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Abstract

FINSLER METRICS WITH PROPERTIES
OF THE KOBAYASHI METRIC

ON CONVEX DOMAINS

MYUNG-YULL PANG

The structure of complex Finsler manifolds is studied when the
Finsler metric has the property of the Kobayashi metric on con-
vex domains: (real) geodesics locally extend to complex curves
(extremal disks) . lt is shown that this property of the Finsler
metric induces a complex foliation of the cotangent space closely
related to geodesics . Each geodesic of the metric is then shown
to have a unique extension to a maximal totally geodesic complex
curve E which has,properties of extremal disks . Under the addi-
tional conditions that the metric is complete and the holomorphic
sectional curvature is -4, E coincides with an extrema¡ disk and
a theorem of Faran is recovered : the Finsler metric coincides with
the Kobayashi metric .

1. Introduction

The Riemann mapping theorem says that all simply connected do-
mains in C, different from C are biholomorphically equivalent . It is a well
known fact that this theorem does not hold for domains in T' for n > 1,
and the classification of bounded domains up to biholomorphism has
been an important problem in several complex variables . One approach
to understanding the structure of bounded domains is to study biholo-
morphically invariant métrics such as the Kobayashi or Carathéodory
metrics [K]] [BD] [L3] [Pa] . In [L1] and [L2], Lempert showed that
these metrics are extremely well-behaved in the special case when the
domain is strictly linearly convex and has smooth boundary: In this case,
the two metrics coincide, and the infinitesimal form FK of the Kobayashi
metric falls into a special class of smooth Finsler metrics with constant
holomorphic sectional curvature K = -4. Since the notion of a strictly
linearly convex domain is not a biholomorphically invariant concept, it
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is natural to ask how far Lempert's results can be extended to a more
general (biholomorphically invariant) complex manifolds .

One approach to this problem is to study FK from a more invariant
point of view. The first step is to characterize the properties of an ab-
stract Finsler metric F on an abstract complex manifold M' which are
necessary for Lempert's results to hold . A second, and more difficult,
step is to determine when the Kobayashi metric of a bounded domain
in (U" has these properties . In [F], Faran analyzed the local structure
of (complex) Finsler manifolds and obtained a set of local invariants by
applying Cartan's method of equivalente . He proved that vanishing of
certain local invariants forces F to coincide with the Kobayashi metric
of the underlying manifold M provided that F is a complete metric with
K = -4. However, from the complex process of constructing these lo-
cal invariants it is not easy to see how these invariants naturally arise
from the properties of Kobayashi metrics obtained from Lempert's work .
Thus, one would like to formulate a somewhat more direct description of
the local structure; that is intuitively more appealing . In this paper, we
give such description from the point of view of the calculus of variations
by examining the local properties of the Kobayashi metric on strictly
linearly convex domains, and derive equivalent conditions to the vanish-
ing of the Faran's invariants from a simple property of Kobayashi metric
(Property 1.3) .

In order to describe the local structure of the Kobayashi metric, we give
brief review of Lempert's work . We define the infinitesimal Kobayashi
metric FK on a complex manifold M as follows : For each v E Tx M,
x E M, let f be a holomorphic map from the unit disk 0 C C into M
such that f(0) = x and f(0) = Af v for Af > 0 . The magnitude FK (v)
of v with respect to the infinitesimal Kobayashi metric FK is defined
to be the infimum of

	

where the infimum is taken over all such f .
If f actually attains the infimum (Le .

	

FK(v) = ár ), then f is called
extremall. It can be easily seen that the metric FK is invariant under the
action of the group of biholomorphisms of M. Lempert showed that, if
M = D C CV` is a bounded strictly linearly convex domain with smooth
boundary, then FK is a smooth complex Finsler metric [L1], [L2], Le .
FK is smooth outside the zero section of TD and satisfies the following
conditions :
(1 .1)
FK(v) > 0

	

f'or

	

v ,: 0,

	

FK(z.v) = Iz1FK(v)

	

for

	

z E C,

	

and
(1 .2)
FK(vi + V2) .< FK(v1) + FK(v2)

	

for vl, v2 E T.D,

	

x E D,

where equality in (1.2) holds only when vl and v2 are colinear . Moreover,
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he proved the following theorem :

Theorem (Lempert) . Suppose that D is a bounded strictly linearly
convex domain with smooth boundary .

(1) There is a unique extremal map corresponding to each v E TD .
(2) All the extremal maps are proper isometric imbeddings, and can be

smoothly extended to the closed unit disk 0.
(3) The extremal disks f(,~i) passing through a pointt x E D form a

complex foliation of D - {x} .
(4) Extremal disks are (the only) one-dimensional holomorphic re-

tracts of D .

One ofthe key ideas in describing the geometry ofD is the construction
of the holomorphic retract of D onto the extremal disk f(A) . Lempert
proved that the field of holomorphic tangent planes of áD on f(¿9A) can
be holomorphically extended to the interior of the disk f(0), and defines
a holomorphic field of complex hyperplanes on f(A) that are transversal
to f(A) . In other words, there is a well defined (n - 1)-dimensional
holomorphic vector bundle p : E , f(A) over the extremal disk with
fibers defined by the hyperplanes in T'. The union of the hyperplanes
contains the domain D, and the holomorphic retract is defined by the
restriction to D of the projection map p.
The existente of such holomorphic retracts has further implications .

For example, it forces every (locally length minimizing, connected) geo-
desic curve of FK to be contained in an extremal disk . The properties
of the Kobayashi metric that interests us are the following :

Corollary . Let f : A - D be a extremal map for v E TfD .
(1 .3)

	

The extremal disk f(A) coincides with the union of geodesic cur-
ves through x tangent to a common complex line in TxM.

(1 .4)

	

There is a canonical splitting TD,f(o) = T(f(0)) ®E where E is
an (n - 1)-dimensional holomorphic subbundle of the restriction
TD,f(o) of the tangent bundleTD to f(A) .

We wish to generalize the condition (1 .3) to an abstract complex
Finsler metric F defined on an'n-dimensional complex manifold M. Let
exp, denote the exponential map from a neighborhood of 0 E T,M ¡rito
M defined by the geodesics of F. For each tangent vector v E T~M,
the image exp (U,) of a small neighborhood U, of 0 in the complex line
0 v defines a surface inM. A reasonable generalization of the condition
(1 .3) is the following:
(1.5)

	

For all v E TM, the surface exp (U,) is a complex curve (1-
dimensional complex submanifold) inM.
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This condition was first introduced by Royden [R], and it is, in fact,
equivalent to a condition given by Faran [F] .
The purpose of this paper is to study the local structure on of Finsler

metrics satisfying condition (1 .5), and further, to show that many prop-
erties of the Kobayashi metric of convex domains extend to this more
general class of complex manifolds . One of our major results is a con-
struction of a biholomorphically invariant family of complex curves which
enjoys many of the properties of extremal disks in convex domains . To
see how such complex curves are constructed, recall, from the calculus of
variations, that the metric F uniquely determines a vector field X on the
cotangent space of M, called the geodesic vector feeld, such that the inte-
gral curves of X are mapped into geodesics of F by the projection map
7r : T*M > M. Let Z be the vector field on TóM= {v E T*MIv =~ 0}
generated by the circle action of unimodular complex numbers defined
by multiplication on TO*M.

