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A FOOTNOTE TO THE POINCARE
COMPLETE REDUCIBILITY THEQOREM

HENRIK H. MARTENS

Abstract

Poincaré’s work on the reduction of abelian integrals contains im-
plicitly an algorithm for the expression of a theta function as a sum
of products of theta functions ol fewer variables in the presence of
reduction. The aim of this paper is to give explicit formulations
and reasonably complete proofs of Poincaré’s results.

Introduction

In a paper of 1935 A. A. Albert [1] gave a proof of the fact that if a
Riemann matrix is on the form

& a
Wy Wo ’

then it is isogenous (isomorphic in Albert’s terminclogy) to the matrix

wh 0
( 0 wz) ’

and w4 and ws are Riemann matrices. He attributed the result to
Poincaré, and it has since been referred to as the Poincaré Complete
Reducibility Theorem. Albert’s goal was the classification of multiplier
algebras of Riemann matrices, and the theorem plays a key role in his
decisive work on this problem.

Poincaré, however, was concerned with an entirely different problem.

In a manuseript of 1874, {which later appeared in the Acta Mathemat-
ica, [4]) S. Kowalevsky had quoted two results of Weierstrass on the
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reduction of abelian integrals to elliptic integrals, and the expression of
the associated theta functions in terms of products of theta functions of
fewer variables, without proof. Poincaré’s goal was to provide a proof of
the theorems, and of their generalisation to arbitrary cases of reduction.
While the existence of a representation of theta functions of n variables
in terms of theta functions of fewer variables in the presence of reduction
may be deduced from Albert’s formulation, Poincaré’s papers provide al-
gorithms for the explicit computation of the representation. Since this
aspect of his work doesn’t appear to have been adequately reported in
the litcrature, — his papers (see [5], [8] and volume III of his Collected
Works) are rather sketchy — and since it is relevant to some of the work
currently going on in the field, — e.g. that of Matveev and his coworkers,
see [7] and [2, and its bibliography|] — the following exposition seermned
warranted. : S : '

1. Reducible Abelian Integrals and Theta Functions

Let Z be an » % n matrix of complex numbers satisfying the Riemenn
relations:
t2=2

F(Z) > 0,

i.e. Z is symmetric and the matrix of imaginary parts of its entries is
positive definite. Consider its associated theta function

8{2,2) = Z cxplritm{Zm + 22)],

where the summation is over all n-vectors m of integers, z € C™, and m
and z are to be thought of as column vectors.

If the matrix Z splits into a direct sum

Zy- 0
Z =
(5 %)
of an n; x n; and an ny X np matrix, then, with z = {2, 23}, the theta
function will split into a product

6(z; Z2) = 8{zy; Z1)0(22; Za),

by an obvicus rearrangement. of the defining series.
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More generally, reduction to theta functions of lower dimension is pos-
sible when Z is on the form

Z; Q
£ = \
(% 2)
where 2 is an ny x ny matrix of rationals, as shown by the following

argument:
We have

bm(Zwm + 22) = *my(Zymy + 221 + 2Qms) + fmo{Zamy + 225},
Multiplying by #¢, cxponentiating, and summing over m,, we get

8z 2) = 29(21 + Qma; Zy)expritmy(Zome + 227)).

Me

Now, let D = diag{di, dy,... ,dn,) be a diagonal matrix of positive inte-
gers such that @D is a matrix of integers. Write

Mg = Tha + Dko,
where 0 < ) < d;, and observe that
Mz + Qmy; Z)) = 0(2) + Qing; Z1).

Fixing e we may therefore sum over ko to get

-1 = .
() 6(z,2)= Zﬁ(zl + Qrg; 1) x 6 [D Omz] (D9 DZo2 D),
where
_1 -
g [D Om?} (D13 DZoD) =
Zexp[mt(kg + D7) (DZy Diky + D~ 'vig) + 2D2y))
Ky

= Zexp[mtmg(Z;gmg + 229))
LM

is the standard theto function with characteristics defined generally, in
dimension n, by

8 {:] (2;Z) = Zexp[m"{m—% I Z(m+ )+ 2(z + 5))],
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where r and s are real n—vectors {see, e.g., Conforto [3].)

