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ON HARMONIC VECTOR FIELDS

JERZY J. KONDERAK

Abstract

A tangent bundle to a Riemannian manifold carries varicus met-
rics induced by a Riemannian tensor. We consider harmonic vec-
tor flelds with respect to some of these metrics. We give a simple
proof that a vector field on a compact manifold is harmonic with
respect to the Sasaki metric on TAM if and only if it is parallel.
We also consider the metrics 1T and 7+ 77 on a tangent bundle
{cf. [YI]} and harmonic vector felds generated by them.

1. Preliminaries

1.1. Let (M, g) be a smocth manifold. We denote by N := TM the
tangent bundle. Then there is given the canonical projection = : N — M.
By [{T" M) we shall denote the set of 1-forms on M. Then there exists
a natural map

i: (M) — C%(N)

such that (if)(v) .= 8(v) foreach @ e I'(T*M) and v € N.

Suppose that X € x{M} is a vector field on M. Then there is defined
the vertical lift XY of X to N. The vector field XV has the property
that

XY(i®)=8(X)on

for all 1-forms # on M. Moreover it is well-known that the above equality
determines uniquely the vertical lift of X.

Observation 1.1. The vertical lift of a vector feld depends point-
wisely on vectors.

Observation 1.2, Suppose that for a given £ € M we have that
X, v € ToM. Then the vertical lift of X to NV at v is a vector which is
tangent at zero to a curve.

t— v+ tX.
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Observation 1.3, The following map
TriyM 3 X — XY € TLNY

is an isomorphism for all v € N (cf. 2.2. for the definition of TNY).

Let X € x(M). Then there is defined the complete lif X¢ of X to N.
The field X°© is uniquely determined by the following property: for all
f € C°(M) we have that

X(idf) = id(X(f)).
Observation 1.4. If i, is a local flow of X on M then
. ¥ — dipe (V)

is a local flow of X© on N {cf. {CDL]).

2.2. Let (M, g) be a pscudo-Riemannian structure on the manifold
M. Then the tensor ¢ determines the Levi-Civita connection ¥V on M.

The connection V induces a 1-form
WY ET*N @y -1 TM
defined uniquely by the following equations
wV(dY (X)) = VxY
WwY( XYY =X

for all vector fields X,Y € x{M). By n~'TM we denote the pull-back
bundle of TM along the projection = : N — M. In the above formuls
dY(X) denotes the differential of ¥ evaluated at X. More precisely, if
(U, {z',...,2™)) is a chart on M and {N|y, (z!,...,2™ ¢L,...,y™)) is
the induced chart on N then

dY (X) = ZX‘—-—— +ZZXi%i?$

i=] a=1

where X = ZX‘i and ¥ = Z }”% Then we define the vertical
=1
and horlzontal subspaces of the bundle TN — N in the following way:
TNY = [XV € TN| X € TM} = kerdr
(TNYH-={Z e TN|wY(Z) =0} .
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1t is well-know that (TN)Y and (T'N}" are smooth subbundles of TN —
N and that we have the following direct sum of vector bundles:
TN = (TN)Y & (TN).
This decomposition implies that
dr: (TNY —TM

is an isomorphism on the fibres.
Suppose that X, v € TM then the horizontal lift of X to T, N is a

vector X ¥ € T, N such that
(1). X is horizontal;
(2). da(XM) =X

It is clear that the conditions above define uniquely the horizontal lift of
a vector. In a natural way the horizontal 1ift is extended to vector fields.

Observation 1.5. From the construction of the horizontal subbundle
it follows that

(TNET = {dY (X} e TNIVX € Ty M
and YY & x(M) such that VY, = 0}
= ¢mdY; where Y € x(M) and VY, =0.