Theorem A. The following conditions are equivalent (Theorem 4 .7) :

1.

	

The surface exp (U�) C M is a complex curve for all v E TM .
2 . [X, JX] = KZ for some smooth function r, on TóM.
3 . The distribution D= eX ® (E Z C T(TOM) is involutive .

If any of the above conditions is satisfied then each complex curve
exp (U� ) extends uniquely to a maximal, totally geodesic, immersed com-
plex curve E --~ M (Theorem 4.9).

The sígnificance of the condition 2 and 3 in the theorem is as follows :
The condition 2 provides a computational methods to check whether F
satisfies the property (1 .5) . The condition 3 implies that, by Frobenius
Theorem, the distribution D defines a 2-dimensional complex foliation
.Fo of TóM. The complex curve E is constructed by projectiog each leaf
of the foliation Fo by the projection map 7r onto M.

The curves E share many local properties in common with the extremal
disks described in the Lempert's theorem. For example, by Theorem
A, any real geodesic curve of F is contained in one of the curves E.
Furthermore, a generalization of the property (3) in Lempert's theorem
holds : the complex curves E passing through a point x form a complex
foliation of some neighborhood of x . A less trivial result is the following
generalization of property (1.4) :

Theorem B. For each complex curve E, there is a canonical splitting
TM¡£ = TE ®P-E, where T1E is an (n - 1)-dimensional holomorphic
subbundle of TMI£. (Theorem 4 .9 .)
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The significante of the function r, in the Theorem A is its relation
to the holomorphic sectional curvature of F. Note that each complex
curve in M is naturally equipped with a Hermitian metric induced by
F, and, therefore, has an associated Gaussian curvature . Following the
definition by Wong and Royden [W] [R], we define the holomorphic
sectional curvature of F at v by the Gaussian curvature of the curve
exp (U� ) .

Theorem C. IfF is a complex Finsler metric satisfying the condition
(1 .5) then the holomorphic sectional curvature of F is determined by the
function

Finally, using the result described above, wc show that, under the
condition that F is complete a,nd r, = -4 the complex curves E coincide
with the extremal disks . This result was proved earlier by Faran [F] .
Note that, from Lempert's result, the Kobayashi metric FK on a strictly
linearly convex domain D C e n has constant holomorphic sectional cur-
vature -4 . (This is a direct consequence of the fact that every extremal
map f : A -> D is an isometry with respect to the Poincaré metric and
FK such that f(0) is locally defined by exp (U� ) .)

4.24 Theorem [F] . Suppose F is a complete complex Finsler metric
on a complex manifold, M with constant, holomorphic sectional curva-
ture -4 satisfying th,e property (1 .5). Then F = FK, v)hcre FK is the
Kobayashi metric on M.

The paper is organized as follows : In Section 2, we develop basic tools
and prove some basic facts about complex Finsler manifolds . Section 3
is an introduction of Legendre foliations and its application to complex
Finsler manifolds . In Section 4, we prove the main theorem using the
results of Sections 2 and 3 .
Throughout the paper, M denotes an n dimensional complex manifold

and F a complex Finsler metric; onM. The f'ollowing notations are used :
(1) The indices a, b and c rango from 1 through 2n, and o., (5, y rango

from 1 through 2n - 1 .

	

Summation conventions are in forte
throughout .

(2) (XI , . . ., xn, xn+1 . . ., x2n) denote the real coordinates on M ob-
tained from a holomorphic coordinates x, + ixn+, for v = 1, . . .,n.

(3) (xl

	

Xn xn+1

	

x2n ul

	

un un+l

	

u2n) denote the coor-
dinates on T*M induced by (xl, . . ., xn, xn+1 , . . ., x2n) .

(4) For F E C°°(T*M), Fa, FaL, . . . denote 'g"- ,

	

9zr"

	

and so on .du°
(5) If V is a vector field on a manifold M, e'V : M -M denotes the

1-pararrleter family of dif eomorphisms generated by V. Thus, for
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In this section, we prove some general facts about complex Finsler
metrics . A complex Finsler metric on the cotangent bundle of M is a
map F : T*M - R satisfying properties (1 .1) and (1.2) . When M is
equipped with a complex Finsler metric, we will call M a complex Finsler
manifold .

2 .1 The Geodesic Vector Field and Complex Structure . In
order to define the exponential map, we introduce the geodesic vector
field on T*M. Recall that T*M is naturally equipped with a 1-form
defined by the equation

(2.2)

and that the 2-form d( is a symplectic 2-form on T*M (Le . a smooth
closed 2-form on T*M satisfying the non-degeneracy condition (do)2,, =~
0) . The geodesic vector field X on T*M is uniquely determined by the
condition

(2.3)

	

XJdS = -FdF.

In particular, tlle identity X F = 0 holds . In terms of coordinates, we
Nave

(2.4)

cach x E M, t ~--~ etvx is an integral curve of V starting at x (Le .
e°vx = x and

	

dI etvx = Ve�.) .

2 . Complex Finsler Metrics

X=F
Fa

_ó _ _áF _8 ~ .
áxa

	

Óxa áuaa=1

2n
_ E ua dxa,

a-1

To describe how X is related to the complex Structure, consider co-
ordinate expression of the complex Structure on T*M. The complex
Structure J on M is expressed as

-i)(2.5)

	

J5 = ,In'
r~

	

where

	

(Jb) _ (1

	

0

	

,



(2 .6)
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and I is the (n x n)-identity matrix . The natural complex structure on
T*M is then given by

a

	

b a

	

_a __

	

ba
IgXa

It can be directly checked that the complex structure defined by this is
independent of the choice of coordinates . By abuse of notation, we will
denote this complex structure on T*M by J . From the dcfinition above,
it is clear that J o 7r * = 7r* o J .
Note that condition (1 .1) provides a compatibility condition of F and

the complex structure, which can be expressed as follows : Let Y be the
radial vector field on TóM generated by the, action of IR 1:>y rnultiplication
of é, t E I1Z . It can be easily checked that Y and Z satisfy the relation

Thus, if F satisfies the condition (1 .1), we have F(e`v) = F(v) a,nd
F(e'v) = e'F(v), and therefore the following identities hold :

(2 .8)

	

ZF = 0,

	

YF= F.

