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Abstract

ON HARMONIC VECTOR FIELDS

JERZY J . KONDERAK

A tangent bundle to a Riemannian manifold carries various met-
rics induced by a Riemannian tensor. We consider harmonic vec-
tor fields with respect to some of these metrics . We give a simple
proof that a vector field on a compact manifold is harmonic with
respect to the Sasaki metric on TM if and only if it is parallel .
We also consider the metrics II and I + 17 on a tangent bundle
(cf. [YI]) and harmonic vector fields generated by them .

1 . Preliminaries

1 .1 . Let (M, g) be a smooth manifold . We denote by N := TM the
tangent bundle . Then there is given the canonical projection ir : N , M.
By I'(T*M) we shall denote the set of 1-forms on M. Then there exists
a natural map

i : I'(T*M) ---~ C'(N)

such that (¡0) (v) := B(v) for each B E 1'(T*M) and v E N .
Suppose that X E X(M) is a vector field on M. Then there is defined

the vertical lift X V of X to N. The vector field XV has the property
that

XV (¡B) = 9(X) o 7r

for all 1-forms 9 on M . Moreover it is well-known that the above equality
determines uniquely the vertical lift of X.
Observation 1.1 . The vertical lift of a vector field depends point-

wisely on vectors .
Observation 1 .2 . Suppose that for a given x E M we have that

X, v E TxM. Then the vertical lift of X to N at v is a vector which is
tangent at zero to a curve .

t-v+tX.
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Observation 1 .3 . The following map

T,1,1MDX , XV ET�NV

is an isomorphism for all v E N (cf. 2.2 . for the definition of TNV ) .
Let X E X(M) . Then there is defined the complete lif X° of X to N.

The field X' is uniquely determiíied by the following property : for all
f E C°° (M) we have that

Xc(idf) = id(X(f)) .

Observation 1 .4. If (p t is a local flow of X on M then

v -) . dcpt (v)

is a local flow of X° on N (cf . [CDL]) .

2.2 . Let (M, g) be a pseudo-Riemannian structure on the manifold
M. Then the tensor g determines the Levi-Civita connection V on M.
The connection 0 induces a 1-form

defined uniquely by the following equations

dY(X) =

w7 E T*N®N 7r-'TM

w7(dY(X)) = VXY

wv (XV ) =X

for all vector fields X, Y E x(M) . By 7r-'TM we denote the pull-back
bundle of TM along the projection 7r : N -> M. In the abové formula
dY(X) denotes the differential of Y evaluated at X. More precisely, if
(U, (x1 , . . ., x-)) is a chart on M and (Nju , , (x l , . . . , xM, yl , . . . , y-)) is
the induced chart on N then

á

	

~~

	

iaya á
, L.L. X áxaex¡

	

i ,a
i=l

	

i-7 a=1

	

l

where X =

	

X Z

áxi
and Y =

	

Yj a . Then we define the vertical
j=1 y

and horizontal subspaces of the bundle TN -4 N in the following way :

TNV = {XV E TNI X E TM} = ker d7r

(TN) H- = {Z E TNI wV (Z) = 0} .



It is well-know that (TN) V and (TN)H are smooth subbundles of TN ->
N and that we have the following direct sum of vector bundles :

This decomposition implies that

is an isomorphism on the fibres .
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TN = (TN)v ® (TN)H .

d7r : (TN)H --> TM

Suppose that X, v E TM then the horizontal lift of X to T�N is .a
vector X H E Tz N such that

(1) .

	

XH is horizontal ;
(2) .

	

dir(X H ) = X.

It is clear that the conditions above define uniquely the horizontal lift of
a vector . In a natural way the horizontal lift is extended to vector fields .
Observation 1 .5 . From the construction of the horizontal subbundle

it follows that

(TN)H = {dY(X) E . TNIVX E T~l � 1 M

and `dY É x(M) such that DYx = 0}
= imdYx where Y E X(M) and VYx = 0 .

