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Abstract

A FOOTNOTE TO THE POINCARÉ
COMPLETE REDUCIBILITY THEOREM

HENRIK H. MARTENS

Poincaré's work on the reduction of abelian integrals contains im-
plicitly an algorithm for the expression of a theta function as a sum
of products of theta functions of fewer variables in the presence of
reduction . The aim of this paper is to give explicit formulations
and reasonably complete proofs of foincaré's results .

Introduction

In a paper of 1935 A. A. Albert [1] gave a proof of the fact that if a
Riemann matrix is en the form

Cw1

	

0

)
,w3 w2

then it is isogenous (isomorphic in Albert's terminology) to the matrix

and w1 and w2 are Riemann matrices . He attributed the result to
Poincaré, and it has since been referred to as the Poincaré Complete
Reducibility Theorem . Albert's goal was the classification of multiplier
algebras of Riemann matrices, and the Theorem plays a key role in his
decisive work on this problem.

Poincaré, however, was concerned with an entirely different problem.
In a manuscript of 1874, (which later appeared in the Acta Mathemat-
ica, [4]) S. Kowalevsky had quoted two results of Weierstrass on the
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reduction of abelian integrals to elliptic integrals, and the expression of
the associated theta functions in terms of products of theta functions of
fewer variables, without proof. Poincaré's goal was to provide a proof of
the theorems, and of their generalisation to arbitrary cases of reduction .
While the existente of a representation of theta functions of n variables
in terms of theta fúnctions of fewer variables in the presente of reduction
may be deduced from Albert's forrhulation, Poincaré's papers provide al-
gorithms for the explicit computation of the representation . Since this
aspect of his work doesn't appear to have been adequately reported in
the literature, - his papers (see [5], [6] and volume III of his Collected
Works) are rather sketchy - and since it is relevant to some of the work
currently going on in the field, - e.g. that of Matveev and his coworkers,
see [7] and [2, and its bibliography] - the following exposition seemed
warranted .

1 . Reducible Abelian Integrals and Theta Functions

Let Z be an n x n matrix of complex numbers satisfying the Riemann
relations :

Le . Z is symmetric and the matrix of imaginary parts of its entries is
positive definite . Consider its associated theta function

9(z ; Z) = E exp[7ri'm(Zm + 2z)],
m

tZ=Z

s(Z) > o',

where the summation is over all n-vectors m of integas, z e Cn, and m
and z are to be thought of as column vectors .

If the matrix Z splits into a direct sum

Z -_ Z1- o
C 0

	

Z2)

of an ni x ni and an n2 x n2 matrix, then, with z = e (zl, z2), the theta
function will split into a product

9(z ; Z) = e(zl ; Z1)B(z2 ; Z2),

by an obvious rearrangement of the defining series .



POINCARG COMPLETE REDUCIBILITY

	

113

More generally, reduction to theta functions of lower dimension is pos-
sible when Z is on the form

where Q is an nl x n2 matrix of rationals, as shown by the following
argument :
We have

tm(Zm + 2z) = tml (Zlml + 2zl + 2Qrn2) +
t m2(Z2m2 + 2z2) .

Multiplying by 7ri, exponentiating, and summing over ml, we get

9(z; Z) = 570(Z1 + Qm2 ; Z1)exp[7ri tm2(Z2m2 + 2z2)].

where 0 < rr

(*)

	

0(z ; Z) =

k2

m2

Z=(ZI
Q),

tQ

	

Z2

Now, let D = diag(dl, d2 . . . . , d', 2 ) be a diagonal matrix of positivo-; inte-
gers such that QD is a matrix of integers . Write

m2 = m2 + Dk2,

< d;, and observe that

B(zl + Qm2 ; Zl ) = B(zl + Qm2 ; ZI) .