Note that the coordinate cxpressions of Y and Z are

(2.9)

	

Y = u°

	

09 ,

	

Z = -Ja U'' a'9a .

Therefore, conditions (2.8) are equivalent to

(2.10)

	

.1' 71" Fa = 0,

	

F,, u' = F.

2.11 Lemma . The following identities are sattisfified :

(2.12)

	

[Z, X] = -JX,

	

[Z, JX] = X,
[Y, X] = X,

	

[Y, JX] = JX,

	

[Y, Z] = 0 .

Proof: The computations in the proof of this lemma are based on
the identities (2.8)-(2.10) and the following basic identities derived from
them :

f _a _f _a __

	

f _a ____a

	

a

	

b a
I Y~ axa ] - LZ~ Oxa ]

	

~~

	

LY~ aua ]

	

a7l.a

	

[Z' a_ua

	

_
- ,%a a7/,b
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Now compute [Z, X] using coordirlates :

[Z, X]
_

{

	

1:
~

GiX
_
GZ	F

	

Fa

	

a

	

_ aF

	

a
axa

	

axa auaa=1

=
F
E { (ZFa)

a
axa

_
ax
aF
a~Z á.a ) }-

Observe that

(ZFa)

	

Z
(au)

	

aBuF ) + [Z' aáa, F - (Ja av, b ) F

	

Ja,Fb .

Therefore, using the skew-symmetry of Iba, we obtain

=(YF)

)J (J6 Fb axa + 'Ia
axaW, )a=1

-
7
{
F

2n (Fa _a

	

-
(9F

	

o9 )}
= DF

	

(axa aUaa=1
= -JX.

To show the identity [Z, .IX] = X, dote thaat .Cz,I = 0, and compute

[Z, JX] = GZ(JX) = J(GZX) = J(-JX) = X.

To prove the identity [Y, X] = X, note tllat

YFa, = Y ( OF, ) = aua (YF) + fY, aary

	

F

	

Fa - Fa = 0 .

Using this identity, compute [Y, X] as follows :

[Y, X] =GyX = Gy

	

F

	

(Fa
a

	

- aF

	

a
Y!

	

axa

	

axa auaa=1

Fa
0

	

OF 0 )
axa

	

axa auaa=1

_ F' Gy

	

(F.

	

a

	

_ aF

	

a ) }---
axa

	

axa (gUaa=1

_a __OF_a
(Íxa

	

axa (gua

a2n

	

()

	

(

	

) }

_aF _a _aF _
l
Y

axa a~a + axaau-~y
a=l

~(aa
F

) aáa

	

ááaa} =X.
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The identity [Y, Z] = 0 is clear since the actions of e t and e -" commute,
and the identity [Y, JX] = JX follows from the computation :

[Y, JX] = [Y, -Gzx] = -Gz[Y, X] + [GZY, X] = -GzX = JX.

2 .13 Lemma. The vector fields JX and [X, JX] satisfy the identi-
ties:
(2.14)

((JX) = dF(JX) = 0,

	

and

	

(([X, JX]) = dF([X, JX]) = 0 .

In particular, JX and [X, JX] are tangent to the submanifold SFM C
ToM .

Proof:: To prove the lemma, recall that we have the identities Cx( =
X -id( = -F dF, X F = 0 and C(Z) = 0 . Also, recall from identities
(2.8) and (2.12) that Z F = 0 and JX = [X, Z] . Using these identities
and the fact that Gx is a derivation, compute as follows :

((JX) = (([X, Z]) = «£x Z) = £x «(Z» - (£xC) (Z) = FdF(Z) = 0
dF(JX) = dF([X, Z]) = XZ F - ZX F = 0

Using these identities again, we complete the proof of the lemma :

(([X, JX])=( (£x(JX))=Gx{((JX)} - (Gxo) (JX)=FdF(.IX)=0
dF([X, JX]) = X(JX) F - (.IX)X F = 0.

2.15 The Exponential Map. The exponential map is defined simi-
larly as in the case of Hermitian manifolds . To define it, we introduce the
dual complex Finsler metric F : TM , R, satisfying conditions (1.1)
and (1.2), and define geodesics as curves with locally length minimizing
property with respect to F. We briefly review some concepts of the cal-
culus of variations . For more details about the calculus of variations see
[GF] and [S] .
To define F, let ToM = {v E TM1v :~ 0}, and define: a bundle map

xP :TóM~ToMby

(2.16)

	

T(w) = 7r�(X�,)

	

for

	

w E TóM.

In coordinates, we have

7L

(2.17)

	

xPx(w) _

	

F(w) F,,(w)
8
á.,,a= I . .1
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where w = (xi

	

xn xn+l	x 2n ur

	

un un+ 1

	

u2n)

	

Rom (2.17)
and conditions (1 .1) and (1 .2), it can be shown that ID is a dif eomorphism
with the property that xP(tw) = txP(w) for t > 0. The inverso -D = T-1
is usually called the Legendre transformation. For example, if F is the
norm induced from tfre Hermitian metric g, <D : TM -+ T*M defined
by {4>(v)}(w) = g(v, ui) for v, w E T.,M . We define F by F o 41) .

	

It is
clear from the following lemma that F is a complex Finsler metric .

2.18 Lemma. The map 4> has the property : <D(zv) = z-P(v) for
ze0.

Proof.. Because the identity YP(tv) = txP(v) holds for t > 0, to prove
the lerniria, it suffices to verify the identity (D(e ci v) =

e-ci-P(v). Note
that tlic 1-parameter farnily of diffeomorphisms ecz : TóM , TóM
of the vector field Z is simply the complex rriultiplication by eti (i .e .
etzv = e¿¡ . v) . Recall frorn Lemma 2.11 that GzX = [Z, X] = -JX.
Also note that from the definition of Lie derivative,

	

c (e*
czx(l tz w»

e*t7(Gzx) (,tz w) . Using these identities arid the identity 7r o e-cG = 7r,
we compute

dt {p(etiv)}= dt_

	

{,P(e"v)}=
d{7r*X(e17 v) }= d {7r*e*c'x(1tz .O

7r * e*c!,(G/X)~~tz�l= 7r*(-JX)(,3tz�) = -J7r* Xf,tz�1= -ilP(e ti v) .

Therefore, y(t) = T(etz v) satisfies ara ordinary differential equation y' -
-iy with initial conditiori y(0) _ xP(v). From the uniqueness of solution,
we can conclude that xP(e¿Z v) = e-,Z P(v) ; and frorn this, it follows that
<D(eciv) =

e-tid,(v) .

