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Abstract

P-LOCALIZATION OF
SOME CLASSES OF GROUPS

AUGUSTO REYNOL FILHO

The aim for the present paper is to study the theory of P-
Localization of a group in a category C such that it contains the
category of the nilpotent groups as a full sub-category. In the sec-
ond section we present a number of results on P-localization of a
group G, which is the semi-direct product of an abelian group A
with a group X, in the category G of all groups . It tums out that
the P-localized (Gp) is completely described by the P-localized
Xp of X, A and the action w of X on A. In the third section,
we present the construction of the theory of P-localization in the
category of all groups which are extensions of nilpotent groups by
finite abelian groups . Our proof follows rather closely the one pre-
sented in [2, chapter II, and is based on the classical interpretation
of the second cohomology group of a group.

Introduction

Since Sullivan first pointed out the availability and applicability of
localization methods in homotopy theory, there has been considerable
work done on further developments and refinements of the method and
on the study of new areas of application . In [2] P. Hilton, G . Mislin
and J . Roitberg constructed the theory of P-localization of nilpotent
groups, where P is a set of primes . Some time later, P . Ribenboin in [3]
showed that it was possible to localize any group. (There is another ap-
proach concerning P-localization in group theory developed by Bousfield
in Topology 14 (1975) 133-150, and Mem. Amer. Math . Soc . 10 (1977)
no . 186, but, in this work, we just use the concepts presented in [2], [3]
and [4]) . The construction presented in [3], however, seems to be quite
abstract and this led us to try to obtain a more explicit construction of
the P-localization of a group G in the category of all groups . We were
successful when G is a semi-direct product of a finite abelian group A by
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some other group X. In addition, we managed to construct theory of P-
localization of a group in the category C of groups which are extensions
of nilpotent groups by finite abelian groups .
The question concerning semi-direct product is taken up in Section

2 and the main results are 2.1, 2.5 and 2.10 which could be stated as
follows .

Let P' be the complementary of P in the set of all primes . Theorem
(2.1) Let N -±-> G -'» X be an exact sequence of groups, where N is a
p-group and p E P' .

Then, e = eooEP-localizes G, provided that X

	

Xp P-localizes X .
In this context, Theorem 2 .5 says the following :
Let X

	

w) Aut(A) be an action, where A is a finite abelian p-group
and p E P.

Let Pl = {q E P' : q ~~w(X) ~} and consider Pi the multiplicative set
generated by P, .

Set H the sub-group of X generated by all x E X such that the order
of w(x) belongs to P,' .

Let wH be the restriction of w to H and F =
l'F7,

where r is the
smallest positive integer such that F' H = I"Hl (Here Fi has the ordinary
meaning and its definition may be found in [2]) . There is an action
X

	

Aut(A/r) induced by w, which can be factored as

X

	

w
)

	

Aut(A/r)

Let G = Al ~,X and G' = A/r 1 W,Xp
Then, e : (a,, x) E G ---> (a+ F, eo(X)) E G' P-localizes G .
Finally, Theorem 2.10 analyzes the situation in which A is a finite

abelian group .
Let X ~w_-> Aut(A) be an action, where A is a finite abelian group . Let

Al . . . . , A t be the p-primary componente of A and wi : X ---> Aut(Ai)
be the actions induced by w .

-
Let G = A ] c~X,Gi = A2 ]

	

,X and take G ~E Xp to be the pull-
(EJp

back of the arrows (Gi) p

	

-*

	

Xp. (Notice that (Gi) p are given by either
2.1 or 2.5 . Then, we claim that the natural homomorphism G f G
P-localizes G.
We devote Section 3 to present our resulte concerning the construction

of the theory of P-localization of a group in the category C of groups
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which are extensions of nilpotent groups by finite abelian groups . The
matter could be described as follows :
Given G El C 1, there exists a unique finite abelian sub-group U of

G such that G/U is nilpotent and I'2 = U where W is the action at-
tached to the extension : U N G -» G/U . Furthermore, there ex-
ists a unique group U and an epimorphism pv : U -» U and a unique
bP E HZ ((G1U)P ; i7) .

(bp : U - GP - (Glu)P) attached to 1 yielding commutativity in
the diagram

U G Gw
I PU

	

f e

	

l eo

jP :

	

_

	

,--,

	

GP

	

-~

	

(Gw)P

Under such conditions (3.12) states that G

	

> GP is a functor and
e is a natural transformation of functors . In addition, (3.13) also states
that eP-localizes G.

In Section 1 we introduce some basic results needed in the following
section . We believe, nevertheless, that Theorem (1.21) is important on
its own accord ; it states that if

X -~ Aut(A)

is a comutative diagram where X ~-e-'> XPP-localizes X and A is a P-
local finite abelian group, then eo* : H,1P (XP ; A)

	

H,1(X; A) is an
isomorphism .

This work is the main part of the author's Ph.D . thesis done under
the guidance of Professor Peter John Hilton .
The author is very much indebted to Professor Daciberg Lima

Gonjalves, at whose suggestion this work was developed .

1 . Preliminaries

In this section we introduce some general results on P-local groups,
factoring of actions and some propositions concerning group cohomology.
We start by fixing the notations P' = {n E N* : p 1 n => p E P} =

multiplicative set generated by P; P' is the complementary of P in the
set of all primes .
We also recall that G is said to be a P-local group

	

((dn E P'm)x E
G ~--> x' E G is bijective) .
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Moreover, G

	

e ) GP P-localizes G E l C 1 in the category C 4=> (GP E
IC 1, GP is P-local and b'H E I C 1, H P-local, (Vf E HOm(G, H»(3! fp E
Hom(GP, H)) which yields commutativity in the diagram

G --~, H
e l

	

lfp

	

) .
GP

Proposition 1.1 . Let E,,... , Et , K be P-local groups, where P is a
set of primes . Let el E Hom(Ej, K), i = 1, . . . , t . In these conditions,
if E E Hom(E, K) is the pull-back of the family (Ej)I<j<t, then E is
P-local.