Fixing m,2 we may therefore sum over k2 to get

9(zl + Qm2; Zl) x B

	

D-1rn2
0

	

(Dz2 ; DZ2D),
1

	

j

where

-0 [ D 1Om2 j (Dz2 ; DZ2D) _

exp[7ri t (k2 + D-lm2)(DZ2D(k2 +D-I rrt2) + 2Dz2)]

e:xp[7ri t m2(Z2m2 + 2z2)]

is the standard theta function with characteristics defined generally, in
dimension n, by

8 [ s j (z ; Z) _

	

exp[7ri t (m + r) (Z(m + r) + 2(z + s))],
m
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where r and. s are real n-vectors (sea, e.g ., Conforto
Suppose again that

and consider the full period matrix

El 0 Zi Q
0

	

EZ

	

tQ

	

Z2

where Ej denotes an identity matrix of the appropriate size, and 0 is a
(generic) matrix of zeros . We clearly have an equation

(dEl 0) El 0
( 0 EZ

is the canonical intersection matrix .)

Q) ,

Zl Q

	

dEl 0 0 dQ
tQ

	

Za ) = (El

	

Zi ) .(

	

0

	

0

	

dEl

	

0 ) ,

where d is an integer chosen so that dQ is a matrix of integers .
We say, in general, that an n x 2n period matrix (E Z) admits

reduction if it satisfies an equation

Hx(E Z)=IIxM,

where II is an m x 2m matrix of complex numbers, H is a maximal rank
m x n matrix of complex numbers, and M is a maximal rank 2m x 2n
matrix of integers, 1 <_ m < n. We have thus shown that a period matrix
of the form considerad above necessarily admits reduction .

Poincaré showed, conversely, that if a period matrix (E

	

Z) admits
reduction, then it is symplectically equivalent to a matrix on ;the form
indicated.

(Recall that a 2n x 2n matrix T of integers is said to be symplectic if
TJ'T = J where

0 E
J_- ( -E

	

0

Theorem (Weierstrass - Poincaré) . Let (E

	

Z) be an n x 2n
matrix satisfying the Riemann conditions and admitting reduction

Hx(E Z)=IIxM

where 11 is an m x 2m matrix of complex numbers, 1 < m < n.
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Then there is an n x n non-singular matrix A of complex numbers,
and a 2n x 2n symplectic unimodular matriz T such that

and

(E Z) xT=Ax

	

El

	

0
( 0 E2

M=SNT

N _
-

	

El

	

0

	

0

	

01
( 0 X 0 0) ,

Hx(E Z)=IIxM,

(E Z)Jt (E Z)=0

¡(E Z)Jt (E Z)>0

Z1 Q
tQ

	

Z2

where ZI and Z2 are m x m and (n-m) x (n-m) matrices satisfying the
Riemann relations, and Q is an m x (n - m) matrix of rational numbers
whose non-zero entries, if any, are confined to an initial string along the
main diagonal, qjj .

Poincaré's proof is based on the existente of a normal form for M,
which may be of independent interest .

Normal Form Lemma. Let 1 <_ m < n, and let M be a 2m x 2n
matriz of maximal rank with integer entries such that MJ'M is non-
singular . Then

where S is a 2m x 2m non-singular matriz of integers, T is a 2n x 2n
symplectic unimodular matriz, and N is a 2m x 2n matriz of integers on
block form

where El is anm x m identity matriz, 0 is a diagonal matrix of integers
each of which is a multiple of the following, and X is an m x (n - m)
matrix where xjj = 1 for all j < r for some r with 0 <_ r <_ n - rn, and
the remaining entries are zero .

Given the lemma, the proof of the theorem is straightforward . If a
matrix M occurs in a reduction equation

then MJ'M must be non-singular .
To see this, observe that by ári easy calculation the Riemann conditions

for Z are equivalent to the equations
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It follows that IIMJ'M'II = 0 and that iIIMJ'M'II is positive definite,
since H is of máxirnal rank . Since

II

	

t
'

II

	

0

	

IIMJIMIII
II ) (MT M)

	

f

	

_ (ñmilmI II)

	

0

	

) ,

it follows that the factors on the left are nonsingular .
Now, from the reduction equation we, get, by the lemma,

Hx(E Z)=11xSx ~r X

	

0) xT.

Writing II x S as (111

	

112), and multiplying out, we have

Hx(E Z)=(11r II2X I120 0)xT
= (II2A

	

0

	

-111

	

,-II2X) x JT.

