = (-\delta_1, \delta_1) \times \cdots \times (-\delta_a, \delta_a) \times \mathcal{V}_H \]

and \(K = [-\gamma_1, \gamma_1] \times \cdots \times [-\gamma_a, \gamma_a] \times K_H \), where \(\delta_i > 0, \gamma_i > 0 \) (\(i = 1, \ldots, a \)), \(\mathcal{V}_H \) and \(K_H \) are elements of \(N_0(G) \) contained in \(H \), and \(K_H \) is compact.

For \(1 \leq p < \infty \), we define \(\eta_i = \min(\delta_i^{2p}, \gamma_i) \) (\(i = 1, \ldots, a \)), and we let \(\mathcal{W}_H \) be the interior of \(K_H \). Then the set \(W = [-\eta_1, \eta_1] \times \cdots \times [-\eta_a, \eta_a] \times \mathcal{W}_H \) belongs to \(N_0(G) \) and for a fixed \(y = (y_0, s_0) = (y_1, \ldots, y_a, s_0) \) in \(G \), the element \(W_y = y + W \) of \(N_y(G) \) has the following properties:

1. \(W_y \subseteq y + K_H \)
2. \(\Pi_a = [-\eta_1 + y_1, \eta_1 + y_1] \times \cdots \times [-\eta_a + y_a, \eta_a + y_a] \), then

\[\left[\int_{\Pi_a} a_U(y_0 - x)^p dx \right]^{1/p} = O(\Pi_a^a \delta_i) \]

3. \(\mathbb{R}^a - \Pi_a \subseteq \cup \mathbb{I}_n \), where \(\{\mathbb{I}_n\} \) is a countable family of compact subsets of \(\mathbb{R}^a \), and

\[\sum_{\mathcal{N}} \left[\int_{\mathbb{I}_n} a_U(y_0 - x)^p dx \right]^{1/p} = O(\Pi_{i=1}^a \delta_i). \]

4. There exists a constant \(C \) such that \(\sup_{\mathcal{N}} C(I_n) \leq C \), where \(C(I_n) \) is the cardinality of the set

\[\{ j \in \mathbb{Z}^a \mid (j + [0, 1]^a) \cap I_n \neq \emptyset \}. \]

Proof: Several constants will appear during the proof and since their specific value is irrelevant for our needs we just write \(C_1, C_2, \ldots, C_q \). Part
2.1) is clear. Set \(J_i = [-\eta_i + y_i, \eta_i + y_i] \) \((i = 1, \ldots, a)\). Part 2.2) follows from the continuity of \(\alpha U_i \) because
\[
\left[\int_{-\eta_i}^{\eta_i} \alpha U_i(y_i - x)^p \, dx \right]^{1/p} = \left[\int_{-\eta_i}^{\eta_i} \alpha U_i(x)^p \, dx \right]^{1/p} \leq C_1 N_i \eta_i^{1/p} \leq C_2 \delta_i.
\]
Now, for each \(i = 1, \ldots, a \), let \(L(n, i) \) and \(R(n, i) \) \((n \in \mathbb{N})\) be the intervals
\[
[-n - 1 - \eta_i + y_i, -n - \eta_i + y_i] \text{ and } [n + \eta_i + y_i, n + 1 + \eta_i + y_i]
\]
respectively. Then
\[
R - J_i = (-\infty, -\eta_i + y_i) \cup (\eta_i + y_i, \infty) \subseteq \bigcup_{n} L(i, n) \cup \bigcup_{n} R(i, n),
\]
and
\[
\int_{L(n, i)} \alpha U_i(y_i - x)^p \, dx \leq C_3 \delta_i^2 a_n
\]
where
\[
a_n = \frac{1}{(n_i + n)^{2p-1}} \left(\frac{1}{(n_i + n + 1)^{2p-1}} \right).
\]
Since \(\sum a_n^{1/p} \) converges we conclude that
\[
\sum_{n} \left[\int_{L(n, i)} \alpha U_i(y_i - x)^p \, dx \right]^{1/p} \leq C_4 \delta_i.
\]
Similarly
\[
\sum_{n} \left[\int_{R(n, i)} \alpha U_i(y_i - x)^p \, dx \right]^{1/p} = C_5 \delta_i.
\]
Clearly \(\sup_{n} C(L(n, i)) \) and \(\sup_{n} C(R(n, i)) \) are less than or equal to 2, hence for \(i = 1, \ldots, a \), the set \(R - J_i \) is equal to \(\bigcup I_n \), where each \(I_n \) is compact, \(\sup C(I_n) \leq 2 \) and
\[
(4) \quad \sum_{n} \left[\int_{I_n} \alpha U_i(y_i - x)^p \, dx \right]^{1/p} = O(\delta_i).
\]
Since \(R = (R - J_a) \cup J_a \), and \(J_a \) is compact, by (3) and (4) we see that \(R = \bigcup K_n \), with each \(K_n \) compact, \(\sup C(K_n) \leq C_6 \), and
\[
(5) \quad \sum_{n} \left[\int_{K_n} \alpha U_a(y_a - x)^p \, dx \right]^{1/p} = O(\delta_a).
\]
We prove properties 2.3) and 2.4) by induction on a. The case $a = 1$ follows from (3). Suppose that 2.3) and 2.4) hold for $a - 1$. That is, $\mathbb{R}^{a-1} - \Pi(a-1) \subseteq \bigcup I_n$, each I_n a compact subset of \mathbb{R}^{a-1}, sup $C(I_n) \leq C_7$, and