Proof. Straightforward .

Proposition 1 .2 . Let 0 E Hom(Y F), where Y is a P-local group
and F is a finite group . Then, (dy E Y) we have o(O(y)) = n E Px;
(o(O(y)) = order of O(y)).

Proof.. Let y E Y and suppose that 3 q E P' with q 1 o(O(Y)) . Then we
may consider z = yk , where o(o(y)) = q.k . It follows that o(o(z)) = q.
The fact that Y is P-local and q E P' enables us to state that dr >
0, 3 zr E Y such that z4r = z. Thus, O(zr)gr = O(z) ~ 1 and 4'(zr)gr+'

-

O(z) 4 = 1, SO o(O(zr)) =
qr+l, yr > 0 . In particular {O(zr) E F : r > 0}

is infinite . However this is impossible, since F is finite .

Corollary 1.3 .

	

Under the conditions of the previous proposition, we
have 1 O(Y) ¡ E Px (ie, O(Y) is a P-torsion (finite) sub-group of F) .

Remark 1 .4 . According to proposition (7.1) in [4] we have that a
finite group F is P-local

	

F is a P-torsion group.
The full subcategory of the category 9 of all groups consisting of all

nilpotent groups is denoted by rl .

Proposition 1 .5 . Let X --w-> Aut(N) be an action, where X and N
are groups with Aut(N) finite . Then 3 !wp such that the diagram

X Aut(N)
eo i
XP

is commutative

	

w(X) is a P-torsion sub-group of Aut(N) .

Proof. It follows directly from Corollary 1.3 and Remark 1.4 .
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Now we take A Ñ G -'!» X an exact sequence of groups, where A is
abelian .
Let X --w -> Aut(A) be the action defined by p(w((x) .a) = g.p(a) .g-1

(where E (g) = x) .
Fix a collection of primes P, n E N and x E X, and define :

en(x) = lA + w(x) + . . . +w(xn-1 ) E End(A) .

For this endomorphism we have :

Lemma 1.6 . (,u(a) . g)n = p(0(E(g)) .a)gn ; b'g E G, da E A, dn E N.

ProoE It is easy by induction on n.

Proposition 1 .7 . Let P be a set of primes and let A ~ G ~ X
be an exact sequence of groups, where A is abelian and w is the action
attached to the extension. Fix the conditions : (i) G is P-local; (ii) X is
P-local; (iii) 9n (x) E Aut(A),Vx E X,`dn E P" .

Then, if two of (i) ; (ii) ; (iii) ; hold so does the third .

Proof.. (ii) + (iii) ==> (i) .
Fix n E P" . Let g, h E G and suppose that gn = hn. Then, E(g)n =

E(h)n => E(g) = E(h) since X is P-local . So, g = p(a).h and hn = gn =

(p(a) .g)n = p(0.(E(h)) .a)hn (Lemma 1.6) . Hence Bn(E(h)) .a = 0 . So
a=0 andg=h.

Likewise, let g E GAx E X such that E(g) = xn (XP-local). There-
fore, e(g) = xn = E(hn) . Therefore g = u(a).hn . Take b E A such that
a = Bn(e(h)) .b. Thus g = F¿(B,(E(h)) .b).hn = (p(b) .h)n due to 1.6 . So
g E G

	

> gn E G is bijective .
(The other implications are similar) .

Proposition 1 .8 . Let P be a set of primes and let A Ñ G

	

X be
an exact sequence of groups, where A is finite abelian .

	

Then, Bn(x) E
Aut(A), dx E X, dn E P", provided that either G is P-local or A and
X are P-local.

Proof. (I) G is P-local .
Fix n E P` and x E X. Suppose that Bn(x) .a = 0 . Let g E G such

that E(g) = x . Then (p(a) .g)n = p(Bn(x).a)gn = gn . So p(a) .g = g and
a = 0 . Thus en(x) E Aut(A) since A is finite .

(II) A and X are P-local .
Fix n E P` and x E X, and suppose 0,(x).a = 0 . Thus, (w(xn) -

lA).a = (w(x) - 1A)00n(x) .a = 0 therefore w(x') .a = a . On the other
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hand, o(w(x)) = m E P' (Prop. 1 .2) . Therefore w(x)m.a = a . As
gcd(m, n) = 1, it follows that w(x) .a = a, whence 0 = Bn(x) .a = n .a.
Thus a = 0 since A is P-local. So 8,,,(x) E Aut(A) . a

Corollary 1.9 . In the conditions of the proposition aboye (1 .8), G is
P-local <-==~ A and X are P-local.

E
-" I

Next we consider a split extension N >4 G

	

X, where N is a fi-
0

nite group. Let X ---w-> Aut(N) be the action given by p(w(x) .a) =
u(x) .p(a).o,(x)-1 and take Bn(x) : N --- N defined by Bn(x) .a =
1A(a) .(w(x).a) . . . (w(x)n-1 . a), x EX; n EN* :

In this slightly different context we now describe properties which are
quite similar to Prop . 1 .6, 1 .7, 1.8 and 1 .9 .

Lemma 1.10. (p(a) .(x))n = P(vn (x) .a) o.(X)n ; dx E X; dn E
N* ; `da E A.

Proof. See Prop . 1.6 .

Proposition 1.11 . Let N Ñ G <--< X be a split short exact sequence
of groups and let w be the action defined by the splitting o� .

	

Fix the
statements :

(i) G is P-local; (ii) X is P-local ; (iii) en(x) is a bijection, bx E
X; `dn E P'x .

Then, if two of (i); (ü); (iii); hold, so does the third .

Proof. See Prop . 1.7 .
E

Proposition 1.12. Let N >-~ G E--< X be a split short exact sequence
0

of groups, where N is finite . Then Bn(x) is a bijection, dn E P", dx E X
provided that either G is P-local or N and X are P-local.