Since the matrix JT is symplectic unimodular,
(E

	

Z) (JT) -1 =G x (E

	

Z'),

where Z' is an n x n matrix satisfying the Riernann relations and G is
a non-singular n x n matrix . (Write (E Z) (JT) (91 Q2 ) = 9,
show that ffl.PD is positive definite and conclude that 91 and 92 must
be non-singular.) Then

HG(E Z')=(r12o 0 -II1 -II2 X)

whence it follows that
HG = (112

	

0) .
SinceH was assumed of maximal rank, 1120 must be non-singular . Then

El 0 _0-r 11-r11r _0_ rX
( E

	

Z' ) _ ( 0

	

E2

	

-cXÓ-r

	

Z2

	

) '
with sorna (n - m) x (n - m) matrix Z2 . Since this is on the postulated
form, the proof of the theorem is completad .

Note that the matrix Z' may be computad from Z once the symplectic
matrix T of the lemrna has been determinad . The remainder of the papar
is devoted to a proof of the lemma which, in fa,ct, will givc an algorithm
to determine T, given M. Thus thc: proof of the theorem is construcaive .
Bounds on the number of terms in the representation (*) may be ob-

tained from the entries of the matrix 0 and the non-zero entries of X.
When the redur;tion crises as a consequence of mappings of Riernann
surfacca, the cntric;s of O will be bounded by the degree of the map .

If all entries of the matrix X are zero, the matrix Z' will split finto a
direct sum . This cannot happen when (E Z ) is the canonical period
matrix of a closed Riernann surface, and thus excludes certain matrices
M from representing induced homology maps of surfaces .
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2 . Poincaré Normal Form for 2 x 2n Matrices

It will be instructive first to consider the special case of a 2x 2n matrix,
M, of integers . In this case, MJ'M is a 2 x 2 skew-symmetric matrix
of integers, and hence may be assumed to be on the form

where d is a non-vanishing integer .
We review some elementary changes that may be effected by multi-

plying M on the right with a symplectic matrix T. For this purpose it
is convenient to think of the matrix as made up of two 2 x n blocks,
M = (M1 M2)-

It is easily verified that the following 2n x 2n matrices are symplectic :

C
E S)
0

	

E) '

E 0
(S E)'

where E is the n x n identity matrix, and S is a symmetric nx n matrix
of integers, and

C
A 0
0 , tA-1

	

'

where A is a unimodular matrix (of integers .)
With these matrices, the following simple changes may be effected :
A . We may add a multiple of a column of one block to the correspond-

ing column in the other block, by using a symplectic matrix of the form
(1) or (2) with a diagonal S . In particular, we may interchange two
corresponding columns, provided we change the sign of one of them .
B . We may add a multiple óf any column of a block to any other

column of the same block, using a symplectic matrix of the form (3),
provided we subtract corresponding columns in the other block in the
opposite order .
C . We may permute the columns of a block, using a symplectic matrix

of the form (3), provided the columns of the other block are permuted
accordingly.
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Note that, in the simple case of a 2 x 2n matrix, adding a multiple
of one row to the other, or interchanging rows and changing the sign of
one of them, are effected by multiplication on the left by a symplectic
2 x 2 matrix . In the general case, row operations may be carried out
corresponding to the operations outlined aboye, viewing the matrix as
consisting of two m x 2n blocks .

Using operation (A) on two corresponding columns from the two
blocks, we can always arrange that the first entry in the column of the
second block is zero . Hence we get a matrix on the form

where the * denotes an unknown entry . Using operations (B) and (C),
we may next reduce the first block to the form

r 0 . . . 0 0 0 . . .
a/

where r is a non-zero integer . We note that the compensating operations
in the second block do not. affect the zeros in the first line .

Disregarding the first column of each block, we may now repeat the
procedure on the remaining columns. This will not affect the zeros in
the first row, and will produce a matrix of the form

rx

r 0 0 . . . 0 0 0 0 . . . 0
x y 0 . . . 0 s 0 0 . . . 0),

where rs = d .
We rnay further assume that r divides x, y and s, since otherwise

we could subtract a suitable multiple of the first row from the second,
interchange rows, repeat the procedure ab initio, and arrive at a matrix
of the same form with a smaller value for r . Hence we may subtract a
multiple the first row from the second, and get a matrix on the form

(
1

	

0

	

0

	

. . .