A curve y : [t1, t2] -Mis called a geodesic if it is a critical curve for
the furictional

Jc
(2 .19)

	

/'c2
F
(dt

	

dt,

	

y(tr),

	

y(t2)

	

fieed .
,

Let v E I;,M arrd yv : (-c, e) ---> M be the geodesic such that y � (0) = x
and ~c (0) = v . As in tlic case of Hermitian metrics, it can be shown
that y � is solution of a second order ordinary dif erential equation (Le .
the Euler-Lagrange equation [GF]), and hence it is uniquely determiried .
It can be also shown tliat there is ara opera neighborhood N C T,,M of
0 such that y � (1) is defined for all v E N. Herice, the exponential
map exp x : N -M at x is defined by exp � (v) = y(1) . From the
uniqueness of solutioris of ordinary differential equations,

(2.20)

	

exp x (tv) =-Y (t) .
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It is a standard fact from the Calculus of Variations that the pro,jection
of the integral curves of X are geodesics onM. Hence, it follows that the
curve ^y(t) _ 7r(e tx w) is a geodesic for all w E T.M such that -y(0) = x
and 1(0) _ 7r.X �, _ xP(w) . Therefore, from the identity (2 .20), we
obtain
(2.21)
exp (tP(w)))=-y(t) _ 7r(etx w), or equivalently, exp (tv) = 7r (etx<D(v))

for v = T (w) .

2.22 Lemma. For all v E TOM the exponencial map can be expressed
in terms of the geodesic vector field X as follows:

(2.23)

	

exp (tes2 .v) = {7r o etx o e-sz} (`D(v))

for s E IR and, t, > 0 smallll .

Proof.. Recall from Lemma 2.18 that we have D(e" v) = e-si (D(v), and
etzv = eti . v. Using the identity (2.21), we compute

exp (test v) = n ( etx,D(e sí v))
= n (etx e-si<D(v) ) = 7r (ctxe-sz~D(,v)) ,

3. Legendre Foliations

In che following, we give a brief introduction to Legendre foliations .
Although the tlreory of Legendre foliations is not required in the state-
ment of the rnain theorem (Theorem 4.2), it is necded in its proof . For
more details about Legendre foliations, we refc-;r the reader to [P] .

Let P be a srnooth (2m + 1)-dimensional manifold without bouridary
with a fixed choice of contact 1-form 17 (Le . 17 A (drt)'n 7A 0) . A Legendre
foliation is a foliation F of P by m-dimensional integral submanifolds of
rl . Two Legendre foliations Fr and F2 are said to be equivalent if there
is a dif eomorphism cW : Pr - P2 such that cW*r72 = 17, and cp* .F2 = .Fr
where cp*.F2 is the foliation of PI whose leaves are inverse image of leaves
in .F2 .
The relation between Legendre foliations and complex Finsler rnani-

f'olds can be seen from the following fact [P] :
The unitt cotangent bundle SrM = {w E T*MIF(w) = 1} is
equipped with a natural contact 1-form ri defined by the pulll back
of C to S¡M and the Legendre foliation .F defined by ftbers of
7r :SrM1M.

It is shown in [P] that the structure of Legendre foliations defined in
this way determines the metric F uniquely :
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3 .1 Proposition . If Fr and .'F2 are equivalent Legendre foliations
on S* M, and

,
SFZ M2 where Fl and F2 are complex Finsler metrics

on Mr and M2 respectively, then Mi and M2 are isometric as Finsler
manifolds (i .e . there exists a diffeomorphism cp : Ml - 1VI2 such that
F,=F2o(p*)

.

To describe the local structure of the Legendre foliation on SrM, let
L be the tangent bundle to F . One of the basic local invariants of the
Legendre foliation is defined by the restriction to L of the symmetric
form

(3.2)

	

II = Fab dua ® dub.

It is shown in [P] that, if the triangle inequality (1 .2) holds, then 11 is
positive definite, and that there is a canonical reduction of the structure
group to O(2n - 1) . Note that, from their definitions, thc; restrictions of
vector fields X and Z on SrM are tangent to S¡M, and hence they are
invariantly defined vector fields on S*M. If (Z,,) is a local orthonormal
frame of L with respect to II, there is a local coframe (B°, r7, ~Q) on SrM
such that

(3.3)

	

~a(ZA) = bá,

	

ea(X) = ea(ZA) = 0

satisfying the structure equation :

+

	

bq.y00 n
HQQ7B0 Ae-y +SIr7ABa +Qaa7ep A~~

with thc: following symmetry conditions :
(i) Ga37, QQp.y and SI are syrnmetric in all indices, and

(ii) IZa~j, y = -F'7fj and Irá = -Irá .
Moreover, F is the induced norm of a Hermitian metric if and only if
Gap.y = Q%q_í = 0. In this case, the tensors Itap .y and Si are related to
the curvature tensor of the Hermitian metric . This can be easily stated
in lower dirnensional case :

3 .5 Proposition . Let M be a complex curve (i .e . n = 1) . Then
F is a, norm induced from a Hermitian metric with Gaussian curvature

d9° ir! 0 0 00
0 0 0 77

dl;° 0 0 7rp
(3.4)

-77 A ~a + Gap y 0,9 l~ ~7
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r, if and only if the Legendre foliation on S,',M satisfies the structure
equations:

(3 .6) dOl =-rlntjl , drl=O'nt 1 , da r =K97n0 .

The 1-forms {rl, 0', ~r } form an invariantly deftined, global coframe on
SFM.

3.7 Lemma.

	

The identity 11(Z, Z) = 1 holds.