The direct sum decomposition of T�N and the above identifications
allow us to define maps pH and pv such that

pH :T�N,T,( �)M
pv : T�N ---> T~(�) M

where pH is just d�7r and pv is a composition of a projection from T�N
onto T�Nv with the identification of this space with T,l�1 M (cf. Ob-
servation 1 .3) . The maps pH and pv serve for construction of three
symmetric bilinear forms

I := 9(PH(*)PH(*))
II := 9(pH (*),PV(*)) +9(pV(*),PH (*))
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We may repeat the construction of these forms point by point to obtain
global forms on N. The forms II, I + II, I + III, II + III appear to
be Riemannian or pseudo-Riemannian metrics on N. These metrics are
studied in [Yl[] ; an interesting exposition of this subject may be found
also in [1a] .
There are the following relations between the lifts defined above:
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Proposition 1.6 . Let X, Y E x(M) and p E M .

	

We also denote
v = Xp . Then the following identities hold

(i)

	

Yti = YH + (7XY)v
(ü)

	

dX(Yp) = YH + (DYX)v

dX (Yp) = Yti + [Y, X]v

(cf. also [YI]) .

Proof. (ii) let dX(Y)� = A + B where A E T�NH and B E T�Nv.
Then

Yp = d7r o dX(Y) = d7r(A+ B) = d7r(A) .

Since dar restricted to TpNH is an isomorphism then we get that A = YH.
On the other hand we have that

TYX)p = w°(dX (Yp)) = wv(A+ B) = wv(B) .

Since w,v is an isomorphism when restricted to T�Nv then it follows that
(DyX)v = B. Hence (ii) follows .
We shall demonstrate (iii) using a chart (U, (x,,...,x �,,)) such that

p E U C M. Then we may express X and Y as the linear combinations
of the standard basis

where Xi, Y~ are C°°-functions on U. The local coordinates on M deter-
mine in a natural way the local coordinates (N1u,(x1, . . . , xm , yl, . . . , YO) .
It easy to check that in this new local coordinates the following equalities
hold :

1

	

�~
m aXl

	

a

	

m aX~
dX(Yp) = CYp , . . .,Yp ,~ axa 1p'Yp , . . ., ~

ax~ ¡p .Yp
la=1

	

~=1

Y` = (Y1

	

YMp , . . ., p ,
cY=1

and then (iii) follows .

ay' May-¡p,...,Xp ax« Ip I
a=1

(for the second equality cf. [YI, p. 15]) . Then it follows that

dX(Yp) -Yv = [Y,X1v
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Equality (i) is a consequence of (ii) and (iii) . In fact, from (iii) we get
that

Yti =dX(Yp)-[Y,X]v .

Then from (ii) and from the fact that 0 is torsionless we get that

Yv = YH + (7YX)v - [Y X]v
= YH + (DYX + [X, Y]) �

= YH + (vXY)v

This ends the proof of (i) and of the proposition .

1 .3 . If 0 : (M1,91) ~ (M2,92) is a smooth map between two pseudo-
Riemannian manifolds then the tension field of 0 is defined as

r(0) = trace, 1 V dO.

Then 0 is called harmonic if the tension field vanishes . The equivalent
definition of harmonicity of 0 is that 0 is a stationary point of the energy
functional

E(O) =
1
2fMl traces , (0*92)v9, .

By vs, we denote the canonical measure on Ml induced by gj . If Ml
is not compact then the energy may be defined on its compact subsets .
Then 0 appears harmonic iff such energies defined on compact subsets
are stationary with respect to the compactly supported variations . The
function

e(0) = 2 trace_,, (0*92)

is called energy density of 0 (cf . [K]) . For more details about harmonic
maps and techniques used in that theory cf . [EL 1 ], [EL2] .

2. Energy densities

In this part of the paper we shall consider the properties of energy
densities associated with different symmetric tensors.

Let (M, g) be a pseudo-Riemannian manifold and let X E X(M) . We
fix p E M and suppose that Xp = v . By El , . . . . E�, we denote a
local orthonormal frame . Then the energy density associated with X
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(M, g) , (N, I) is the following :

2ei (X), = trace, I (dX(*), dX (*))�

and

Similarily we calculate that

=m

2e,I(X) p = trace, II (dX(*), dX(*)) �
m

_

	

II (dX (E¡), dX(E¡))v - g(E¡, Ei)p
i=1

g(Ej, DEiX)p - g(Ej , Ei)p

2eji7(X)p = g(VEiX,VEiX)p - g(Ei, Ei)p -
i=1

It follows that for a given real number t E R

m
e,(tX) = constant = 2
eli(tX) = teli(X)
CIII(tX) = t2eil,(X)

If M is compact then there are defined the energies

EI(X) = f ej(X)vg
M

EII(X) = im
eji(X)v,

EIII(X) = ]
M
emi(X)vg .