	

0

	

0

	

0

	

0

	

. . .

	

0)
0 a 0 . . . 0 b 0 0 . . . 0'

Assuming a qÉ 0, the following trick of Picard enables us to replace a
by the greatest common divisor of a and b, multiplying the matrix on
the right by symplectic matrices :

Consider a 2 x 4 matrix

(
1

	

0

	

0

	

0
0 a b 0)'



to produce

to produce

1 0 0 0)
,Oa c b a '

where c = (1 + a)a + Oib = bcc1(a, b) . Finally, use the symplectic rnatrix

and multiply on the left with the symplectic rnatrix

POINCARI-1 COMPLETE RCDUCIBILITY

Use the symplectic matrix

I
(1
0

0
1

0
0

0
11

I 0 0
0

1
0

0
1)\0

to produce
0 0

(
1
0 a b a

0)_

Then use the symplectic rnatrix

1 0 0 0
0 1 0 0

0 ,0 1 0
,0 a 0 1

to produce

(1 0
0 1

0
0

0
-a/c

¡
I

~0
0 0

0
1
0

0
1

(
1

/3a
0
c

0 0
b 0)'
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The trick can evidently be used, mutatis mutandis, on any two pairs of
corresponding columns frorrr the two blocks, and tlrus reduces our rnatrix
above to the f'orm

Then

(1 0 0 : : 0 0 0 0 : : 0)
rx 0 c 0 . . . 0 b 0 0 . . . 0 '

obtained from our original matrix by multiplying on the right and left, if
necessary, by symplectic matrices . We may formulate the result of this
section :

Lemma. Let M be a 2 x 2n matrix of integers of maximal rank sat-
is.fying

M,I'M=d(-o 11 .
1 00

M = SNT,

where S and T are symplectic unimodular matrices, and,

N=r x
C

1 0 0 . . . 0

	

0 0 0 . . . 0)
0 s 0 . . . 0 t 0 0 --- 00

where rz t, = d, and s either vanishes or is a divisor of t .

3 . Poincaré Normal Form - General Case

We now türn to the proof of the Normal Form Lernma . We shall
represent M by an array

where the stars denote arbitrary entries to be specified as we proceed.
The argument will be broken up in a series of steps .
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Step 1 . By factoring out a lower triangular matrix of integers on tlre
left, if necessary, we may assume that the greatest common divisor of
the 2m x 2m subdeterminants of M is 1 . Observe that this property is
preserved under multiplication on the right or the left by a unirriodular
matrix . (Multiplication on tlie left does not alter the values of the subde-
terminants . Multiplication on the right produces subdeterminants whose
columns are linear combinations of those of the original ones . The new
determinante will therefore be linear combinations of the original ones,
and the greatest common divisor will not decrease . By unimodulaxity,
we may get back to the original matrix by the same kind of operation,
hence the greatest common divisor cannot increase either .)
Step 2. By a result of Frobenius (see [3]), factoring out a unimodular

matrix on the left, if necessary, we rnay assume that

M,J'M =

	

0

	

~1) .
CA 0

where A is a diagonal matrix of integers each of which is a multiple of
the next . Observe that this property is preserved under multiplication
of the matrix on the right by a symplectic matrix .
Step 3 . Performing elementary operations on the colurnrls as in the

case of a 2 x 2n matrix, we can bring the matrix on the forra :

/1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0\

where the value 1 in the first row is a consequence of the assurnp-
tion in Step 1, and the assumption of maximal rank . Writing M as

C
Mi

	

M2M3

	

M4

	

, we have
)

MJ'M =

	

M2'MI + Mr'M2
-M4 'M1 + M3' M2

-M2' M3 + MM4
-M4 ' M, +M;'M4
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and conclude from the assumption of Step 2 that Mi'M2 is a symmetric
matrix. This forces the first column of M2 to be zero, and we have
reduced M to the forro

Disregarding the first column of each block, and repeating the opera-
tion on the remaining columns, we get the forro

where the 1 on the diagonal again is a consequence of the assumption in
Step 1, and the maxirhal rank . This process may obviusly be continued

r 1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . .
* 1 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0
* * * . . . * * . . . * 0 0 * . . . * * . . . *

* * * . . . * * . . . * 0 0 * . . . * * . . . *

1 0 0 0 0 0 0 0 0 0 0 . . . 0
* * * . . . * * . . . * 0 * * . . . * * . . .
* * * . . . * * . . . * 0 * * . . . * * . . .