The direct sum decomposition of T,N and the above idcntifications
allow us to define maps p® and p¥ such that

pH . TL,N — T,(Q)M

pv : TL,N — T,T(U)M
where p is just 4,7 and p¥ is a composition of a projection from T, N
onto T, NV with the identification of this space with Trw)M (cf. Ob-

servation 1.3). The maps p” and pY serve for construction of three
symmetric bilinear forms

I'i= 9" (+),p"(x))
17 = g™ (+), 2V () + 90" (), p7 (+))
1T = g(p" (), p" (+))
We may repeat the construction of these forms point by point to obtain
global forms on N. The forms I7, I + IT, I + III, IT + IiT appear to
be Riemannian or pscudo-Riemannian metrics on V. These metrics are
studied in {YT); an interesting exposition of this subject may be found
also in [Ia].
There are the following relations between the lifts defined above:
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Proposition 1.8. Let X, Y € x{M) and p € M. We also denote
v = X,. Then the following identities hold

(1) Ye=YE+(VxY))
(i) dX(Yy) =YH + (Vy X))
(i) dX(Yp) = Yi + [V, X))

(cf. also [YI]).

Proof: (ii) let dX(Y)y, = A+ B where A € T,N¥ and B € T,N".
Then
Y, = dr o dX(Y) = dn{A+ B) = dn{A).

Since dr restricted to T, N is an isomorphisim then we get that A = YH,
On the other hand we have that

(Vy X)p = wy (dX(Y)) = wy (A+ B) = w](B).

Since wY is an isomorphism when restricted to T, NV then it follows that
(Vy X)Y = B. Hence (ii} follows.

We shall demonstrate (ii) using a chart (U,{z1,...,2Zm)} such that
p € U C M. Then we may express X and Y as the linear combinations
of the standard basis

b g b a
X = Xt—=, —
2 X% VLY
where X*, Y7 are C®-functions on U. The local coordinates on M deter-
mine in a natural way the local coordinates {(V|y {21, ... s Zm, W1, .-, 310

It easy to check that in this new local coordinates the following equatities
hold:

m Xm
dX(Yp)z< RV D I g -Yﬂ)

3 @ ¢ Gz e
c o - O 8Ym
Yu=( ,,p‘ZX 30, ZX )
{for the second equality ¢f. [YI, p. 15]). Then it follows that

dX{Y,) - Y = [V, X}Y

and then (i} follows.
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Equality (i) is a consequence of {ii} and (ili). In fact, from (iil) we get
that
Y) =dX(%;) - ¥, X1

Then from (ii) and from the fact that V is torsionless we get that

ch = YvH + (VYX)':/ - [Y! X]K
=¥F (VX + X, YD
=YH + (wxY)Y.

This ends the proof of (i} and of the proposition. B

1.3. If ¢: (M1,01) — (M, g2} is a smooth map between two pseudo-
Riemannian manifolds then the tension field of ¢ is defined as

r{¢) = trace,, V d¢.

Then ¢ is called harmonic if the tension field vanishes. The equivalent
definition of harmonicity of ¢ is that ¢ is a stationary point of the energy
functional

1
E{¢) = 5/ trace,, (¢"ga)v,, .

1

By vy, we denote the canonical measure on M, induced by ¢;1. If M
is not compact then the energy may be defined on its compact subsets.
Then ¢ appears harmonic iff such energies defined on compact subsets
are stationary with respect to the compactly supported variations. The

function
1

e{d) = 2 traceg, (¢ g2)

is called energy density of ¢ {cf. [K]). For more details about harmonic
maps and techniques used in that theory cf. [EL,], [EL,].

2. Energy densities

In this part of the paper we shall consider the properties of energy
densities associated with different symmetric tensors.

Let (MM, g) be a pseudo-Riemannian manifold and let X € x({M}. We
fix p € M and suppose that X, = v. By E,,... E, we dencte a
local orthonormal frame. Then the energy density associated with X
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(M,g) — (N, I)_ is the following:
2e(X ), = tracey I {dX (»),dX (x}),

=Y I{dX(E.), dX(E)), - 9(E:i, Es)p

i=1

=S I(EF + (Vex), EF + (Ve X)), 9(Ei By

i=1
= Z g_(Eis E&')i
i=1
=m
Similarily we calculate that
2e11(X)p = trace, IT (dX(x),dX (+}},

= S I @X(E, dX(ED), - 9(Es, By

i=]

=2 g(E:, Ve, X)p - g(Ee, By

i=1

and

2e111(X)p =Y 9(VEX, Ve X)p 9(Ei, By

i=1

1t follows that for a given real number t € R

er(tX) = constant = %

err(tX) = te;r{X)
crii(tX) = tg(:,'u(X)