Proof.. Recall that Z = -Jbub aáa . By differentiating the first iden-
tity in (2.10) with respect to a2~ , we obtain J,aF,, + J~;~uGFn, = 0 . Using
these, we compute

1I(Z,Z)=F,,b jp,upj b
(1

	

b
7~L`i=-J`Fa JbzIq=Fa u°=F=1 on S~M. "

By the lemma, we can find a local frame (Z.) of L such that Zr =
Z, along with a coframe (0', rl, ~p ) satisfying the condition (3.3) and
the structure equation (3.4) . Let (X,, X, Zf3) denote the dual frame of
(OC', 77, ~a)

3.8 Lemma. The vector fields JX and [X, .IX] have the following
expressions in terms of the frame (X, X, Z,3) :

(3 .9)

(3.10)
JX = Xr + rri(X) Z«

[X, JX] = 2 r; (X) X,Y + {x ('i (x)) +'-(X) ~p(X) - S; } z,

Proof.. To prove the lerruna, note that the vector JX and [X, JX]
has no component in the direction of X since rl(JX) = rl([X, JX]) = 0
(recall from Lerrrma (2.13) that «JX) = «[X, .IX]) = 0) . To compute
the components in the other directions, we will make use of the fact that
the Lie derivative G is a derivation and that the forms 0', ~' annihilate
X Using the identity JX = -GZX (Lemma 2.11) and the structure
equation (3.4), compute

Ba(JX) = B~(-GZX) = (GZB
,

) (X) = {ZJd0-+d(ZJB-)}(X)
= dOa (Z, X) = hi,,

1a(JX) = j°(-£_7X) = (Lzj") (X) = {ZJd~' + d(ZJj')}(X)

=d~'(Z,X)=7r' (X)~13(Z)=7r1(X) .
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This proves the: identity (3.9) . To compute the component of [X, JX]
in the direction of Xa , note that the identity (3.9) implies B'(JX) = 0
and compute

o- ([X, JX]) = ea (£x(JX)) = X(oa(JX)) - (Gxoa ) (JX)
= -{X _idea + d(X JBa)1(JX) = dO-(JX, X) .

Using this identity, the structure equation (3.4) and the identity (3.9)
again, we compute the component of [X, JX] in the direction of Xa :

0- ([X, JX]) = dea(JX, X)
= 7ra(X) 0"(JX) + ~a(JX) = 7r (X) + 7r (X) = 27ri (X) .

In a similar manner, we compute the component of [X, JX] in the di-
rection of Za :

~`
k ([X, .IX]) = ~a (Gx(JX)) = X{I'(JX)} - (Gx~a) ( .IX)

= X {~a(JX)} - {X_idea + d(XJ~a)}(.1X)
= X {7r C (X) } + d~a(,IX, X)
= X{7r~(X)} +7r"(X) ~a(JX) + SI 0-(JX)

= X { 7r(X)}+7rp(X)7r"(X)-Si .

From these, the identity (3.10) follows.

4. The Main Theorem

4.1 Equivalent Conditions. In this section, we state the necessary
and suffrcient conditions for a complex Finsler manifold to satisfy the
property (1 .5) . For each v E TL M, let U� be a neiglzborhood of 0 in the
complex liase C -v C T�M spanned by v, on which the exporrential map
exp is defined . The image exp (Us ) defines a surface in M asear x .

4.2 Theorem . The following conditions are equivalent.

Al.

	

exp (U� ) is a complex curve for a,ll v E TM with F(v) = 1 .
A2 . [X, JX] =KZ on S;.M for some smooth function K .
A3 .

	

Th,e distribution D spanned by X, JX and Z is an involutive dis-
tribution ore S¡M.

Proof.. We will prove the theorem by showing (i) the equivalente of
conditions Al and A2, and (ii) the equivalente of the conditions A2 and
A3.
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(i) To prove the equivalence of the conditions A1 and A2, recall (see
Lemma 2.22) the identity

exp (te ."! v) = { 7r o etx o e -'Z } (4)(V» .

Thus, if we denote I' �, for the surface defined by (t, s) H C� , (t, s) =
7r(etx e

- S Z w) for w E S*,M and t > 0 small, condition A1 is equivalent
to the condition that I' � , be a complex curve for all w E S* M.
Suppose that the condition A1 holds . Then the surface I'�, is a complex

curve for all w E S¡M . To show that the condition A2 holds, we show
[X, JX] = rZ at vw = e'x u) E SUM for sufficiently small e > 0 and
v) chosen arbitrarily in S¡M. Let {I'T} denote a family of surfaces
parametrized by T defined by the function

(t,, s) ~-1 C, (t, s) - 7r(e~~-T)XesZCTX?v) .

Observe that P,'s are complex curves since ú, (t, s) = C�rX � ,(t, - T, s) .
Also, C and CT coincide when T = 0 . Moreover, since C T (t, 0) = C �, (t,, 0)
for any T E [0, e] ; the surfaces r T contain the curve; C,, (t, 0) in corrrrrron,
and in particular, the curveas CT (t, 0) have common end point 7r(ti» and
common tangent vector T = 7r* X,D at the point 7r(7u) when t, = (: . Since
CT are complex curves, it ft)llows that they have conrrrron tangent space
C -T at 7r (?&) .

Let W(-r) be the tangent vector at 7r(»» defirred by

If we let T = e . we obtain

W (T) _ D
ST(e,0) .

Then, W(T) E CT for all T E [0,e], and therefore, all the derivatives of
W(-r) are in C -T . Usirig the definition of Lie dcrivative, we, compute the
derivatives of W(T) :

dW

	

(c

	

T)X
}«.r	7Ul

d2W =7r
* e *

E_Tlx{Gx,CxZ d3W =7r
*e .` _Tlx{GxGxGxA,X,U I.

dT

	

dT

7r*( .CxZ),i, E CT;

	

7r * (GxCxZ),D E TT,

	

7r * (fx,Cx£xz),D E TT.

Since T = 7r *X,;, and GxZ = JX = Xr + 7ri (X) Z, we c;arr c:orrcltrde
that

[x, Jx],~,

	

( .cx [x, Jx1),-, E RX,~, ® I.(X,),D ® L,7, .
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But from Lernma 3.8, [X, JX] does not have a component in the direc-
tion of X and Xl, and thus [X, JX]�, E L�, . Again, from Lernma 3.8, it
follows that Sri (X) = 0, and we obtain

(4.3)

	

JX = XII

	

and

	

[X, JX] = Si Z<, .

From the structure equation (3 .6), it can be easily shown that the identity
Ex Za = X~ + ir' (X) Zp holds . This identity and the second identity of
(4.3) gives

Ex [X, .JX] = Ex (Si Za = (X Si) Ztx + Si (,exZa)

_ {(X S-) Z,,+SpZr~(X)} Z<,, +Sl X' .

But, Again, since we proved (Ex [X, JX])�, E RX�, (D 1FI(Xl)�, ® L,D,
components of the vector Ex [X, JX] in the direction of Xa for a =~ 0
has to vanish . Therefore, it follows that Si = 0 for a > 1 and [X, JX] _
Si Z, and the condition A2 follows .

To prove the converse, suppose that [X, JX] = rZ holds for some
r, E C°°(SrM) . We prove that the surface defined by C�,(t, s) =
7r(etx e-Sziu) is a complex curve for all Zu E T*M by showing that
J `~

	

-(-T,0) is tangent to the curve C�, for small T < 0 .