* * * . . . * * . . . * 0 * * . . . * * . . . *



until we reach the form
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and multiplication on the right by a symplectic inatrix of the form

may be used to obtain the form

The formula

MJtm =

	

-M2 tMI + MM2 -M2'M3 + MItM4
( -M4 tMI+M3 tM2

	

-M4tM3 + M3tM4) ,

now enables us to conclude that MI tM4 = 0, and so M4 must have A

r 1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0
* 1 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0
* * 1 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0

* * * 1 0 . . . 0 0 0 0 . . . 0 0 . . . 0

0 0 . . . 0 0 0 0 0 0 . . . 0 0 . . . 0~1
0 1 0 . . . 0 0 0 0 0 0 . . . 0 0 --- 0
0 0 1 --- 0 0 0 0 0 0 . . . 0 0 . . . 0

0 0 0 . . . 1 0 0 0 0 . . . 0 0 . . . 0
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as an initial m x m block . Hence the matriz has the form

where each di is a multiple of di+r .
Step 4. Operating on thc; last n - m columns of each block, we may

proceed as in the first part of Step 3 to obtain a rnatrix of the f'orm

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
~01 . . .000 . . .000 . . .000 . . .01

where the elernent k need not be 1 . If k = 0, then di = 1 by the
assumption of Step 1, and hence 0 = E by the assumption of Step 2 .
Hence, all the starred entries of block Mn rnay be removed by subtracting
appropriate multiples of the first m columns . To make the operation
symplectic, this must be compensated for by adding multiples in the
opposite order of corresponding columns in the first half of the rnatrix,
but this will not affect any of the non-starred entries there . We shall
returri to this case later .

If k =~ 0, it follows f'rom the assumption in Step 1 that k and di must
be relatively prime . Then, if k 7~ 1, we may apply the Picard trick to
colurnris 1 and m + 1 of each block to replace k by 1 . This will not alter
the matriz except possibly in the starred section of M3 and Mn, and will
not violate the assumption of Step 2 . Froni the equation

M.I IM =

	

M2'Mr + Mr'M2_

	

-M2'M3 + Ml'Ma
(-M4'Mr + M3'M2

	

-M4'M3 + M3tM4) ,

1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 --- 0 0 0 0 . . . 0 0 . . . 0
0 0 1 --- 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0

0 0 0 . . . 1 0 . . . 0 0 0 0 . . . 0 0 . . . 0

* * * . . . * * . . . * di 0 0 . . . 0 * . . .
* * * . . . * * . . . * 0 d2 0 . . . 0 * . . .

* * . . . * * . . . * 0 0 d3 . . . 0 * . . .

* * . . . * * . . . * 0 0 0 . . . d, * . . . * j

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

* * . . . * k 0 . . . 0 di 0 . . . 0 0 0 . . . 0
* . . . * * * . . . * 0 d2 . . . 0 * * . . . *

* * . . . * * * . . . * 0 0 '' . d, * * . . .



it now follows that M4'M3 is symmetry . Writing out the matrices, we
have

M4 =
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where certain elements nave been identified in order to facilitate the
following argument . Comparing the first row and the first colurrin of the
prodtüct, symmetry implies draj = d;b; +xj , whence it follows that dj is
a divisor of xj . Hence we may replace xj by 0 by subtracting a multiple
of the column containing d; from the column containing xj , as in the
case above. We have then reached a matrix of the forro

The procedure of Step 4 may now be applied to the last r¿-rn-1 columns
of each block, yielding at first the matrices

* * * . . . * * k 0 . . . 0
M3 = * * * . . . * * * * . . .

d i 0 0
0 d2 0
0 0 d3

0 0 0 0
0 0 0 0
0 0 * *

0 0 0 . . . d,, 0 * *

l1 0
101

. . .