Proof. If G is P-local, then the proof follows as (I) Prop . 1.8 .
So let's suppose that N and X are P-local. Let w(X) ~-i > Aut(N)

and G = N 1 Zw(X). w(X) is a P-torsion group (Cor . 1.3) and N is
a P-torsion group (Remark 1 .4) . Thus G is a P-torsion group. So G is
P-local (Remark 1 .4) .

E

Then taking the sequence N ~ G <Z w(X) and invoking the firsta _
statement of this proposition we conclude that 8,,,(T) : N

	

N given
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by 0,, (7- )

	

=

	

1N.2(T) . . . ¡(7-n-
1)

	

=

	

1NT . . . Tn-1

	

is a bljectlon,

	

dT

	

E
w(X), dn E P`. So, b'x E X V'n E P` cae have that B,,(x) is a bijection,
since Bn(x) = 1N-w(x) . . . w(xn-1 ) = en(T), where T = w(x) E w(X) .

Corollary 1.13 . Under the condition of the previous proposition
(1.12), G is P-local ~ N and X are P-local .

Proof.. See Prop . 1 .9 .

Proposition 1 .14 . Let N - G ~ X be an exact sequence of groups .
Then, G and X P-local ==> N P-local .

Propf. It follows directly from the definitions . a
From now on cae establish some results which play an important role

in Section 3 .
Let X --w~+ Aut(A) and X - 0 -~ Aut(B) be actions, where A and B are

abelian . Let also a E Homz[XI (A, B) (ie a(w(x) .a) = 6(x).ca(a)) .
The reader interested in more details about the constructions involved

in the propositions below should collect material in [5, chapter II, Propo-
sition 4.3 .], for instante .
The proofs of the next three propositions follow easily from the defi-

nitions according the usual techniques .

Proposition 1.15 . Consider the diagram

where A and B are abelian and the rocas are exact .
If there exists ,3 E Hom(G, Q) making the diagram commutative, then

a E Homz[XI (A, B) and a* l = 7*( .
Conversely, if a E Homz[X] (A, B) and a*j = ,y*(, then there does

exist ,l E Hom(G, Q) making the diagram commutative .

Proposition 1.16 . In the diagram

G

A Ñ G

	

X
« 1

	

T ,[.L N

	

1 -Y,

X
1 ~r
y



26

	

A. REYNOL FILHO

the rows are exact, A and B are abelian and T and ~ yield commutativity .
Then, there exists a cross homomorphism r : X --> B such that dg E
G, O(g) = ms(g) .T(g) .

Proposition 1 .17.

A
al
B

w
G X
1T 1w

ir
Q Y

In the commutative diagram the rows are exact and A and B abelian .
Let X

	

"' i B be a cross homomorphism. In these conditions the func-
tion G

	

0

	

Q given by fl(g) = mE(g) . T (g), `dg E G is a group homomor-
phism .

Lemma 1 .18. Let Q be a P-torsion abelian group . Then H<,(Q) is a
P-torsion abelian group, = dq > 0. (Here Hq(Q) means the homology of
the group Q with integer coeficients) .

Proof.. The assertion is readily checked, since, according the theory in
[2] we have Hn(Q)p, - H�,(Qp,) = Hn((0)) = (0) ; n >_ 1 (once Q is
P-torsion abelian) .

Lemma 1.19. Let N

	

G

	

Q be a central exact sequence of groups .
If G acts P-locally on an abelian group A, then Q acts P-locally on
H*(N ; A).

Proof. We recall that if G acts on A by means of w, then the action
w is P-local if and only if (dn E P`)(Vx E G)Bn (x) = lA +w(x) + +
w(xn-1) E Aut(A) .

Moreover, taking z E G such that E(z) = x, it is known that the
induced action of Q on H'(N ; A) is given by : Q Aut(H9 (N; A)),
where Q(x) = w(z) * .(remember that the extension N , G -'» Q is
central) .
Thus, fixing x E Q and putting 6n (X) = 1Hs(N;A) + 9(x) +

	

+
SZ(xn-1 ), we get : '9n(X) = (1A)*+w(z)*+- . .+w(zn-1)* = [lA+w(z)+
. . . + w(zn-1 )] * = On(z)* . So On(x) is an isomorphism .

Lemma 1 .20. Suppose that the action X --w--> Aút(A) is P-local and
X is a P'-torsion group (A an abelian group) . Then, w is trivial .

Proof.- Set x E X. By hypothesis, 3 n E P'x such that xn = 1 . SO,
0 = w(xn) - lA = 6n (x)o[w(x) - lA] .
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Then, w(x) = lA (for 0n,(x) E Aut(A)) .

The next theorem is stated in the category 97 .

Theorem 1.21 . Consider the commutative diagram

X ~ Aut(A)

where X is a nilpotent group, A is a P-local finite abelian group and
w, wp are actions .

91Then we have Hjp (Xp ; A)

	

HW(X; A).
eo

Proof.. (Induction on c = nil X.)
If X is abelian, we take the following short exact sequences :

0 -> Ker(eo)
____>

X
eó,

eo(X) -> 0 . . . (1)

0 -> eo(X) - e,-> Xp ---> Coker(eo) -+ 0 . . . (2)

(1) yields a spectral sequence (Lyndon-Hochschild-Serre) where E2 ,s =
H'(eo(X ) ; H'(Ker(eo) ; A)) .

Noticing that Ker(eo) acts trivially on A we are allowed to say
that the following sequence is exact 0 --> Ext(HS_1(Ker(eo));A) >

Hs(Ker(eo ;A)) ---> Hom(H,(Ker(eo) ;A) -~ 0 .
Since Hom(P'-torsion, P-local) = (0) = Ext(P'-torsion, P-local)

and (ds > 0)Hs(Ker(eo)) is P'-torsion (Lemma 1.18) we conclude that
E2's = (0), ds > 0, whence the spectral sequence collapses .