	

Note that
Gx £x Z = Ex [X, Z] = Ex (JX) = rZ, and let 771 = e-Tx u) . Using the
definition of the Lic derivative, we compute

2
2 (e*txZ(etXv,))

	

tx{
.CXZ}~~tXw))

= .e*tx {GXGXZ}(etxm)
= K (etx 7u ) {e*tx z (,IX�,) } .

Theref'ore, if we lct W(t) = e*txz(e tx,b) E Tz(S*M), W(t) satisfies
a second order ordinary difierential equation W"(t) = r(t)W(t) with
initial conditions W(0) = Z,z and W'(0) = JX,T,. Consequently, we
have W(t) E span{Z,b, JXú,} for small t, and in particular, W('r) _
e*Txz(,rx,D) E sean{Z,7� JX,J . Substitutlng t7v = e-Tx7v,

(4.4)

	

W(T) = e* ' x Z�, E span{Zw, JX�,} .

Using the identity 1 (T, 0) = 7r * X�, and 7r * o J = J o 7r * , we obtain

a
a
w

(T, 0) = ás

	

{7r(e'xesz7V) }
s=o

= 7r * e'x Z�, = k 7r * (JX),í, = k J 7r* (X,D) =k J aaw (T, 0)
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for some k E IR, and hence J ~áe (T, 0) is tangent to the surface defined
by C�, .

(ü) If [X, JX] = rZ holds for some rc E C'(S* M), then the involu-
tivity of D follows from the identities

(4.5)

	

[Z, X] = -JX,

	

[Z, JX] = X

	

and

	

[X, JX] = KZ.

The converse of this is an immediate conséquence of the the identity
(3 .10) .

4.6 Remark .
(1) Note that, in the proofof Theorem 4.2, the two equations Sri (X) _

0 and SQ = 0 for /3 > 1 are equivalent to the single condition
[X, JX] = rZ with rc = Si .

	

The condition Sri (X) = 0 can be
interpreted as a compatibility condition for F and the complex
structure . For example, if F is the induced norm of a Kaehler
manifold, this condition is satisfied . In this case, the condition
Sp = 0 for ,(j > 1 puts restrictions on the curvature of the Kaehler
metric . One special case of this is when M is a Kaehler manifold
with constant holomorphic sectional curvature . In this case, it can
be verified using results in [P] that Sá = cb í3 for some constant e .

(2) Conditions equivalent to Al-A3 of Theorem 4.2 were introduced
by Royden [R] and Faran [F] .

The conditions Al-A3 in Theorem 4 .2 can be equivalently stated as
conditions on TóM.

4.7 Theorem . The following conditions are equivalent :

B1 .

	

exp(U� ) is a complex curve for all v E TOM .
132 . [X, JX] = rZ on TóMfor some te E C°°(TOM) .
133 . The distribution CX ®0Z C T(TO M) is involutive .

Moreover, these conditions are equivalent to conditions Al-A3 in Theo-
rem 4 .2 .

Proof: Note that the conditions Al and Bl are clearly equivalent . To
prove the theorem, we show (i) that A2 implicas B2, and (ii) that A3
implies B3 . The converses of these are trivial to prove .

(i) Suppose that [X, JX] =rc Z holds on SFM for some rc E C°°(SrM).
Extend K to TóM by rc(tw) = tz K(W) for all t > 0 and w E SI*M .
We claim that [X, JX] = rc Z on TóM. To show this, we show that

both W = [X, JX] and W = n Z on TáM must satisfy the ordinary
differential equation GyW = 2W . Note that the integral curves of Y
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are the radial lirios in TóM . Thus, if both [X, .IX] and rc Z satisfy the
equation, they rnust coincide because the identity [X, JX] = r Z gives
the same initial condition at points on SFM. To show that the vector
field [X, JX] satisfies the differential equation, recall, frorrr Lemma 2.11,
that Gy X = X and GyJX = JX. Using these identities and the fact
that Gy is a, derivatiorr, we compute

Gy [X, JX]=[GyX, IX] +[X, GyJX]=[X, JX]+[X, JX]=2[X, JX] .

To show that the vector field r, Z satisfies the differential equation, recall
that the vector field Y on TóM is generated by the action of II3, by
multiplication of e' . Using homogeneity of K, we obtain the following
identity : For w E TO M,

d ~~
dt, =o

(Le . GyZ = [X, Y] = 0), we compute

dt

	

{e2r r(w) } = 2~;(v~)
r.=o

Using this identity and the fact that the vector fields Y and Z commute

{ .Cy (r Z)} = (Yr,) Z = 2(K Z) .

(ii) The; proof that the condition A3 irnplics the condition B3 imrne-
diatc;ly follows frorrr thc; identities in Lcrnrna 3.8 .

4 .8 Totally Geodesic Complex Curves . We call a complex curve
E totallly geodesic if, for any tangent vector v to the complex curve E
and geodesic segnrcnt yv : (-e, e) - M such that ^c (0) = v, y, (t)
is corrtairred in the complex curve for small t . The main result of this
seetiorr is tlrat, under condition (1 .5), the geodesics of F can be uniquely
extended to irnmersed complex curves that are totally geodesic subman-
ifolds of M. In fact, tlrese curves are precisely thc ones defirred by the
complex curves exp (U� )'s in condition (1 .5) .

Theorem 4.9 . If the condition (1 .5) holds, the complex curve
exp (U�) can be uniquely extended to a maximal totally geodesic complex
curve f : E - M immersed in M. Moreover, there is a canonical (n-1)-
dimensional holomorphic vector subbundle T'E of f*(TM) transversal
to E .

Proof:: Recall from Theorem 4.2 that D = span{X, JX, Z} is an in-
volutive distribution. By the Frobenius theorerrr, this irrrplies that S*M
is foliated by 3-dirnerrsional maximal integral subrnanifolds of D . Let
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E be a leaf of this foliation .-D, then there is a well defined SI C e
action on E since Z is tangent to E . Let us denote the quotient space
E/SI by E . It is not difñcult to see that E is a complex curve with the
complex structure induced from the complex structure of E C T* M, and
that there is a holomorphic immersion f such that the following diagram
commutes :

inclusion
E~Srm

E
J

M

Recall that the complex curve exp (U� ) is the surface defined by

(4.11)

	

(t,, s) - exp (tesw) = n (etXe-.yi4,(v)) .

From this, it is clear that the complex curve f : E - M is locally
defined by exp (U� ) since e'xc-9ziv E E . From this, it clearly follows
that f : E - M is totally geodesic .