If M is compact then there are defined the energies
EiX) = [ e,
v
Eirf(X) = f er1{X)vy
M

Er(X) = fM e (X)vg.
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Since I, IIT are degenerated metrics on N the quantities defined above
are not classical energies. However they have the following properties:

E;(tX) = % vol(M)

Ep(tX) =tE(X)
E;;,r(tX) = t2E”[(X),

3. The metric I + II7 (the Sasaki metric)

Harmonic vector fields X : (M, g) — (TM,I + I} were investigated
by Ishihara (cf. {I]J}. The tension field obtained by Ishihara is the follow-
ing:

7(X) = (trace, R(V.X, X)) + {(trace, V2 X)Y
ef. also [C8]. The vector field trace9V2X is called the rough Laplecian
and is denoted by AX. In the case when M is compact it was proved
that X is harmonic iff it is parallel {ef. [I]). In the proof there is used
Bochner's theorem ({Y, p. 39]). We give below very simple proof of the
theoremn of Ishihara for compact manifolds.

Theorem 3.1. Let (M, g) be o compact Nicmannian manifold and
X € x(M). Then X is harmonic with respect 1o Sasaki metric on TM
if and only if X is parallel.

Proof: Suppose that X is harmonic and let consider the following vari-
ation of X
MxRo(xt) —tX,eTM

Since X is a critical point of the energy functional we have that.:

d
0= EEJ’+IU(tX)|t=1

d
= aEur(tX)hzl

= %thH!(X”t:l
= Er(X).
This implies that
0=er(X) =trace, g(V. X, V. X}
hence VX =0.

If X is paralle] then it is clear that the tension field of X vanishes
hence the vector field is harmonic. W



224 J.J. KONDERAK

4. Metrics II, T4 17

Let (M, q) be a pscudo-Riemannian manifold. The Levi-Civita con-
nections on N = T'M defined by the metrics IT and I+ IT are the same.
In fact this is the complete lift. of the Levi-Civita connection V to N
{c¢f. Proposition 6.6, p. 45, Proposition 3.1, p. 149 [YI}). The complete
lift of ¥V we shall denote by V¢, This connection is characterized in the
following way: if X, ¥ € x(M) then

Vv YV =0

Vv Y= (VY)Y
S YV = (VxY)V
S Y= (VxY)e

Since the Levi-Civita connections of metrics I7 and [ + I1 coincide
so do harmonic maps defined by these metrics. We shall calculate the
tension field of a vector fleld X € x(M). Let (Ey,...,Ey) be a local
orthonormal frame around the point p € M and let ; := g(E;, E;), for
i=1,...,m. Then applying Proposition 1.6 we get

T{X)}p = trace, (VdX},

=Y _eVEAX(E)l — e:dX (Vi Bl

i=1
e
=D & (vi‘?i’ﬂﬁf.xl"(E‘{: + B X))
i=]
~ (VBB — [Va. B, X))
i
m

= & (Vi lE. X]+ Vig, x B - [V, B X)) .

i=1

We would like to remark that in the second equation above we consider
the covariant derivative V° along X : M — N. Hence we are interested
only in the values of the vector fields on the image of X. This justifies
the application of Proposition 1.6. Since the conncction V is torsionless
we have that for alli=1,...,m

vE{[Ei!X] = aninX - vEl-VXEi
Vi FEL, X = V(vﬁi_g‘.)x - VxVgFE.
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We apply these formulas to compute 7(X),.

T(X)p = (ZaivEgvfb‘iX - EivEl-VXEi) + (ZE"V[E“X]E")

i=1 =1

m 1'a
— (ZE;‘V(VE‘_EI.)X ——E;‘VXVE‘.E;-)

i=1

r v
= (Zeivgivgix - e‘-valE‘x)
i=1 v

%
e
+ (Z EVxVpE; —e Vg VxE + Eiv[Ii'.-,X}Ei)
=

"

m v
= (T,I'{-l(‘,(_‘,g VQX + Z EER(X, E,‘)Et)
uv

i=]

= (AX + trace, R(X, «)x)”

u *

In the above formula It denotes the curvature tensor of V. Then applying
Observation 1.3 we get the following proposition.