Thus, Hr, (eo (X) ; A) = E2'o = Er, - H,,, (X ; A) . Therefore, we have
got that eó is an isomorphism .

Likewise,

	

(2)

	

yields

	

another

	

spectral

	

sequence

	

where

	

E2> s

	

=

Hr(Coker(eo) ; H'(eo(X) ; A)) .

	

Here

	

Coker(eo)

	

acts

	

trivially

	

on
H-'(eo(X ) ; A) .

This may be seen from Lemmas 1 .19 and 1 .20 according to the fol-
lowing argument : due to Proposition 1 .5 wp(Xp) is a (finite) P-torsion
group . So, Y = A 1 iwp(Xp) (where wp(Xp) y Aut(A)) is a finite
P-group . So Y is P-local, and then it follows that wp acts P-locally on
A (use the same argument that the one in 1.12) .
Now, by Lemma 1.19, we have that Coker(eo ) acts P-locally on

Hs(eo(X);A) . As Coker(eo) is P'-torsion, our statement now follows
from Lemma 1.20 .
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Thus, taking into account that the sequence 0-+Ext(Hr_1(Coker(eo));
Hs(eo(X) ;A)) --~ E2's ~ Hom(HT (Coker(eo) ;Hs(eo(X);A)) -> 0
is exact, Coker(eo)is P-torsion and Hs(eo(X) ; A)) is P-local we obtain
E2'3 =(0)dr>0 .

Thus, H'(eo(X) ; A) = EZ's = EO,.,s = Hs(Xp; A), whence eó* is an
isomorphism .
Remebering that the diagram commutes

H,1 (X ; A)

	

F-

	

HWp (Xp;A)
el .-feo

	

-~e0
HW,(eo(X); A)

we conclude that e* is an isomorphism, so that the proof is ended if
c =ni1 X = 1 .
Now let X E l 971 with nil X = c > 1 and set F = FIX 7 {1} .
Then, the commutative diagram with exact rows

induces a map of the spectral sequences . In particular we obtain the
commutative diagram

eó

F N x -» x/F

1 el l eo el

Fp ~ xp -~ (x/F)p

E2'3 =`H'(Xlr ;H`(F;A))

	

e0
_T (eó,e0)*
Ez's = H'((XIr)p;HI (rp ; A))

	

(eó'* )
H''((XIr)p ; Hs (F ; A))

11*It now follows from the first step that H'(Fp ; A)

	

0
-> Hs(F; A), whence

(eO*) * is an isomorphism . On the other hand, from [2, theorem 4.14,
pg.40], we are allowed to conclude that eó is an isomorphism, since
H' (F ; A) is P-local .

So E2 's (e-
)
ÉZ' s . and we may infer that HI(Xp; A)

	

Hn(X; A)

finishing the proof.
Finally, in order to finish this section, we are going to consider the

following situation (which will appear again in the next two sections) :
Let X ~ Aut(A) be an action, where A is a finite abelian p-group

(pEP).
LetP,={gEP' :q~ ~w(x) 1}andsetH=<xEX :o(w(x))E

P1 >= (sub-group generated by x E X such that o(w(x)) E Pi). Notic-
ing that H < X and setting wH = w jH : H ---> X w) Aut(A) we
get :
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Proposition 1.22. PWH is a w-sub-module of A, dj > 1 .

Proof. It follows, by induction on j, from the fact that w(x) .(w(h) .a-
a) = w(xhx-I).(w(x) .a)-w(x) .a, together with the fact that H aX(a E
I'wH1 ;hEH,xEX).

Next set I' = I'WH , where r is the smallest positive integer such that
rT

	

= rT+l .
WH WH

Proposition 1.22 enables us to take X

	

Aut(A/r), where W(x)(a +
I') = w(x) .a + I' . Then it is plain that w IH =W IH and we have:

Lemma 1.23 . w ¡ H is trivial .

Proof.. Recall that
I'w~H

= I'wH /I'wH . Thus WH is nilpotent .
Remembering that A/r is a finite abelian p-group and invoking the

Prop.7, pg . 7, [1] we conclude that W(H) =WH(H) is a (finite) p-group .
Taking, on the other hand, h a generator of H, we have h E H and

o(w(h)) E Pi .

	

It follows that o(W(h)) E P,', since o(W(h)) 1 o(w(h)) .

Taking into account that Pl C P', it follows, at last, that o(W(h)) = 1
and therefore W(h) = IA/,, dh E H.

Proposition 1.24. w(X) is a P-torsion sub-group of Aut(A/r) .

Proof. Suppose that 3 q E P' with q 11 w(X) 1 . Thus 3 y E X such
that o(W(y)) = q . Then we have o(w(y)) = qe .m, gcd(q, m) = 1 (for
o(w(y)) 1 o(w(y))) . Hence, o(w(ym)) = qe and therefore o(W(ym)) = q.
It follows that W(y') :,~ 1A/,,, which contradicts the statement of the
preceding lemma (1 .23) .

Corollary 1.25. El ! action XP

	

Aut(A/r), with w'(XP) = W(X),
which yields commutativity in the following diagram

X Aut(A/r)
eo 1

XP

Proof: It follows directly from the Prop . 1 .5 .
Now consider the commutative diagram

A Ñ G ~ X
al v 10 ar 17
B >---> Q _* y
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where the rows are exact and A and B are finite abelian p-groups . Let
Pl(A) = {q E P' : q 11 wi(X) I} ; Pl (B) = {q E P' : q 11 w2(Y) I}-

Proposition 1 .26. In the conditions abone,
a(r'j1IHA)

C I'i,, ZIHB ,
dj > 1 (In particular a(r(HA)) C F(HB)).