_ I (dX (E¡), dX (E¡))v - g(Eí, Ei)p
i=1

_ I (EH + (DEiX)V, EH + (VEiX)V)v - g(Ei, Ei)p
i=1
m

9(Ei, Ei)p
i=1
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Since I, III are degenerated metrics on N the quantities defined above
are not classical energies . However they have the following properties :

El (tX) =
m
2 vol(M)

EII(tX) = tEII(X)

EIII(tX) = t2EIII(X) .

3 . The metric I + III (the Sasaki metric)

Harmonic vector fields X : (M, g) -+ (TM, I + III) were investigated
by Ishihara (cf . [I]) . The tension field obtained by Ishihara is the follow-
ing :

-r(X) = (traces R(D.X, X)*) H + ((traces O2X)v

cf. also [CS] . The vector field trace, 72X is called the rough Loplacian
and is denoted by OX . In the case when M is compact it was proved
that X is harmonic iff it is parallel (cf. [I]) . In the proof there is used
Bochner's theorem ([Y, p. 39]) . We give below very simple proof of the
theorem of Ishihara for compact manifolds .

Theorem 3.1 . Let (M,g) he a compact Riemannian monifold and,
X e X(M) . Then X is harmonic with respect to Sasaki metric on TM
if and only if X is parallel.

Proof.. Suppose that X is harmonic and let consider the following vari-
ation of X

M x R D (x, t)

	

~ tX x eTM.

Since X is a critical point of the energy functional we have that :

This implies that

0
_ d

EI+III(tX)jt=I

= dtEIII(tX)It=i

dt2 EIIr(X )I t-It

0 = ejij (X) = traces g(7 .X, V*X)

hence VX = 0.
If X is parallel then it is clear that the tension field of X vanishes

hence the vector field is harmonic .
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T(X)P

= trace9(0`dX)r

4.

Metrics II, I + II

Let

(M, g) be a pseudo-Riemannian manifold

.

The Levi-Civita con-

nections

on N = TM defined by the metrics II and I + II are the same

.
In

fact this is the complete lift of the Levi-Civita connection 0 to N

(cf.

Proposition 6

.6,

p

.

45, Proposition 3

.1,

p

.

149 [YI])

.

The complete

lift

of 7 we shall denote by V`

.

This connection is characterized in the

following

way

:

if X, Y E X(M) then

VXvY°

= (OXY)v

ve

~YV = (7XY)v

OXY,

= (OXY)`

.

Since

the Levi-Civita connections of metrics II and I + II coincide

so

do harmonic maps defined by these metrics

.

We shall calculate the

tension

field of a vector field X E X(M)

.

Let (E,,

...,

E,,) be a local

orthonormal

frame around the point p E M and let el

:=

g(Ej, Ei)P for

i

= 1,

. .

, , m

.

Then applying Proposition 1

.6

we get

EiV

Ea dX(Ei) I v - EidXT E

;

Ei) I ,

-

(VE¡ E¡)C - [DEi E¡, XI V)

lv=

EEi (DEj[EiA+ V[Ei,XjEi - [DE,Ej,X]Jv,

.
i-1

We

would like to remark that in the second equation above we consider

the

covariant derivative V` along X

:

M -> N

.

Hence we are interested

only

in the values of the vector fields on the image of X

.

This justifies

the

application of Proposition 1

.6 .

Since the connection 0 is torsionless

we

have that for all i = l,

. . .

, m

VE¡

	

XI

= VEiVEiX-VE

;7xEi
[VE¡

E¡, X] = ?(oe

:,E;)X

- VxVE¡E¡

.



We apply these formulas to compute r(X)P .

m

	

V m

T(X)p =
C
~ E%DEiVE=X - siVE=OxE,

/
+ C~EiV[E:,x]Ei/

x-I

	

x1v-

	

v

-4-
(

~n V

- EiVEiVEix-ezwE
.E.X/

x- I

-

~rx

	

V

C~E¡V(v,¡E¡)X -E¡Vx0E,E¡
x_r

m

EiOxOc:Ei - eiDE=OxEi+E;V[E:,x1Ei~
i-I

= ( trace, 72X
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nx
e i R(X, Ei)E i l

i=I

	

j v

v

_ (OX + traces R(X, *)*)z .