_fZa Q@
Z_(.'.Q Zg)’

and consider the full period matrix
E, ¢ 4 @
0 B 'Q Zp

where E; denotes an identity matrix of the appropriate size, and 0 is a
{generic) matrix of zeros. We clearly have an equation

E 0 2z Q). dE; 0 O dQ
(dEy 0)<0 B Q Zg)—{EI Zl)( 0 0 dE o)'

Suppose again that

where d is an integer chosen so that d} is a matrix of integers.

We say, in general, that an n x 2n period matrix (£ Z) admils
reduciion if it satisfics an equation

Hx(E 2Z)=IxM,

where I is an m x 2m matrix of complex numbers, H is a maximal rank
™m x n matrix of complex numbers, and M is a maximal rank 2m x 2n
matrix of integers, 1 € m < n. We have thus shown that a period matrix
of the form considered above necessarily admits reduction.

Poincaré showed, conversely, that if a period matrix (£ Z} admits
reduction, then it is symplectically equivelent to a matrix on the form
indicated.

{Recall that a 2n x 2n matrix T of integers is said to be symplectic if

TJ'T = .J where
g FE
1=(% 7).

is the canonical intersection matrix.)

Theorem (Weierstrass — Poincaré). Let (E Z} be an n x 2n
mairiz satisfying the Ricmann conditions and admitting reduction

Hx(E Z)=NxM

where I1 is an m x 2m matriz of complex numbers, ] < m < n.
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Then there 15 an n x n non-singuler matriz A of compler numbers,
and a 2n x Zn symplectic unimoduler matriz T such thai

_ E 0 Z Q
(E Z)XT-—AX(O E2 gQ Z‘z)’

where Z1 and Zy are mxm and {(n—m) x {(n—m) mairices satisfying the
Riemann relalions, and QQ is an m % {n — m) matriz of rational nurmbers
whose non-zero entries, if any, are confined to an initial siring along the
main diagenal, ¢;;.

Poincaré’s proof is based on the existence of a normal form for M,
which may be of independent interest.

Normal Form Lemma. Let 1 < m < n, and let M be a 2m x 2n
matriz of mezimoal rank with integer entries such that MJ'M is non-
singular. Then

M=8NT

where 5 is a 2m x 2m non-singular motriz of integers, T is a 2n x 2n
symplectic unimodular matriz, and N is a 27 % 2n matriz of integers on

block form
_{E 0 0 O
N= ( g X A 0) ’

where Ey is an m X m identity matriz, A is a diagonal mairiz of integers
each of which is a multiple of the following, and X is an m x {n — m)
matriz where x;; = 1 for all j < r for somer wnth 0 < r < n—m, and
the remaining entrics are zero.

Given the lemma, the proof of the theorem is straightforward. If a
matrix M occurs in a reduction equation

Hx{E Z)=Tlx M,

then M J*M must be non-singuiar.

To see this, observe that by an easy calculation the Riemann conditions
for Z are equivalent to the equations

(E ZYJYHE Z)=0

and
H{E ZYJ(E Z)>0.
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It follows that TIM JEMIT = 0 and that sTIM JEMET is positive definite,
since H is of maximal rank. Since

(L) (MTaM)‘(%) - (ﬁM_}E’MLH) nMJ(;Mtﬁ),

it follows that the factors on the left are nonsingular.
Now, from the reduction eguation we get, by the lemma,

_ E, 0 0 0
Hx(E Z)m]'l><5'><<0 X A D)xT.

Writing [T x § as (II; IIp), and multiplying out, we have
Hx{E Z)=(I0I) IIhX A 0)xT
=(IIL,A 0 -II, -IaX})x JT.
Since the matrix JT is symplectic unimodular,
(E ZYJT)Y'=Gx(E Z'),

where Z' is an n x n matrix satisfying the Riemann relations and G is
a non-singular n x n matrix. (Write (E Z)(JT)7' =(0; ) =0,
show that, #§2J¢€? is positive definite and conclude that §2; and £ must
be non-singular.) Then

HG(E Z')=(IbA 0 -H; -IILX)

whence it follows that
HG = (1A 0).