Prooi We argue by induction on j. It is clear for j = 1. Next, take
a E Fi1~Hn and x a generator of HA. Thus, o(wl(x)) = n E Pl (A)x .
Let's suppose that o(w2(y(x))) = r.s where r E Px and s E PI (B)x .
Let n i = o(wi(xs)) I o(wl(x)) = n. Then, ni E Pl(A)x. Now,
w2(?í(xs )) r .ce(a) = n(a) and w2(7(x s))nl n(a) = a(wi(xs)n' .a) = n(a).
It follows that w2(y(xs)).a(a) = a(a), due to the fact that gcd(r, n i ) = 1 .
Also, gcd(r, s) = 1 e~ 3 k, Q E 7L such that kr + ~s = 1.

	

Therefore
w2(-y(x)).a(a) = w2 (7(x) r)k .w2(y(x s )) P .a(a) = w2(-y(x)r)1.a(a) .

	

But
o(w2(y(xr)) = s E P1 (B)x . Therefore-y(xr) E HB, whence7(xr) k E HB.

It follows that a(wl(x) .a-a)=w2(-y(x)).a(a)-a(a)=w2(y(xr))~a(a)-
a(a) E Finas, since a(a) E hú,1HB by the inductive hypothesis . Now it
is easy to finish the proof.

2. P-Localization of semi-direct products

Throughout this section we just work with the theory of localization
in the category 9, as developed in [3] .

Let P be a set of primes .

Proposition 2.1 . Let N >

tt

-> G -'! X be an exact sequence of groups,
where N is a p-group (p E P') . Then, e = eos P-localizes G, where
X --eo---> XP P-localizes X.

ProoL It is enough to notice that if Np is trivial, then every homo-
morphism from G into a P-local group vanishes on N, and hence e is a
P-equivalence .
Next we prove a proposition which plays a fundamental role in the

proof of the main theorems in this section.

Proposition 2.2 . Let X

	

Aut(K) and_

	

_

	

XB	Aut(K)be ac-
tions, where K and K are finite groups, K P-local . Let G = K 1 wX
and G = K 1 wXp . Consider also the commutative diagram
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K

N

00

G

Gp

I

B >-~ N

	

K, B = ker ~' .

Use the proposition 6 [3] shows that

Xp

In the diagram p, e, Q,

	

i~, Q, ep, up are defined as usual, eP-localizes
G, N = ker ep, p' : N -> Gp, e' is defined by the restriction of e, 7r is
surjective and é, = e' . Let >s also suppose that b'x E X, da E K we Nave:

(i) ir(w(x) .a) = w(eo(x)) .ir(a) and (ii) e'(w(x) .a) = wp(eo(x)).e'(a) . Un-
der these conditions we claim that é(w(z).a) = wp(z).é(a), dz E Xp, Va- E
K.

Proof. é E Hom(G, G) due to the hypothesis about ir, as well as G is
P-local by corollary 1.13 . So 3 ! 0E Hom(Gp, G) such that Oe = é and
it is plain that -~o = Op and WUp = Q.

defines <b' by restriction, whence we have N ~ K with
and O'e' = 7r . SO 0'é = 1K . Then we get the split short exact sequence

Xp = U(Ip,,i(Xp,eo(X)))
=o

X

Therefore, it is enough to show that our formula holds
dz E (Ip, , 2(Xp, eo(X)) ), di > 0 . We argue by induction on i .

(Ip,,o(Xp,eo(X))) = eo(X) and ¿(w(eo(x)) .a) = wp(eo(x)).¿(a) eas-
ily.
Now suppose z E Ip,, i(Xp, eo(X))=Ip, , 1(Xp, (Ip, , i-1(Xp, eo(X)))) .
Thus, 3 n E P` such that zn E (Ip,,2_1(Xp,eo(X))), whence

é(w(zn) .á) = wp(zn).é(á) by inductive hypothesis .
Next we take m = o(w(zn)) E P' by Prop . 1 .21
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So, wp(znm) .é(á) = é(w(zn)m.á) = é(á), whence wp(zn-) j,(K)=

12(K) .

On the other hand, taking T = 0' o wp(zm) o é we have r = W(zm)
and o(W(zm)) E Px by Prop . 1 .2 again .

But, w(zm)n = 1K ==> o(W(zm )) 1 n, so W(zm) = 1K .

So, O'wp(zm)é = 1K. Now recalling that B ,--> N » K splits we have

wp(zm) .é(Zí) = b.é(ál ) ; b E B ; á1 EK:

Use of the O' .wp(z'n) .é = 1K shows that áI = á. Therefore
wp(zm) .é(a) = b.«-a) .

Applying successively wp(zm) to the expression above we obtain :
_(~)

	

=

	

WP(zm)n .e(CL)

	

=_
L(WP(zmp- 1 .b) . . . (wp(zm) .b) .b]é(á)

	

=

(Bn(zm) .b-1)` .¿(á), (where en(zm) .u=n(wp(zm) .u). . .(wp(zm)n-1 .u)) .

Use of the proposition 1 .11 together with the fact that Xp and Gp
are P-local shows that en(Z') is bijective, whence b = 1 .

So, wp(zm) ~~(K) = l~(K) .

	

Also, gcd(m, n) = 1 ==> 3 r, s E 7G such
that rm + sn = 1 .

	

Thus, wp(z).é(á) = wp(zn)s o WP(zm)
r.é(á) =

WP(znys .é(á) = é(W(zn)s .á) = é(W(zn)s o W(zm)r .á) = é(W(z) .á),'~-a E
K,dz E Ip,,i(XP,eo(X)) .

Now it is easy to complete the argument .

Next let X

	

0') Aut(A) be an action, where A is a finite abelian p-
group (p E P) . Let Pl = {q E P' : q 11 w(X) 1} .

Take r = F(H) as it was defined just after Prop . 1 .22 .

Thus, corollary 1.25 yields

X Aut(A/r)
eo 1
Xp

Let G = A 1 �,X and G' = A/r 1 wXP .
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B

N

Lemma 2.4 . é 11, = 0.