To define the transversal holomorphic subbundle T-LE of f* (TM),
note that 7rz E is a principal circle bundle . Define the fiber T,LE
ofTl EatxEEbyT~E={vEf*(TM)Jw(f*v)=0 for al¡ wEE- ,,} .
It is clear that Tl E is a holomorphic vector bundle with dimension n-1 .
To show that T~ E is transversal to E, suppose v E TLE n TE. Note

that xP(w) is tangent to E for all w E Ey since: xP(rv) = 7r* X� , and X
is tangent to E . Moreover, 'Y(ui) :,¿ 0 because w (xP(w)) = w(7r *X�,) =
FFa ua = F2 = 1 z~ 0, where uJ = Ea-l , a dxa . Since v, f * Y' (w) E T,; E,
we have f* v = zkP(w) for some z E (E . But, recall that v E TL E, and
therefore, v)(v) = 0 . This implies that v = 0 because

71) (V) = w (zXP(w)) = z {w (xP(w))} = z .

4.12 The Holomorphic Sectional Curvature . If F satisfies the
property (1 .5), there is a natural way to define holomorphic sectional
curvature K of F. In this sectio'n, we show that K is determiried by the
smooth function K in the condition A2 of Theorem 4.2 .

Holomorphic sectional curvature K of a complex Firisler rnetric F
has been studied by Wong and Royden [W] [R] . To define K(v) for a
unit vector v E T,M (Le . F(v) = 1), note that each complex curve
U C M tangent to v has a canonical complex Finsler rnetric, defined
by the restriction F,1 ,u : TU -> IR . In fact, because U is of complex
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dimension one, it can be easily seen that the metric F1hu is a norm
induced by a Hermitian metric g on U: If F(v) = 1,

F((a + i/l)v) = la + i,31 F(v) =

	

a2-+Q2 .

In [W], Wong defined the holomorphic sectional curvatura K(v) as the
supremum of the Gaussian curvatura of g at x E U, where supremum
is taken over all complex curves tangent to v . In the special case when
F is the norm induced by a Hermitian metric, this defines the usual
holomorphic sectional curvatura of Hermitian metric . Observe that, if
F satisfies the property (1.5), then by Theorem 4.2, there is a naturally
defined totally geodesic complex curve of the form exp (U� ) tangent to
v . In [R], Royden showed that the Gaussian curvatura of the induced
metric g at x on this complex curve attains the greatest value and, hence,
it defines the holomorphic sectional curvatúre K(v) . Thus, the following
theorem holds :

4.13 Theorem . Let, N be a complex submanifold of M, and let K' be
the holomorphic sectional curvatture of the induced metric FITN on N.
Then the inequality

K'(v) < K(v)

holds every unitt vector v tangent to N.
In particular, if U C M is a complex curve tangent to a unit vector

v E TM, the Gaussian curvatura of the induced, metric g defined by FITU
is bounded from above by K(v) .

The function K can be regarded as a function on the quotient space
S* MIS' . Recall from (2.12) and(4.5) the identities [Z, X] = -JX,
[Z, JX] = X and KZ = [X, ,IX], and compute

(ZK)Z = GZ (KZ) = £z[x, JX]
- [LZX, Jx] + [x, LZ (Jx)] = [-Jx, Jx] + [x, x] = 0 .

From this ideritity, we conclude ZK = 0 . This implies that the function
K is invariant under the circle action of unimodular complex numbers
defined by multiplication on TO M, and hence the function K can be
regarded as a function on S*M/S1 .

4.14 Theorem . If K is the holomorphic sectional curvatura of F,

for every unit vector v E TM .

K(v) = K o -D(v)

Before we hegin the proof, note that by Theorem 4.9 the complex curve
U C M has a unique extension to a maximal totally geodesic complex
curve f : E -+ M, and that there is a circle bundle rrr : É , E ovar E .
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4.15 Lemma.

	

The fbers of the circle bundle 7rz : E- E defines a
Legendre foliation .:L with respect to a natural contact, 1-form deffned by
the pull-back of 77 to E . The structure equations of this Legendre foliation
are the pull baks to E of the equations:

(4.16)

	

dB' =-r7A~',

	

drt=01 n t;',

	

d~' =K17A01

Proof.: The structure equations (4.16) are obtained by pulling back
the equation (3.4) to É . Note that, since JX = XI and Z = ZI, we llave
Ba (JX) = ~' (Z) = 0 for cx > 1 . Therefore, on E, we llave

dB' = -77 A t;' + G'1101 A ~'

dri=01 A~'
dtl

=SigAB
1
+Q 1 r10

1 A~l .

But, from thc; identities (4 .5), it easily follows that G'r1 = Qr 11 = 0 arrd
Si = r, . Hence, we obtain the structure equations (4.16) :
From the equations, it is clear that the pulí back to É of rl is a contact

form since r) A drt = rt A B' A

	

'

	

0 on E.

Proof.. To prove tire theorern, choose v E T,,M and let U C M be a
totally geodesic complex curve such that x E U arrd v E T,;U . Also,
let f : E , M be the unique extension of U described in Theorem 4.9,
and let Éu denote the restriction of the circle bundle 7rr : É -~ E to
U . Observe that U is also a submanifold of S M/S' since U C E =
E/S' C SrM/S' . We claim that the Gaussian curvatura of g orr U is
Klu E

C_
(U), wlrcre K is regarded as a function orr S¡,M/S' .

The theorern follows from the claim . To sea this, proveed as follows :
Note that by commutativity of the diagram (4.10), 7r = f o 7rz . Hence,
if w E Eu, then xP(ur) = 7r,Xw = f* o (7rr),X� , . Therefore, the rrrap

SrM , SpM sends Eu into the zenit tarrgerrt bundle S.U of g .
Since T is a bundle map ovar U such that T(es'u» = e`T(w), kP maps
tu dif eomorphically onto S.U, or equivalently, we llave a bundle rrrap

1
Is,u = <PIs,u : SU - Eu ovar U . Thus, since r, is corrstant along

fibers of Eu arrd v E T,,U, we llave r, o <D(v) = K(x) . B,y thc; clairrr, K(x)
is the Gaussian curvatura of g at x E U, and the identity K(v) = Koq>(v)
follows .
To prove the clairn, we denote tire Gaussian curvatura of g on U by

ic E C'(U), and show K = k. Recall that, f'rorrr Propositiorr 3.5, thc;
Legendre foliation on Sg*U iras the structure equations

(4.17)

	

dé' =-~At:',

	

di7=8'A~',

	

d~'=k~AB',
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wherc: {H1, ~, `1} is the invariant coframe on S* U. The; proof of the claim
is done by est

S
ablishing the equivalente of the Legendre foliation on S..U

with ,Fz . This is proved by showing that there is a dif eomorphism
0 : Eu ~ S9 U such that

(4.18)

	

0*~=r7,

	

and

	

7r o0=7rr .