Proposition 4.1. Let (M, g) be a pseudo-Riemannion manifold and
let TM be aquipped with the metric IT or I + I1 then a vector field
X € x(M) is harmonic with respect to these meirics if and only if

AX + trace, R(X, *)* = 0.
Let us observe that for any ¥ € (M) we have that

gltracey (X, +)+, Y} = traceg g{It(*, XY, +)
= R(X,Y)

where R denotes the Ricel tensor of (M, g}, Hence we have that

Corollary 4.2. If (M, q) is a pseudo-Riemnannion manifold and TM
15 equipped with one of the metrics IT or I+ IT then u vector ficld X 4s
haermonic iff

F(AX,«)+ R(X,*} =0.

Corollary 4.3. If (M, g) is a compact pseudo-Riemannian manifold

and X € x(M) is harmonic with respect to the metrics I'T or I+ 1T then
Ej(X)=0.
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Proof: Let us consider the variation {&,t) — X then

d d
— Xii=1 = —tEr i {X)iz1 = Eff{X)., B
0 thu(t He=1 dtt (X )= 11{X)

Corollary 4.4. If (M, g) is a pseudo-Riemannian manifold and X is
a Killing vector field then X is harmonic with respect to the melrics If
or I+ 17, '

Proof: ¥ X is a Killing vector field then
divX = glAX =)+ R(X,+) =0,
conversc is true if M is compact (¢f. [P]). Hence our corollary follows. W

Corollary 4.5. If (M, g) is a Riemannian manifeld with Ricci tensor
negatively semi-defined fi.e. for each V € £(M) R{(V,V) < 0). Then
e wector field X is harmonic with respect to the metric 1T or I + IT
if and ondy of X is porallel. Moreover, if R is negatively defined {i.e
R{V,V} =0 iff V =3} then zero sections are the only hermonic vector
fields.

Proof: We shall apply methods used in [P]. Suppose that X is har-
monic. We have the following Bochner’s formula valid for all vector
fields: .

20{AX, X} + 2trace, (VX , VX + Ag(X, X) = 0.

Since

we get, that _
2trace,(VX, VX)+ Ag(X, X} <0

then Ag{X,X) < 0. On a compact manifold this implies that
Ag(X,X)= 0 and then trace,(VX,VX} = 0, so VX = 0. We have
also obtained that (X, X) = 0. Hence if R is negatively defined then
X=00

Notation. If ¢ : M; — My is a diffeormorphism then by
@ x(M) — x(My)

we denote the isomorphism of the modules of vector fields such that
P(X) ;= dp o X op~!. The operator ¢ extends on the tensors of an
arbitrary type {cf. (KN, p. 28]}.



ON HARMONIC VECTOR FIELDS 227

Observation 4.6, Let (M, ) be a pseude-Riemannian manifold and
let Y be a Killing vector field and X a harmonic vector field. Then [Y, X]
is harmonic.

Proof: Let ¢, be a local flow of Y. Since ¢, are local isometrics then
we have that

2 AX = Ag X and @, trace, R{X, #)* = trace, R{P, X, »)*

These equations and harmonicity of X imply that

0

—%@(AX + tracey R(X, #)#)]i—¢

d
== {Ap X + tracey R{( X, *)*) [1=¢
= A[Y, X] + trace, R([Y, X],%) * .

Hence from Proposition 4.1 it follows that [V, X] is harmonic. It is clear
that [X, Y] is also harmonic since the multiplication by —1 is an isometry
of N. B

Example 4.7. If M is a Riemann surface of genus greater than one
then its universal covering of M is a hyperbolic plane with the constant
curvature equal to —1. There is a group of deck transformations acting
wometrically on M. One can project the Riemannian structurc from
its universal covering to M. In this way it is possible to construct a
Riemannian metric on M with curvature —1. Then Ricel curvature of
M is negatively defined and hence the only harmonic vector fields are
zero sections. The same construction of a compact. Ricmmannian manifold
with constant negative curvature can be done for cach dimension.
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