B >--> N -_~» A /r splits .
é

P

G

Diagram 2.3

J1
I
~

lé
eo

E~

rt v,

lf
EP

Gp +'< Xp
Op

X

In the diagram 7r is the natural projection (therefore
nE Homz!X! (A, A/r)), e'(a, x) =(7r(a), eo(x)), therefore e'EHom(G, G') .

Thus 3 ! f E Hom(Gp,G') such that fe = e' .

The other functions are defined as usual except for é, which is going
to be defined just after the next lemma.

Proof- Let x be a generator of H and m = o(w(x)) E P,2' . Let b =
w(x) .a - a; a E r.

Then, (b, x)' = (8,�, (x) .b,xm) = ((w(x) m - 1A).a, xm) = (0,xm) =
(0, x)'. Thus e(b, x)m = e(0, x)m ===> e(b, x) = e(0, x) for Gp is P-local.
Therefore, é(b) = l. Now it is plain that é(I') = {l}.

Define é E Hom(A/r, N) such that &r = é. Then, fé = las,,, whence

Theorem 2 .5 . In the conditions aboye, e' : G ---> G' P-1ocalizes G.

Proof.. Set 0' : G' ,Gp, where O'(a, z) = TI¿(a) up(z) .
Owing to prop . 2.2, we have 0' E Hom(G', Gp), and then it is readily

checked that 0' = f-1 .
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Finally, we analyse the situation in which A is (only) a finite abelian
group.

Let X "-> Aut(A) be an action, where A is a finite abelian group.
If ¡ A l= pá' . . . pt

	

, then

Ai = pi-primary component and

t
Aut(A) - rl Aut(Ai) .

i=I

Thus, there is (uniquely determined) wi : X ---> Aut(Ai) ; i = 1, . . .t.
Let G = A

	

WX; Gi =Ai	X; G j> X;Gi ~> X as usual.

It is well-known that E is the pull-back of (Ei)1<i<t-

Let G

	

Gi be the projéction and G~ Xp be the pull-back of the
(EjParrows (Gi) p --) Xp; i = 1,�. .t.

Since (E_i)p o (Qj)p = 1XP , there does exist (only one) Q E
Hom(Xp, G) such that ~fi o Q = (ui)p, Vi (here Wi is the usual pro-
jection) .

Likewise, it is plain that 3 ! f E Hom(G, G) such that ~riof = ei~i(ei
Gi -) (Gj)p P-localizes Gi).

It follows that éf = eOE and ftr = Qeo . We recall that G is P-local by
prop . 1 .1 .

Moreover, 3

	

E Hom(Gp,G) such that 7rioo = (7ri)p, Since
(Ei)po(7ri)p = Ep,,di (In particular 7ri is an isomorphism) . By unique
ness we have got f = Oe ; i~o = ep ; OQp = v and E

	

= 1XP as well . (So
G=CIXP).

Finally, let
t

C= ker

	

-®ker(Ei)p ;
i=1

Ti :C ,G,N_ =kerEp;p' :N-~Gp,e,f,0,define e :A->N,f
A -> C and i : N ---> C by restriction . Let B = ker 0.
Soon we are going to show that 3 ! e' E Hom(C, N) such that e'7 = é.
We are able, at last, to construct the following commutative diagram:
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B

K=Ker

Diagram 2 .6

Lemma 2 .7 . f is an epimorphism .

Proof. This follows from the fact that
t

E

t

K = ® K¡(K¡ = ker
i-1

In order to justify all the indications in the diagram, we still need two
lemmas .

ker(Ejp N (Gilp ~-» Xp

taken in the conjunction with the cases previously analysed .

Lemma 2.8 . é IK= 0.

Proof. Since
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we just have to show that é 1x;= 0, Vi .
This follows from the diagram (vi is a splitting attached to Sri)

Ki ~-a

	

Ai

	

Ñ

	

Gi

	

~i'

	

G
el

	

1 el

	

1 e
vti1, 1

	

( )P
ker(Ei)P ,--, (Gi)P

	

GP

So we have e' E Hom(C, N) with e'f = é.

Lemma 2.9 .

(i)7(W(x).a) =W(eo(x)).f(a)_

	

;dx EX;b'a E A
(ii)é(w(x) .a) = wp(eo(x)) .e(a) }

Proof. Both statements are readily checked from the definitions .

Theorem 2.10. In the conditions abone, G --f-~> G P-localizes G.

Proof: Let

	

Gp defined by 0(p(c) .~j;(z)) = p'e'(c).ap(z) ; c E
cl zEXp .
0 E Hom(G, Gp) by prop . 2 .2, so that it is plain that

3. P-localization on the category C

Throughout this section we construct the theory of P-localization of
a group in the category C of groups which are extensions of nilpotent
groups by finite abelian groups . (althought we still use the same notation
G~Gp for P-localization in the category C) .

Proposition 3.1 . Let A ~ G ~ X be an exact sequence of groups,
where A is abelian finite and X is nilpotent. Let X _w-> Aut(A) be the
action attached to the extension and suppose I'W = A.

Let also ,0

	

E

	

Hom(G, K) and B

	

Ñ

	

K

	

-'»

	

Y be an exact se
quence, where B is finite abelian and Y nilpotent.

	

Then, there exist
a E Hom(A, B) and ,y E Hom(X, Y) which yield commutativity in the
diagram

A
al

B

X
1y
Y
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Proof. Let H = rop(A) < Y . It follows from I` = A that H C [Y, H] .
So H C [Y, H] C I,2Y and then, by induction, H C I'ky, bk >_ 2 ; whence
H = {1} since Y is nilpotent . This completes the proof.

Proposition 3.2 . dG E l C 1, 3 ! U = U(G) < G, U finite abelian with
G/U nilpotent such that Fue, = U, provided that w is the action attached
to the extension U >-~ G -» G/U .