Since H was assumed of maximal rank, [T, A must be non-singular. Then

o (Er 0 —ATHIT, -ATIX
(& Z)_(o B, —tXATl Zs ’

with some (n — m) x {n — m) matrix Z;. Since this is on the postulated
form, the proof of the theorem is completed.

Note that the matrix Z‘ may be computed from Z once the symplectic
matrix T of the lemina has been determined. The remainder of the paper
is devoted to a proof of the lemma which, in fact, will give an algorithm
to determine T, given M. Thus the proof of the theorem is constructive.

Bounds ou the number of terms in the representation () may be ob-
tained from the entries of the matrix A and the nen- zero entries of X.
When the reduction arises as a consequence of mappings of Riemann
surfaces, the entries of A will be bounded by the degree of the map.

If all entries of the matrix X are zero, the matrix Z’ will split into a
dircet surn. This cannot happen when (£ Z2) is the canonical period
matrix of a closed Ricmann surface, and thus excludes certain matrices
M from represcenting induced homology maps of surfaces.
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2. Poincaré Normal Form for 2 x 2n Matrices

It will be instructive first to consider the special case of a 2 x 2n matrix,
M, of integers. In this casc, MJ'M is a 2 x 2 skew-symmetric matrix
of integers, and hence may be assumed to be on the form

0 1
(500)

where d is a non-vanishing integer.

We review some clementary changes that may be effected by rmulti-
plying M on the right with a symplectic matrix 7. For this purposc it
is convenicnt to think of the matrix as made up of two 2 x n blocks,
M={(M, M;).

It is easily verificd that the following 2n x 2n matrices are symplectic:

E &
) (5 3).
_ " (E 0
@ (5 %)
where F is the n x n identity matrix, and S is a symmetric n X n matrix
of integers, and

3) (5 ).

where 4 is 2 unimodular matrix {of integers.)

With these matrices, the following simple changes may be effected:

A. We may add a multiple of a column of one block to the correspond-
ing column in the other block, by using a symplectic matrix of the form
(1)} or {2) with a diagonal S. In particular, we may interchange two
corresponding columns, provided we change the sign of one of them.

B. We may add a multiple of any column of a block to any other
column of the same block, using a symplectic matrix of the form (3),
provided we subtract corresponding columns in the other block in the
opposite order.

C. We may permute the columns of a block, using a symplectic matrix
of the form {(3), provided the columns of the other block are permuted
accordingly.
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Note that, in the simple case of a 2 x 2n matrix, adding a multiple
of one row to the other, or interchanging rows and changing the sign of
one of them, are effected by multiplication on the left by a symplectic
2 x 2 matrix. In the general case, row operations may be carried cut
corresponding to the operations outlined above, viewing the matrix as
consisting of two m x 2n blocks.

Using operation (A) on two corresponding columns from the two
blocks, we can always arrange that the first entry in the column of the
second block is zero. Hence we get a matrix on the form

* % o« % 0D 0 . 0
* E 3 . o * -* - e *

where the = denotes an unknown entry. Using operations (B) and (C),
we may next reduce the first block to the form

r 0 - 0 00 - 0
* x * * % e * 3

where 7 is a non-zero integer. We note that the compensating operations
in the second block do not affect the zeros in the first line.

Disregarding the first column of each block, we may now repeat the
procedure on the remaining columns. This will not affect the zeros in
the first row, and will produce a matrix of the form

r 00 - D0 000 - 8
z y 0 - D s 00 - 4’
where rs = d.
We may further assume that v divides x,y and s, since otherwise
we could subtract a suitable multiple of the first row from the second,
interchange rows, repeat the procedure ab initio, and arrive at a matrix

of the same form with a smaller value for r. Hence we may subtract a
multiple the first row from the second, and get a matrix on the form

(100 -0 000 0
™Y a0 .- 0D & 00 - 0}

Assuming a # 0, the following trick of Picard cnables us to replace a
by the greatest common divisor of 4 and b, multiplying the matrix on
the right by symplectic matrices:

