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Abstract

A NOTE ON SUGIHARA ALGEBRAS

JOSEP M. FONT* AND GONZALO RODRÍGUEZ PÉREZ*

In [41 Blok and Pigozzi prove syntactically that RM, the propo-
sitional calculus also called R-Mingle, is algebraizable, .and as a
consequence there is a unique quasivariety (the so-called equiv-
alent quasivariety semantics) associated to it . In [3] it is stated
that this quasivariety is the variety of Sugihara algebras . Starting
from this fact, in this paper we present an equational base for this
variety obtained as a subvariety of the variety of R-algebras, found
in [7] to be associated in the same sense to the calculus Rof rele-
vance logic, and we determine the totally ordered, the subdirectly
irreducible, and the simple members of this variety, by using some
consequences of the algebraizability of the logic RM (R-Mingle)
with which they are associated .

In this paper we are going to use several results found in [7] concerning
the algebraizability of R, and one of the general characterizations of
algebraizability given in [4], to prove some purely algebraic properties of
the variety of Sugihara algebras, the equivalent quasivariety semantics
of RM. These two papers, together with the general referente [1] on
Relevante Logic, form the preréquisites for the present paper .

If we start from a presentation of Relevante Logic with primitive con-
nectives then the system RM can be defined as the axiomatic
extension of R with the so-called "mingle axiom"

(see [1, p . 341]) . We will always take by definition cp V 0 = -(-cp n -~b)
and ep E--> 0 = (cp - 0) n (o -> W) . The consequence relation obtained
by taking Modus Ponens {p, p --> q} ~- q and Adjunction {p, q} ~- p n q

as inference rules is denoted by i-RM . In [4, Theorem 5.8] it is proved
that both R and RM are algebraizable with the equivalente formulas

*Supported by grant PB90-0465-C02-O 1 of Spanish DGICYT .



592

	

J . M. FONT, G. RODRÍGUEZ PÉREZ

{p , q, q -> p} and the single defining equation p n (p -> p) p:~ p --> p . In
[7, Theorem 17] it is proved that the equivalent quasivariety semantics
for R is the following :

1 . Definition. An algebra A = (A, A,--,-) of type (2,2, 1) is called
an R-algebra if and only if the following conditions are satisfied :

We will denote by Rthe class of all R-algebras (which is clearly a variety) .

Algebras satisfying conditions 1 to 5 above are shown in [7, Theorem
5] to be definitionally equivalent to De Morgan semigroups, classically
related to algebraic semantics of several relevante logics [1] ; we often
say that R-algebras are De Morgan semigroups satisfying 6 above ; the
semigroup operation is the "intensional conjunction" or "fusion" x * y =
-(x - -y) [1, p . 344] .

If we denote by E(A) the filter (in the lattice sense) generated by the
set {x - x : x E A}, then a more useful characterization of R-algebras
is found in [7, Theorem 10] : An R-algebra is a De Morgan semigroup A
such that for all x, y E A, x < y x -> y E E(A) . Thus in these
algebras it holds that

1 . The reduct (A, /\, -) is a De Morgan lattice, with ordering < .
2. x->(y-z)<y , (x , z)forallx,y,zEA .
3 . x_<((x--> y)Az)--> yforallx,y,zc-A .
4 . x-j-y<y--> ~~xforallx,ycA .
5. x- -x<_~xforallxEA .
6 . Foranyx,y,zEA,((x-jx)n(y-+y))--> z<z.

dx,yeA, x=y <t-=~ x-yEE(A)

If Z denotes the set of integers, then S = (Z, n, -', -) will denote the
algebra of type (2,2,1) where n is the infimum with respect to the usual
ordering,

_

	

_X V Y,

	

if x < y
(2)

	

{ ~xny, ifx>y

and -x = -x. This definition comes from Sugihara's paper [8], and in
fact the algebra S is sometimes called "the Sugihara algebra" . Then :

2 .

	

Definition.

	

([3]) An algebra A = (A, A,--,-) of type (2,2,1) is
called a Sugihara algebra iff it belongs to the variety V(S) generated
by the algebra S . This variety will be denoted by S .