Proof- Let A >'-"-> G » X be an extension where A is finite abelian and
X is nilpotent . Let SZ : X -> Aut(A) be the action attached to this
extension, and set F = F', where r is the smallest positive integer such
that Fr = I'r 1 . Let U = la(F) <G. So U is finite abelian . Furthermore,
A/F >-> G/U -» X is exact and X acts nilpotently on A/F, so that G/U
is nilpotent . It's also plain that Fue, = U, if w(gU)u = gug-1 . Finally
we point out that the uniqueness follows in a straightforward way from
proposition 3.1 .

Now let p be a prime and Cp be the full sub-category of C of all groups,
which are extensions of X by A, where A is a finite abelian p-group .

Corollary 3.3 . G E 1 Cp 1 => U = U(G) is a finite abelian p-group.

Proof. In fact, U = u(F) and F is a sub-group of A . a

Corollary 3.4 . G ESC I ; G is nilpotent ~ U = U(G) = {1} .

Proof. (==) G E¡ rl 1==> w : G/U ---> Aut(A) is nilpotent ==> U =
F2 _ . . . = FW 1 = {1} .(c = nil w) .

(4--=) It is obvious .

Corollary 3.5 . G E l p

	

11 p, q primes, p qL q, such that G E 1 Cp 1

n ¡C.1 .

Proof- It follows from cor . 3.3 and cor . 3.4 .

We now define Gp El C 1 provided G El C 1 . Fix ~ : U >'-> G -'» G/U
where U = U(G) is defined by prop . 3 .2 ; w(gU)u = gug -1 and G/U
(G/U)p P-localizes G/U in 77.
We consider 3 cases :
Let p be a prime and suppose firstly G E l Cp 1 .

I) p E P'.

Set e = eo o e, G » G/U Pa' (G/U)p .
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Then we have :

HW(G/U; U) --'-* -H"-,(G/U ; U/I')

So we must consider

(0) - (GIU)P = (G/U)P

We should point out that 7r*j = e*IP = 0.
II) pEP.

Let Pl = {q E P' : q 1 1 w(G/U)1 1},H =<x E G/U : o(w(x))Pj >,F =
F(H) and w : G/U ----> Aut(U/F) as defined just after theorem 1.21 .
Corollary 1.25 allows us to claim that 3 ! action wP making commutative
the diagram

Glu -i

	

Aut(U/r)
/ AIP

(Glu)P
Taking the natural projection U --� U/F, we have that 3 !
e*IP = 7r *l where

Hwp((G1U)P ; U/F)

Once more it is shown by prop . 1.15 that there is a commutative
diagram

U >
P+ G

	

Glu
le leo

IP

	

U/r ,--, GP --� (Glu)P

¡el \U lCPw o .
p

bP such that

At this point it is important to point out that we have defined G E

Up 1 C 1-+ GP E l C 1 and this definition is "good" since G E l Cp 1 n 1
Cq ¡==¿- G E 17 (cor . 3.5) and then U = {1} (cor . 3.4)

In particular, this construction extends the one made in [2] .
Example 3.6 . Let w : 7L --> Aut(Z/3 ® 7G/5) given by w(1) .a = 2a

and w(1) .b = 2b . Let G = (Z/3 ® 7G/5) 'j ~,7Z .
Then F2 = Z/3 ® 7G/5 = A, whence G 11 17 1 . However G E l C 1 and

since U = tc(A), it follows that G 1 Up 1 Cp 1 .

This example shows that
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III) G OCI \Up ICpI-

Now U is no longer a P-group . Neverthless,

Also,

and es = (wl, . . . , wl) .
We have

1 E H2 (Glu ; U)

SP E H,,p(G/u)P ; U)

where

is defined by (I) or (I1) . Also,

where Ui is the pi-primary component of U.

t
G/U ---> Aut(U) =

	

Aut(Ui)
i=1

t

(7ri . , . . ,7rt* ) i-1

where U -H Ui is the usual projection. Notice that I'2 = U -4 I'2

w

	

wi
=

U¡ ; Vi = 1, . . . , t . Let fi = Sri * l and consider the commutative diagram

(1r1* , . . . ,7rt- )

(7r 1 * , . . . ,7rt * )

Si Ui %+ Gi -» G/U
Pi

	

1 Pi

	

Po

( i)P :

	

Ui

	

>li-x>

	

(Gi)p

	

( P

	

(G/u)P

(Si)i E ®í-1

H~2i (GlU ; Ui)

®xt=1eo-1)(®tz=1 Pi*)

(Si)P E ®i=1 H(w;)n((G/U)P ; Ui

and 3 ! Sp such that

	

,7Ft**)1p = ((ji)p)i provided that

	

i is the
usual projection and p = ®ipi .
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Diagram 3.7

By definition, we have that IP is the pull-back of the arrows
since
As for G -j Gp defined by (I) ;(II) ;(III) we have the next two propo-

sitions .

Proposition 3 .8 . e is P-surjective .

Prooi Obvious.

Suppose we have

Proof. It follows directly from the definitions .

Corollary 3.9 . G --e > Gp ---9--> K, with K P-local.
Then fe = ge ==> f = g .

Proposition 3.10. G P-local ==:> e is an isomorphism .

Proof. We have 3 cases to analyse. The only one which is not obvious
is (II) .

U

	

G -» G/rl
ir 1

	

1.e

	

leo
,--UIr , GP -~ (Glu)P

G P-local =>G/U P-local (cor . 1.9) . So w(G/U) is a P-torsion sub-group
of Aut(U), since Aut(U) is finite and G/U is P-local (cor . 1 .3) . Therefore
H = {1} and F = {l} . Therefore n = lu. So e is an isomorphism .
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Next we consider a commutative diagram

U(G) =

	

U

	

G

	

G/U
la la 17

U(K) =

	

V

	

K

	

K/v

Let us define á E Hom(U, V) induced by (apu = pva; U
P» U) .