. .
0 0 0 . . . 0. 0 0 . . .
000 . . .000 . . .000 . . .

0 0 0 . . . 0

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

* *
* *

.
. . .

*
*

1
*

0
*

. . .

. . .
0 di
* 0

0 . . .
d2 . . .

0
0

0
0

0
*

. . .

. . .
0

* * . . . * * * . . . * 0 0 . . . d,, 0

*
b2

a2 . . . a�t \

dl 0 . . . 0 0 0 . . . 0

M4tMs=I
0
.

d2 . . . 0 x2 * . . . * b,, *

0 0 . . . dm x �,, * . . .
1
0

* *
*

* . . .



126

	

H.H . MAR'FENS

Where again k may be zero, in which case: dj = 1 for j > 2, and the
starred entries in M4 may be removed as before . If k :,A 0, it must be
relatively prime to d2, and we proceed as above to bring the matrices to
the form

and'

M3 =

Subtracting a suitable multiple of column m + 2 from column m + 1 we
get

This will not alter any unstarred entries in the matrix, as the compen-
sating addition of a multiple of column n + m + 1 to column n + m + 2
orrly involves zero entries .

Continuing these operatioris will, in any case, lead to a rnatrix where
all the starred entries in M4 are replaced by zeros . For M3 these are a
nurriber of possibilities .

Step 5. Consider first the case where k = 0 in the first application
of Step 4 . As argued above, this implies that d; = 1 for all j, and the
matrix is then on the form

M3 =
*
*

*
*

*
*

. . .

. . .
*
*

1 0
* 1
* *

0
0
*

. . .

. . .

. . .
0
*

0)

di. 0. 0 . . . 0 0 0 0 . . . 0¡
0 d2 0 0 0 0 0 . . . 0

M^ = 0 0 d3 . . . 0 0 0 * . .

0 0 0 . . . dn,, 0 0 * . . . * ~
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We may now replace the stars in the last n -m columns of M3 by zeros
by subtracting suitable multiples of tire first m columns of M4. Tfris may
be effected through multiplying M on the right with a symplectic rnatrix
of the form

where S is a symnretric n x n rnatrix . Since S must be symmetric, this
will, at the same time alter the starred entries in the first m columns of
M3, but nothing else .

Consider next the possibility that the procedure of Step 4 iras produced
a series of 1's on the main diagonal, followed by a 0 . The situation is
illustrated by tire rnatrix

C

E 0)
S E '

As in the previous case, thc; starred entries below the second row of
M3 may be replaced by zeros by subtracting suitable multiples of the
columns of M,, . Note that this argument could also be carried through
if the entry 1 in Ma and thc: entry,d, I in M4 were identity and diagonal
matrices, respectively .

1 0 . . . 0 0 0 0 0 0 . . . 0 0 0 . . . 0. : .
0 1 . . . 0 0 0 . . 0 0 0 . . . 0 0 0 . . . 0

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

. . . * 1 0 . . . 0 d r 0 . . . 0 0 0 . . . 0
* * . . . * * 0 . . . 0 0 1 . . . 0 0 0 . . . 0

. . . * * * . . . * 0 0 . . . 1 0 0 . . .

(
1
0

0
1 .

. : .
.

0
0

0
0

0
0

. . .

. . .
0
0

0
0

0
0

. . .
. . .

0
0

0
0

0
0

. . .

. . . 0
0~

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

. . . * 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

. . . * * * . . . * 0 1 . . . 0 0 0 . . . 0

`* * . . . * * * . . . * 0 0 . . . 1 0 0
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The last possibility to be considered is tliat Step 4 leads to a, rriatrix
exemplified by the, f'orrn

E 0 0 0)
(Y X A 0'

where all but four entries of M3 are starred . By the assumption of Step
1, d; = 1 for .i > 3, and hence the starred entries in the last two columns
of M3 may be replaced by zeros as before .
We have thus arrived at a matrix on the block f'orm

where X is on the f'orm described in the f'ormulation of the theorem and
Y is a,n unknown m x m matrix . It may be replaced by a zero matrix
by multiplication on the left with the matrix

Y El .
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