In the aboye formula R denotes the curvature tensor of 7 . Then applying
Observation 1 .3 we get the following proposition .

Proposition 4.1 . Let (M, g) 6e a pseudo-R,iemanniarc rrcanifold and
let TM be aquipped with the metric II or I + II t,Fcere a vector field
X E x(M) is Fearrrconic mith respect to th,esc neetrirs if v,rcd onl,y if

OX + traces R(X, *)* = 0 .

Let us observe that for any Y E X(M) we have that

g (trace,, R(X, *)*, Y) = traces q(IZ(*, X) Y, *)
= R(X, Y)

where R denotes the Rieei tensor of (M, 9) . Heucx : wc; have that

9(0X, *) + TZ(X, *) = 0 .

V

v

Corollary 4.2 . If (M, g) i.s a pseudo-Riernanniarc rrcareifvld, and TM
is equipped witic one of the rnetrics II or I + II tFeen a verter ,ficlrl X is
harmonic iff

Corollary 4 .3 . If (M, g) is a compact pseudo-Riemanniare ncanifold
and X E x(M) is harmonic with respect to the metrics II or I+ II tFeen
E,, (X) =0 .



226

	

J .J . KONDGRAK

Proof.. Let us consider the variation (~x, t,) - t,X then

Since

we get that

0

	

d
Elr(tX)It=1 = dttEII(X)It-1 = EII(X) .

Corollary 4.4 . If (M, g) is a pseudo-Riemannian manifold and X is
a Killing vector field then X is harmonic with respect to the metrics II
orI+II.

Proof.. If X is a Killing vector field then

div X = g(OX,*) + R(X, *) = 0,

converse is true ifM is compact (cf. [P]) . Hence our corollary follows .

Corollary 4.5 . If (M, g) is a Riemannian manifold with Rice¡ tensor
negativelg semi-defined (i .e . for each V É ~(M) R(V,V) <_ 0) . Then
a vector field X is harmonic with respect to the metric II or I + II
¡f and only if X is parallel . Moreover, if R is negatively defined (i .e .
R(V, V) = 0 iff V = 0) then zero sections are the onlg,harmonic vector
fields .

Proo£ We shall apply methods used in [P] . Suppose that X is har-
monic . We have the following Bochner's formula valid for all vector
fields :

29(0X, X) + 2tracey (7X, 7X) +49(X, X) = 0 .

g(OX,X) = -R(V, V) > 0

2 trace9 (OX, OX) + Og(X, X) < 0

then Og(X,X) <_ 0. On a compact manifold this implies that
Og(X,X)= 0 and then trace,, (OX,VX) = 0, so OX = 0 . We have
also obtained that R(X, X) = 0. Hence if R is negatively defined then
X = 0 .
Notation. If W : M1 , M2 is a diffeomorphism then by

~O : X(M1) -X(M2)

we denote the isomorphism of the modules of vector fields such that
~p(X) := dcp o X o ep-1 . The operator cp extends on the tensors of an
arbitrary type (cf. [KN, p . 28]) .
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Observation 4.6 . Let (M, g) be a pseudo-Riemannian manifold and
let Y be a Killing vector field and X a harmonic vector field . Then [Y, X]
is harmonic .
Proof.. Let (pt be a local flow of Y. Since ep t are local isometries then

we have that

cp tAX = O~o,X and ep t trace,, R(X, *)* = trace,, R(cp tX, *)*

These equations and harmonicity of X imply that

0 = -d~Pt (AX+ trace,, R(X, *)*) It=ot
d

_ - dt
(A~tX + trace,, R(~otX, *)*) I t=o

= 0[Y, X] + trace, R([Y, X], *) * .

Hence from Proposition 4.1 it follows that [Y, X] is harmonic . It is clear
that [X, Y] is also harmonic since the multiplication by -1 is an isometry
of N. a
Example 4.7 . If M is a Riemann surface of genus greater than one

then its universal covering of Mis a hyperbolic plane with.the constant
curvature equal to -1 . There is a group of deck transformations acting
isometrically on M. One can project the Riemannian structure from
its universal covering to M. In this way it is possible to construct a
Riemannian metric on M with curvature -1 . Then Rice¡ curvature of
M is negatively defined and hénce the only harmonic vector fields are
zero sections . The same construction of a compact Riernannian manifold
with constant negative curvature can be done f'or each dirriension .
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