3 . Lemma. S C R, that is, every Sugihara algebra is an R-algebra .
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Proo£ From an observation of Dunn in [1, p . 421] and its definition of
De Morgan monoid it follows that S is a De Morgan semigroup ; and it
is also easy to check that in this case E(S) = {z E Z : -z <_ z} . Now an
easy computation using (2) shows that for any z E Z and any t E E(S),
t - z < z . Since for any x, y E Z we have that (x - x) A(y - y) E E(S),
it follows that for any x, y, z E Z ((x - x) /\ (y - y)) -> z <_ z, that is,
that S E R; Since R is a variety, we obtain that S = V(S) C R.

In [3] it is mentioned that the variety of Sugihara algebras is the
equivalent quasivariety semantics of RM. Since no detailed proof seems
to have appeared in print, we give a simple one below, which is based
on Meyer's Completeness Theorem of RM with respect to the matrix
(S, E(S)) :

4 . Theorem (Blok, Dziobiak) . The variety S is the equivalent
quasivariety semantics for RM .

Proo£ We know that R is algebraizable and that its equivalent qua-
sivariety semantics is a variety ; Since RM is an axiomatic extension of
R, it follows that RM is also algebraizable and that its equivalent qua-
sivariety semantics is also a variety ; let us call it K . We also know that
{p -> q, q --> p} is a set of equivalente formulas for it ; then by [4, Corol-
lary 2.9] we know that an equation cW , z:~ 0 holds in K if and only if
~-RM cW E--> 0. Then by Meyer's completeness theorem ([l, theorem 4 of
section 29.3 .2]) this holds if and only if ~oS (a) F-> OS (a) E E(S) for any
interpretation á of the variables of cW s: 0 in Z . But by Lemma 3 we
can use (1) and conclude that this holds if and only if cps (a) = os (a),
that is, if and only if the equation cp z~ 0 holds in S . This shows that
K = V(S) = S . a

As a consequence we see that Sugihara algebras give us the natural
algebraic semantics for RM, and this is also the case if we consider them
from the point of view of logical matrices :

5 . Corollary . (A, T) is a reduced matrix for RM if and only ifA E S
and T = E(A) .

Proof. (A, T) is a reduced matrix for RM iff it is a reduced matrix for
R which is a matrix for RM; then the result follows from the characteri-
zation of reduced matrices for R, contained in Theorem 18 of [7] and the
general result of Corollary 5.3 of [4] which tells us that, after Theorem
4, the algebras- in S are the algebraic reducts of reduced matrices for
RM.
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FYom 5 and (1) we see that reduced matrices for RM are the so-called
"normal RM-matrices" of [6], we can thus apply to them the results of
this papér . The first such application will be to clarify the relationship
between Sugihara algebras and the algebras also called "Sugihara alge-
bras" by Tokarz in [8] . Provisionally we consider the following definition :

6 . Definition ([9]) An algebra A = (A, h, ->,-) of type (2,2,1) will
be called a "Sugihara algebra in the sense of Tokarz" iff (A, n, -) is a De
Morgan lattice totally ordered under < such that

ZVy, ifx<y
ny,

	

1'f x >y~x

The class of all these algebras will be denoted by T.
The motivation for this definition is clearly the definition of S, the

generator of Sugihara algebras, since the implicatioü operation is deter-
mined by the same condition (2) . Next we see one can characterize S
starting from T and conversely :

7. Theorem . S is the variety generated by T, and moreover for any
A of type (2,2, l), A E T iff A E S and is totally ordered.

Proof: Let A E T; we first preve that . E(A) = {x E A : -x _< x} :
if x E E(A) these are xo, . . . . xn_1 E A such that x >

	

A xi -> xi =
¡En

A -xi V xi, and since A is a chain, and thus a Kleene algebra [2, p .
¡En

215], it follows that -x < V -xi n xi < n -xi V xi < x ; conversely, if
¡En

	

¡En
-x <_ x then by definition 6 x ---> x = -x V x = x and thus x E E(A) .
As a consequence, for any x, y E A, if x < y then x - y = -x V y >
-y n y > -y n x = -(x- y) and therefore x�+ y E E(A) ; on the contrary,
if x > y then x-~y=-xny < -ynx <_ xV-y=-(x->y) and thus
x -3 y 1 E(A) . We conclude that A satisfies x <_ y x -+ y E E(A),
and so also it satisfies (1) . Now a process analogous to that followed in
the proof of Theorem 4, this time using Dunn's completeness theorem
of RM with respect to the class of matrices {(A, E(A)) : A E T}, [6,
Theorem 10], shows that an equation holds in S if and only if it holds in
T; that is, S = V(T), the variety generated by T. From this it follows
that for any A E T, A E S and is a chain by definition . Conversely, if
A E S and is a chain, it results that E(A) is a, prime filter, and by [6,
Theorem 2] we conclude that A E T. o .