It follows that O*Hl = 0 1 and ?P*~ 1 = ~1, and in particular, the pull-back
by 0 of the equations (4.17) are the structure equations (4.16) of .Fz .
The identity k o 0 = r, follows .
We define O(w) for w E Eu C T*M as the by pull-back of w to the

tangent space of U. In coordinates, we have
(4.19)

l

	

n+1

	

1

	

n n+1, . . ., 2ra(:L ) 0, . .,O,X'

	

,0, ..,0¡U , . . .,26

	

,4L

	

2L

	

~(x l	xn+1 u1 ,9xn+1)

where (x 1 , . . ., .xn, xn+1 , . . ., x2,) is taken so that U C M is locally defined
by .r,°' = 0 for a =~ 1, n + 1 . To complete the proof; it remains to show
that

(1)

	

rnaps Eu diffeornorpllically orto S.*U, and
(2) "

	

~ = 71

(1) : To show that 0 is a diffeornorphism onto Sg*U, recall that T maps
Eu onto SU. Hence, if w E Eu, then the vectors xP(w) and T(Jw) _
-JT(w) f'orm an orthonormal frame of T,;U for some x E U. The fol-
lowing computation shows that the covectors 0(7u) and 0(Jul) = ,Iz/1(w)
forro the dual coframe of {xP(w),T(Jul)} : Using the iderltities (2.10),
compute;

{1h(1u)} (IP(w)) = w(7r * Xw ) = FF<l U,
a = F2 = 1

{O(Jw)} (

	

0%711)) = {Jo(w)} (-JT(w)) = {Y'( 1V)} (XP(lu)) = 1

{O(IV)} (IpG%w)) = {O(lu)} (-JP(ul)) = {-J~J(7U)} (`P(1v))

= {-Jw}(7r*X�,) = uaJ," F F, = 0 .

Hence z/>(Elx) C S.*U . Since V) is a bundle map preserving the circle
action, it casily follows that 0 is a dif eorrlorpllisrn.

(2) : To prove tlle identity z)*~ = TI, recall f'ronl (2.2) that fl =
ul dx1 +

un -" dxn+1 . Tllerefóre, fronl (4.19), 't%1 *f = ul dx1 -}- u"+1. dxn+l . On
the other hand, the contact 1-forro 77 on E is defined by the pull-back of
71 _ 1:2n

.=

	

to E. But, since dx° = 0 for a =,~ 1, n+ 1 on E, we have
77 = 7x 1 dx 1 + un+1 dxn+1, Hence the identity 0*~ = 17 follows . a

The following corollary is a consequence of the proof of Theorem 4.14 :
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4.20 Corollary .

	

The Gaussian curvatura of the induced metric .q on
E ás r,,É .

4.21 Relation to the Kobayashi Metric . In this section, we prove
a version of a theorem of Faran which states that vanishing of certain
local invariants forres F to be the Kobayashi metric of M, provided that
F is complete and satisfies the condition K = -4 (sea Introduction) . In
the version of the theorem presented here, the condition of vanishing of
invariants is replaced by the equivalent condition (1 .5) .

Recall frorri Lempert's result described in the introduction that, if
D C T' is a bounded strictly linearly convex domain with smooth
boundary, then cvery extremal disk f : A -> D is an isornetric imbedding
(Le. f *FK coincides with the Poincaré norm en ,), and that f (A) is a
maximal totally geodesia cornplex curve; in D. Since thc; Poincaré nietrie
has Gaussian curvatura -4, the holornorphic ; sectional curvaturc of thc;
Kobayashi rnctric FK is -4 .

Ori the other hand, if F is any cornplex Finsler metric : on a cornplex
manifold M, the condition of constant holornorphic ; sectional curvatura
K = -4 imposes a restriction on the metric F . In faca, we show that, if
F is any complete cornplex Finsler metric; with the properties K = -4
and (1 .5), then F rnust coincide with the Kobayashi metric . To show
this, we need thc ; following lerrima due to Ahlfors [A] [K] :

4.22 Generalized Schwarz Lemma. Let (N, g) be a, 1-dimensional.
Hermitian manifold such thatt the Gaussian cu,r'vatur'e is bounded, above
by a negative consttantt -C. For' any holornorphic mal) f : A , N, the
inequality

(4 .23) Il .f*vll .~ <_ c Ilvll
holds for allll v E TA, v)hcre II Ils is the norm on N induced by y and II II
denotes the nor'rn defined by the Poincaré rnetric on A.

We call a cornplex Finsler metric: F complete if the geodesic : vector
field X is complete; (or equivalently, if every geodesic can be ; extended to
a geodesic define(¡ en all of IR) .

4 .24 Theorem [F] . Suppose F is a complete complex Finsler metric
on a complex manifold M with constante holomorphic sectionall curvatura
K = -4 satisfyinq the property (1 .5) . The dual metric F coincides with
the Kobayashi metric FI< of M.

Proof.- We ve;rify the equality FK = F by verifying thc; inequalities
FK<FandF<FK .
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(i) To show that the inequality FI< < F holds, let v E TM and recall
frorn Tlicorenr 4 .9 that there is an irnrnersed totally geodesic corriplex
curve f : E , M tangent to v . Sinee F is a complete metric with
K = -4 and E is totally geodesic, the induced metric g on E defined
by f*F is a complete Kaehler metric with Gaussian curvature -4 (see
Theorem 4.14 and Corollary 4.20) . Therefore, there is a holornorphic
covering rnap f2 : A - E which ¡s'a local isometry between the Poincaré
metric and 9 (see chapter IX of [KN]) . By composing fr and f2, we
obtain a holornorphic rnap frof2 : A -M that is an isometric immersion
with respect to the Poincaré metric and F (Le. {(f o f2)*F}(w) = 11wil) .
Recall that the Kobayaslri metric FK(v) is defined as the infirnum of
Ji .f * vil over all complex curve f : A - M tangent to v . Hence, the
inequality follows :

FK(v) < 11 (fl o f2)*vjj = F(v)

	

for

	

v ETM.

(ü) To prove the inequality F(v) < FK(v), note that, for each complex
curve: f : A -> M tangent to v E TM, there is a Hermitian metric metric
gf on 0 defined by f*F. By Theorem 4.13, tlre Gaussian curvature nf
is bounded above by -4 . Applying the Gencralized Schwarz Lemrna
4.22 to thc identity mal) id : -> (0, gf), we obtain the inequality
{f*F}(v» <_ 11wII, or equivalently, F(f* w) <_ jjwjj for all uj E TA. In
particular, this implies that F(v) < lif*v il for any complex curve tangent
to v . Since FK (v) is the infirnum of 11f* v 11 over all such f, the inequality
F(v) < FK(v) follows .
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