We take U = ®U(p) and V = ®V(p) ; p-primary decompositions .
Proposition 1 .26 assures that a(FU(p)) C FV(p), since a(U(p)) C V(p) .
Actually, we consider

~(P)

	

U(p)

	

'--'

	

G(p)

	

-	Gl U
1 alu(P)

S(p)

	

V(P)

	

K(p)

	

-

	

Kv

and then use prop. 1 .26 to ~(p) _ 7r(p) *

	

and «p) = 7r(p) * (.
We define, by restriction, «p) : U(p) - V(p), whence we have

PU(P) l

U(p) =

	

U(p)/ru(P)

and finally á = ®pd(p) .
At this point we state a fundamental proposition .

U(p)

	

a~P)

	

V(P)
l PV(P)

V(p)/FV(P) = V (P)

Proposition 3.11 . á is an homomorphism of modules .

ProoL Let us consider the comutative diagrams.

GU AutU)
eo 1

	

/ wa
(G/U)P

Kv -> Aut(9)
eo 1

	

/sap
(Klv)P

where wP and gP are the actions given by the extensions

U Ñ GP -» (G/U)P
1IX 17P

V Ñ KP -» (Kv)P
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We ougth to get that á(wp(z)Z) = Qp(yp(z)).á(a), bz E (G/U)p and
baEU.

Fix z E (G/U)p and á E U.

G/U nilpotent

	

n E P` such that zn = eo(x) . Then,
á(wp(zn) .á) = U(wp(eo(x)) .-j) = á(w(x) .á) = a(w(x) .a) (by definition)
= pva(w(x).a) = pv(9(y(x)) .a(a)) (a is a homomorphism of modules)
_ Q(y(x)) .a(a) = gp(eo(y(x))) .5(a) = QPyp(zn) .á(á) . . . (*) .
On the other hand o(wp(z)) = m E Px, (prop . 1 .2), since (GJU)p is

P-local and Aut(U) is finite .
So, gp(yp(zn)m) .á(j) = U(WP(zn )m .Q) _ Z!(á),

	

E U . Therefore,
gp(yP(zm )n)IIX(U)- 1IX(U) .

Still, taking into account that in the exact sequence (p : V >--> Kp ~>
(K/V)p; Kp and (K/V)p are P-local we can state that_ Bn(yp(zm)) _
1V + gp(i'P(zm )) + . . . + gp(yp(zm)n-1) E Aut(V),dn E P'x and
,YP(zm) E (K1V)p .
Thus Va- E U we have : 0 = á(¿í) - gp(yp(zm)n) .Cj(Q,) _ [les -

pp(iyp(zm )) nja(a) = en(Íyp(zm»0 [ 1V - Qp(yp(zm))].a(Z¡) . Therefore,
5 ( -j) - QP(yp(zm )) .a(a) = 0, whence Pp(yp(zm » Iá((1)= 1-a(5) .

Finally 3 r, s

	

E

	

9G such that rm + sn

	

=

	

1

	

(gcd(m, n)

	

=

	

1).
Therefore á(wp(z) .á) = á(WP(zn ) soWP(zm )r .j) = á(WP(zn)s .á) =
gp(_YP(zn) 3 ) .á(á) = gp(i'P(zn ) s ) .qP(7P(zm )r ).5(C1 ) =S2p(yp(z)) .a(-j) .

Theorem 3 .12 . G, K E I C 1 ; 3 ! /3p E Hom(Gp, Kp) yelding commu-
tativity in the diagram

I : U

	

»

	

G

	

~>

	

G/U

Sp

	

>i~> Gp > (G1U)P

V

	

>, IK

	

~>

	

K/V
Cp 'IYp

Sp : V

	

>~>

	

Kp

	

-"*P

	

(K/V)p

Proof' The uniqueness follows from the corollary 3.9 :,
For the existence we observe that eóyP~p = .y*e*(p = y*pv " ~ (defi-

nition of (p) = pv "y*~ = pv " a*(1) (prop . 1 .16) = á * pu* = ce * e*Ip
(def. of ~p) = e*U*jp .

It follows that y*~p = c**jp due to the fact that HZ ((G/U)P ; V) --° >
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H2 (G/U ;V) (Th . 1 .21) .
So by proposition 1.16, 3 r E Hom(Gp, Kp) yielding commutativity

in the "front face" of the diagram .
Thus Te and eO make commutative the diagram

t¿

	

eU G Glu
pvoa 1

	

re U e/3

	

1 eo

V ,--, KP - (K1v)P
Use of the proposition 1.17 shows that 0 : G/U

	

> V a cross ho-
momorphism such that efl(g) = v0e(g) .Te(g),dg E G. However,

HI((G/U)p;V)

	

el . HI(G/U; V) (Th . 1 .21) .

So 9 = 0' eO + Sv, where w(x) = v - x.v, v E V.
Setting S� : (G/U)p

	

> V,6v(z) = v-z.v, it follows that Sv o eO = Sv
and therefore 0 = Op o eo, where Op = BP + 6v .
Now eO(g) = v9Peoe(g) .Te(g) = -POpEpe(g).Te(g), dg E G.
Thus defining ,QP : Gp -> Kp by ~3p(z) = v0pep(z) .-r(z),dz E Gp,

it follows from prop . 1.18 that ~3p E Hom(Gp, Kp) and ~3pe = eO .

Besides, rp,QP = -ypEP and Op7! = vU.
Remark. The theorem above shows us that G ---~ Gp is a functor

and e is a natural transformation of functors .

Theorem 3.13 . Ge> Gp P-localizes G in C .

Proof. Let G,K E!¡ C 1, with K P-local, and 0 E Hom(G, K) .
Owing to proposition 3.1, there exists a commutative diagram

U(G) =

	

U

	

G

	

Glv
la 10 17

U(K) =

	

V

	

>~>

	

K

	

~>

	

Klv
Now using th . 3.12 we conclude that 3 ! ~3p E Hom(Gp, Kp) such

that Ope = ei .
So it is enough to take

	

= e-1 o OP

Gp - Kp
Ap

(prop . 3.10)
The uniqueness follows from cor . 3.9 .
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