$$
\sum \left[\int_{I_n} \Pi_{i=1}^{a-1} \alpha U_i (y_i - x_i)^p \, dx \right]^{1/p} = O(\Pi_{i=1}^{a-1} \delta_i).
$$

By (4) with $i = a$, we have that $\mathbb{R} - J_a \subseteq \bigcup I_j$, each I_j a compact subset of \mathbb{R}, sup $C(I_j) \leq 2$ and

$$
\sum \left[\int_{I_j} \alpha U_a (y_a - x)^p \, dx \right]^{1/p} = O(\delta_a).
$$

Then

$$
\mathbb{R}^a - \Pi a = (\mathbb{R}^{a-1} \times \mathbb{R}) - (\Pi(a-1) \times J_a)
$$

$$
= (\mathbb{R}^{a-1} - \Pi(a-1)) \times (\mathbb{R} \cup \Pi(a-1)) \times (\mathbb{R} - J_a)
$$

$$
\leq \bigcup_{n,m} (I_n \times K_m) \bigcup_{i=1}^{a} \Pi(a-1) \times I_j.
$$

The sets $I_n \times K_m$ and $\Pi(a-1) \times I_j$ are compact subsets of \mathbb{R}, for all n, m, j. Hence sup $C(I_n \times K_m) \leq C_8$ and sup $C(\Pi(a-1) \times I_j) \leq C_9$. Therefore 2.4) holds with $C = \max(C_8, C_9)$. Finally, by (5) and (6) we have that

$$
\sum \left[\int_{I_n \times K_m} \alpha U(y_0 - x)^p \, dx \right]^{1/p} =
$$

$$
= \sum \left[\int_{I_n} \Pi_{i=1}^{a-1} \alpha U_i (y_i - x_i)^p \, dx \right]^{1/p} \sum \left[\int_{K_m} \alpha U_a (y_a - x)^p \, dx \right]^{1/p} =
$$

$$
= O(\Pi_{i=1}^{a-1} \delta_i).
$$

We conclude from (3) and (7) that

$$
\sum \left[\int_{\Pi(a-1) \times I_j} \alpha U(y_0 - x)^p \, dx \right]^{1/p} =
$$

$$
= \Pi_{i=1}^{a-1} \left[\int_{I_i} \alpha U_i (y_i - x)^p \, dx \right]^{1/p} \sum \left[\int_{I_j} \alpha U_a (y_a - x)^p \, dx \right]^{1/p} =
$$

$$
= O(\Pi_{i=1}^{a-1} \delta_i).
$$
Lemma 2.2. For each V_y in $\mathcal{N}_y(G)$ ($y \in G$)

$$\lim_{u \to 0} \int_{G-V_y} \varphi_U(y-x)f(x)dx = 0$$

for all f in $(L^p, l^\infty)(G)(1 < p \leq \infty)$.

Proof. Let $y = (y_1, \ldots, y_a, s_0) = (y_0, s_0)$ be an element of $\mathbb{R}^a \times G_1$. We choose two elements V and K of $\mathcal{N}_0(G)$ with the same form as in Lemma 2.2, such that $y + K \subseteq V_y$ and $V \subseteq U$.

Following the notation of Lemma 2.2, we set $\eta_i = \min(\epsilon_i^2, \gamma_i)(i = 1, \ldots, a)$, and W_H the interior of K_H. Then the set $W = [-\eta_1, \eta_1] \times \cdots \times [-\eta_a, \eta_a] \times W_H$ satisfies the properties listed in Lemma 2.2. Hence by property 2.1) it is enough to prove that

$$\lim_{U \to 0} \int_{G-W_y} \varphi_U(y-x)f(x)dx = 0.$$

Since

$$G - W_y = (\mathbb{R}^a - \Pi_a) \times G_1 \cup \Pi_a \times (G_1 - (s_0 + W_H)),$$