The following example shows that not every Sugihara algebra is a
chain, that is, T ( S : Let A = (A, n, -, -) where A = {0, a, e, ~a, ~e, l}



has the De Morgan lattice structure determined by the Hasse diagram
appearing below, and the operation --> given by the table below:
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0=-1

It is routine checking that A E S, and obviously it is not a chain .
Note that by Theorem 7 if a Sugihara algebra is totally ordered, then
its implication operation is completely determined by its De Morgan
structure, namely by conditions (2) ; the reader should be aware, however,
that in the literatura (cf. [1, p . 421]), the term "Sugihara chain" has been
used to denote an oven more restricted class of totally ordered Sugihara
algebras, namely those such that E(A) has a least element e (which then
has to satisfy -e = e and makes the De Morgan semigroup a monoid) ;
again not every totally ordered Sugihara algebra satisfies this, take for
instante the algebra of S with universo [-1,1]r{0}, n = min, -x = -x
and --> given by (2) .
In [7] an equational presentation of R in terms of A, ~,

	

is given, as
an extension of one found for De Morgan semigroups ; to extend it to an
equational presentation of S we need the following technical proposition :

8 . Proposition . For any A E R the following conditions are equiva-
lent:

1 . x - (x - x) E E(A) for all x E A ;
2 . x <_ x -> x, that is, x n (x -j x) = x, for all x E A ; and
3. E(A)={xeA :x=x,x}= {xcA :-x<x} .

Proof.. 1

	

2: By [7, Theorem 10] .
2 ==~> 3 : By [7, Lemma 16] E(A) = {x E A : x -~ x <_ x} and

therefore the assumption implies E(A) ---- {x E A : x = x --> x} . On
the other hand, if x E E(A) then by assumption and [7, Proposition 4]
_x < -x --> -x = x ~ x < x ; conversely if -x < x then again by [7,

1 = -0

0 -e a -a e 1e 0 1 1 1 1 1 1
-e 0 e e e e 1

» -a a 0 -a e -a e 1
-a 0 a a e e 1

e 0 -e a -a e 1
-e 1 0 0 0 0 0 1
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Proposition 4] x -> x <_ ~x -> x <_ x and therefore x E E(A) . Thus
E(A) ={xEA :-x<x} .

3 ==> 2 : Consider the semigroup operation x * y = -(x ---> -y) . Since
x - x E E(A), by the assumption x * ~x = -(x -> x) _< x -> x and
using several computation rules of [7] we obtain x * ~x <_ (x * x) * ~x =
x*(x*-x) < x*(x-x) < x and then by contraposition _x <_ ~(x*~x) =
x -> x = ~x -> -x. It follows that for all x E A x < x -> x

This result, aside from giving the equation characterizing S, also gives
us two new defining equations for the algebraizability of RM :

9 . Corollary .
1. S is the subvariety ofR determined by the equationpA(P-P) --::~ p.
2 . RMis algebraizable with equivalente formulas {p -> q, q

	

p} and
defining equation p ti p -> p .

3 . RMis algebraizable with equivalente formulas {p ---> q, q --> p} and
defining equation p -- ~p Vp.

4 . If A E S and T C_ A then (A,T) is a matriz for RMif and only
if T is a lattice-filter ofA such that T D E(A) .

Proof.. 1 . Since RM is R plus the axiom cp -> (cp - W), and using
Corollary 5 and Proposition 8

2 and 3 follow from Theorem 2 .4 of [4] and the completeness of RM
with respect to its class of reduced matrices, given by Corollary 5
4 follows from Proposition 8 and Lemma 8 of [7] .
In 2 above we note that implication alone is sufficient to write the

defining equation needed for the algebraizability of RM (in contrast to
the case of R, where also conjunction is necessary) ; this fact was observed
in [4, p . 51] for the implicational fragment of RM.
By Theorem 5.1 of [4] we know that for any algebra A there is an

isomorphism between the lattices FiRM of all filters for RM over A,
and ConS(A) of all S-congruentes of A, that is, all congruentes of A
such that the quotient algebra belongs to S . This isomorphism can have
interesting purely algebraic consequences, as the rest of the paper shows .
Note that if A E S then ConS(A) = Con(A) since S is a variety, and.rir has been determined in the preceding Corollary as the set of all
lattice filters of A that include E(A) . We are going to use the following
notation, for any x E A:

(x,---)={yEA :x<y}.