we have by the definition of the function φ_U, that

$$\varphi_U(y-x) = \alpha_U(y_0 - t) \beta_U (s_0 - s) = 0$$

if $s_0 - s \notin H$, and $x = (t, s)$ in G. Hence

$$\int_{G-W_y} \varphi_U(y-x)f(x)dx = \int_{(\mathbb{R}^a - \Pi_a) \times (s_0 + H)} \varphi_U(y-x)f(x)dx$$

$$+ \int_{\Pi_a \times (s_0 + (H-W_H))} \varphi_U(y-x)f(x)dx.$$

Let $\{I_n\}$ be the countable family of sets given by property 2.3). For each I_n we have by the Hölder inequality and (1)

$$\int_{I_n \times (s_0 + H)} |\varphi_U(y-x)f(x)|dx \leq \|f|x_{I_n \times (s_0 + H)}\|_{pB_U} \leq$$

$$\leq \left[\int_{I_n} \alpha_U(y_0 - x)^p dx\right]^{1/p'}$$
By property 2.4) sup_N |S(I_n \times (s_0 + H))| \leq C, where C is a constant, and |S(I_n \times (s_0 + H))| is the number of K_α's (as defined in [S]) such that $I_n \times (s_0 + H) \cap K_\alpha \neq \emptyset$. This implies that for all $n \in \mathbb{N}$

$$||f \chi_{I_n \times (s_0 + H)}||_p \leq |S(I_n \times (s_0 + H))| ||f||_\infty \leq C ||f||_\infty.$$

Thus, we conclude from 2.2) that

$$\int_{(\mathbb{R}^n - \Pi_\alpha) \times G} \varphi_U(y - x) |f(x)| \, dx \leq \left(C ||f||_\infty B_U \sum_{n} \int_{I_n} \alpha_U(y_0 - x) \, dx \right)^{1/p'} = O(\Pi_{i=1}^\alpha \delta_i B_U).$$

Applying Hölder's inequality we get

$$\int_{\Pi_\alpha \times (s_0 + (H - W_H))} \varphi_U(y - x) |f(x)| \, dx \leq B_U ||f||_\infty |S(\Pi_\alpha \times (s_0 + (H - W_H)))| \left(\int_{\Pi_\alpha} \alpha_U(y_0 - x) \, dx \right)^{p'}. $$

Note that $\Pi_\alpha \times (s_0 + (H - W_H))$ is compact (H is compact and $H - W_H$ is closed), and because $B_U \to 0$ as $U \to 0$

Now, since $\Pi_\alpha \to y$ as $U \to 0$ and $s_0 + (H - W_H) \leq s_0 + H$ is independent of U, we have that $|S(\Pi_\alpha \times (s_0 + (H - W_H))| \to 0$ as $U \to 0$. Therefore by property 2.2)

$$\int_{\Pi_\alpha \times (s_0 + (H - W_H))} \varphi_U(y - x) |f(x)| \, dx \to 0 \quad \text{as} \quad U \to 0.$$

The result follows from (8), (9), and (10).

Theorem 2.3. For all f in $L^p(G)$, $2 \leq p \leq \infty$,

$$\lim_{U \to 0} \int_G \varphi_U(y - x) f(x) \, dx = f(y)$$

almost everywhere.

Proof: Let V_y be in N_y compact. We have to show, by Lemma 2.2, that

$$\lim_{V \to 0} \int_{V_y} \varphi_U(y - x) f(x) \, dx$$
Further, convergence of the Fourier transform on groups converges to \(f(x) \) almost everywhere. Since the function \(f \) belongs to \((L^p, l^\infty) \subseteq (L^2, l^\infty)\), the function \(g = f\chi_G \) belongs to \(L^2(G) \), and by Corollary 1.2, 1.1, and 1.4) each \(\varphi_U \) also belongs to \(L^2(G) \). Hence by the Parseval identity, we have that

\[
\int_{V_v} \varphi_U(y - x)f(x)dx = \int_G \varphi_U(y - x)g(x)dx \\
= \int_\Gamma \varphi_U(\vec{x})g(-\vec{x})|y, \vec{x}|d\vec{x}
\]

By the Lebesgue Dominated Convergence theorem (see properties 1.3 and 1.6) we have that

\[
\lim_{U \to 0} \int_{V_v} \varphi_U(y - x)f(x)dx = \lim_{U \to 0} \int_\Gamma \varphi_U(\vec{x})g(-\vec{x})|y, \vec{x}|d\vec{x} \\
= \int_\Gamma g(-\vec{x})|y, \vec{x}|d\vec{x} = g(y)
\]

almost anywhere.

3. Fourier Transform of Unbounded Measures

The space \(M_q(G)(1 \leq p < \infty) \) of unbounded measures of type \(q \) [S], consists of Radon measures \(\mu \) with finite norm \(||\mu||_q \) given by \((\sum |\mu|(K_\alpha)^q)^{1/q} \). If \(G = \mathbb{R} \), then the family \(\{K_\alpha\} \) can be taken as \(\{[n, n+1]|n \in \mathbb{Z}\} \).

In this section we generalize to locally compact abelian groups, the following theorem due to F. Holland [H].

Theorem 3.1. Let \(1 \leq q \leq 2 \) and \(\mu \in M_q(\mathbb{R}) \). Then as \(N \to \infty \)

\[
\frac{1}{\sqrt{2\pi}} \int_{-N}^N e^{-ixt}d\mu(t)
\]

converges in the norm of \((L^q', l^\infty)\) to a function \(\tilde{\mu} \) and

\[
\int h(x)\tilde{\mu}(x)dx = \int h(x)d\mu(x) \quad (h \in L^q, l^1)(\mathbb{R})).
\]

Further

\[
\sqrt{2\pi} \tilde{\mu}(x) = (C.1) \int e^{-ixt}d\mu(t)
\]
almost everywhere.

(C.1) means that the integral on the right is summable by the Cesáro method of order 1 to the value \(\sqrt{2\pi} \hat{\mu}(x) \).

It is easy to see, that for any measure \(\mu \) in \(M_q \) \((1 \leq q \leq 2)\), there is a net \(\mu_\alpha \) of bounded measures such that \(\lim ||\mu_\alpha - \mu||_q = 0 \), and therefore by [S. Theorem 4.2] \(\lim ||\hat{\mu}_\alpha - \hat{\mu}||_{q,\infty} = 0 \). This generalizes the first part of the theorem.

Theorem 3.2. Let \(\mu \) be an element of \(M_q \) \((1 \leq q \leq 2)\)

\(i) \int_G \hat{f}(\gamma) \hat{\mu}(\gamma) d\gamma = \int_G \overline{f}(x) d\mu(x) \) for all \(f \) in \((L^q, 1^1)(\Gamma) \).

\(ii) \) \(\int_G \gamma(x) d\mu(x) := \lim_{U \to 0} \int_G \phi_U(x) \gamma(x) d\mu(x) = \hat{\mu}(\gamma) \) almost everywhere.

(C.1) means that the integral on the right is summable by the Cesáro method of order 1 to the value \(\hat{\mu}(\gamma) \).

Proof: Let \(\mu_\alpha \) be the net of bounded measures related to \(\mu \), as mentioned above.

Since \((L^q, 1^1)\) is a subspace of \(L^1 \) [S.(3,4)], we have by the Extended Parseval Formula [S. Lemma 4.1] that for any \(f \) in \((L^q, 1^1)(\Gamma)\),

\[
\int_{\Gamma} \hat{f}(\gamma) \hat{\mu}_\alpha(\gamma) d\gamma = \int_G \overline{f}(x) d\mu_\alpha(x)
\]

By the Hölder inequality

\[
\int_{\Gamma} |f(\gamma)| |\hat{\mu}_\alpha(\gamma) - \hat{\mu}(\gamma)| d\gamma \leq \\
\leq \sum_j \left[\int_{K_\alpha} |f(\gamma)|^q \right]^{1/q} \left[\int_{K_\alpha} |\hat{\mu}_\alpha(\gamma) - \hat{\mu}(\gamma)|^{q'} d\gamma \right]^{1/q'} \leq \|f\|_q \|\mu_\alpha - \mu\|_{q,\infty}.
\]

Similarly

\[
\int_G |\overline{f}(x)| d|\mu_\alpha - \mu|(x) \leq \||\overline{f}\|_{q,\infty} \|\mu_\alpha - \mu\|_{q,\infty}.
\]

Therefore the left side of (ii) converges to \(\int_{\Gamma} \hat{f}(\gamma) d\mu(\gamma) \), and the right side to \(\int_G \overline{f}(x) d\mu(x) \). This proves \(i) \).

By proposition 1.1 and [S.(3.1)], each \(\varphi_U \) belongs to \((L^q, 1^1)(\Gamma)\), so from \(i) \)

\[
\int_{\Gamma} \varphi_U(y - \gamma) \hat{\mu}(\gamma) d\gamma = \int_G y(x) \overline{\varphi_U(x)} d\mu(x).
\]

Hence, part \(ii) \) follows from Theorem 2.3.
Convergence of the Fourier Transform on Groups

References

University of Regina
Regina, Saskatchewan
S4S 0A2
CANADA

Primera versió rebuda el 8 d’Abril de 1991,
darrera versió rebuda el 8 de Setembre de 1992