In [3, Lemma 1 .1] all finite subdirectly irreducible Sugihara algebras are
determined ; next we determine all subdirectly irreducible ones :
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10. Theorem . Let A E S . Then A is subdirectly irreducible if arad
only if A is a chaira (that is, A E T) and there is a u E A such that
E(A) = (u, -) .

Proof..- ===> : lf A E S then the above-mentioned isomorphism sends
the diagonal congrúence to the least RM-filter ora A, which is E(A)
by Corollary 9, 4 . Therefore, A is subdirectly irreducible if arad only if
E(A) is completely meet-irreducible in the lattice .Ei%M . The charac-
terization of RM-filters in Corollary 9 implies E(A) is also completely
meet-irreducible as a lattice filter of A, arad since A is a distributive
lattice, this implies it is a prime filter . From [6, Theorem 2] it fol-
lows that A E T, that is, it is a chaira . From this it follows that
E(A) C_ n{(x, ~) : x E A r E(A)}. This inclusion cannot be proper,
since if there is u E n{(x, -j) : x E A r E(A)} with u « E(A) then
u E (u, -~) which is impossible . So it must be ara equality arad since
E(A) is completely meet-irreducible in the lattice Tir arad each of
these sets (x, --) belongs to it, it follows that E(A) = (u, ->) for some
u E A r E(A), as was to be proved .

Due to the above-mentioned isomorphism, to show that A is
subdirectly irreducible it is enough to show that E(A) is completely
meet-irreducible in .~i M. So suppose E(A) = n{Ti : i E I} where
for each i E I, Ti E Yir arad Ti 7~ E(A) ; then for each i E I there
is xi E Ti such that xi 1 E(A), that is, xi <_ u since A is a chaira
by assumption . Then u E Ti because this is a lattice filter, and thus
u E n{Ti : i E I} = E(A) = (u, ---) which is impossible .

Note that by the characterization of 8.3, if A E S then the set E(A)
can be called the set of all "non-negative" elements, specially when A is
a chaira . Then we can say :

11 . Corollary . Every Sugihara algebra is (isomorphic to) a subdi-
rect product of totally ordered Sugihara algebras each having a greatest
negative element.

Not every chaira in S is subdirectly irreducible, as the following example
shows : Take A = [-1, 1] the real interval, with x A y = mira{x, y} with
respect the usual ordering, -x = -x, and ~ given by condition (2) . One
can check that the resulting A E T, arad that E(A) = [0, 1] :qÉ (u, --) =
(u,1] for all u E A. This algebra is not subdirectly irreducible, since all
closed intervals [x, l] E .FiRM if x < 0, arad [0, 1] = n{[x, l] : x < 0} .
We finally determine all simple Sugihara algebras . Consider, for every

n E w, the subalgebras S2n arad S2n+1 of S with universes {-n, . . . , -1,
1, . . . , n} arad {_n, . . ., -1, 0, 1, . . . , n} respectively ; these are the only
finite subdirectly irreducible Sugihara algebras according to [3] . Then :
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12. Theorem. The only (non-trivial) simple algebras in S up to
isomorphism are S2 and S3, that is, the subalgebras of S with universes
{-1,1} and {-1, 0,1} respectively .

Proof. Since E(S2) = {1} and E(S3) = {0,1}, these two algebras
are obviously simple . Now let A E S be a simple algebra; in particular
it is subdirectly irreducible, and thus it is a chain and E(A) = (u, ->)
for some u E A. On the other hand, Con(A) = {DA, DA}, and thus
.FiRM = {E(A), A}; as a consequence u must be the least element of A,
and thus the only element outside E(A), and ~u must be the greatest .
If these is another x E E(A) with x :,A -u, by Proposition 8 ~x <_ x ; if
~x < x = --x then by the same reason -x 1 E(A), that is, -x = u
and then x = ~u which is certainly not the case ; thus this x must satisfy
x = ~x, and this can hold at most for one element in a totally ordered
De Morgan lattice . Therefore A is a chain with at most three elements,
and thus isomorphic to one of S2, S3 since implication is determined by
(2) .
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