Consider a 2 x 4 matrix

1 0 0 0
0 a b 0}
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Use the symplectic matrix

1 0 0 0
01 01
0 0 1 0
0 0 0 1

to produce
10 0 0
0 a b af’

Then use the symplectic matrix

1 6 0 0
0 1 0 0
04 10
8 o 0 1

to produce
1 0 0 0
Ba ¢ b a}’

where ¢ = (1 + a)a + (b = ged{e, b}. Finally, use the symplectic matrix

1 0 0
01 0 —afc
0 0 1 0
00 0 1

to produce
1 0 o 0
Ao ¢ b 0}’

and multiply on the left with the symplectic matrix
1 0
~-fa 1
1 0 0 ¢
0 c 6 0

to produce
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The trick can evidently be used, mutatis mutendis, on any two pairs of
corresponding columns from the two blocks, and thus redices our matrix
above to the form

X 1 00 -0 0 00 -~ O
0 ¢c 0 --- O b6 ¢ 0 - 0"
obtained from our original matrix Iby multiplying on the right and left, if

necessary, by symplectic matrices. We may formulate the result of this
section:

Lemma. Let M be a 2 x 2n malriz of integers of mazimal rank sat-

isfying
MJ'M = d(_ol é) ,

Then
M = 5NT,

where S and T' are symplectic unimodular matrices, and

Nery[L 00 0 000 0
YETXR0 s 0 - 0t 00 - D)

where r’t = d and s cither vanishes or is a divisor of &.

3. Poincaré Normal Form — General Case

We now turn to the proof of the Normal Form Lemma. We shall
represent M by an array

* Kk ke Kk Kk e X * ok Kk ccc Kk Ko *\
* h ok cee ok ® * * x * * *
T T . L
* kK * * * ok w F— *

1
* * % * % * > w ok * ok *
* ok * * ok * * kK * ok *
* ok k * ok * * ok * *  ® *
N T L 5 R S

where the stars denote arbitrary catries to be specified as we proceed.
The argument will be broken up in a series of steps.
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Step 1. By factoring out a lower triangular matrix of integers on the
left, if nccessary, we may assume that the greatest common divisor of
the 2m x 2m subdeterminants of M is 1. Observe that this property is
preserved under multiplication on the right or the left by a unimodular
matrix. (Multiplication on the left does not alter the values of the subde-
terminants. Multiplication on the right produces subdeterminants whose
columns are linear combinations of those of the original ones. The new
determinants will thercfore be linear combinations of the original ones,
and the greatest common divisor will not decrcase. By unimodularity,
we may get back to the original matrix by the same kind of operation,
hence the greatest common divisor cannot increase either.)

Step 2. By a result of Frobenius {sce {3]), factoring out a unimodular
matrix on the left, if necessary, we may assume that

the f O A
M‘JM—(_A U)'

where A is o diagonal matrix of integers each of which is a multiple of
the next. Observe that this property is preserved under multiplication
of the matrix on the right by a symplectic matrix.

Step 3. Performing clementary operations on the columns as in the
case of a 2 x 2n matrix, we can bring the maftrix on the form:

1 60 - 00 - 0 o040 - 00 .- 0
A R L ok k- K *
d ok ok ce- ok ko % * *
* K K * * * * ok ok *  * *
1
*  x * *  w  w * *
* * *  * +* * *  * *
* * * * ok » *  * * * *
* * e - * * * * * * * +

where the valuc 1 in the first row is a conscquence of the assump-
tion in Step I, and the assumption of maximal rank. Writing M as
( M Mg

My M, ), we have

MM - (—Mthl + MMy — Mot M A Mﬁ%) }

MM+ Ms*My - Ma My + My' M,
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and conclude from the assumption of Step 2 that MM, is a symmetric
matrix. This forces the first column of Ms to be zero, and we have
reduced M to the form

1 0 0 0 0 0 0o 0 0 0 0 0\
* * * * * 0 % = * *
* kK *  * * 0 » = * *
* x x *  * - 0 = = * ok *
* * & * * + -* +* + *
* & + * * * * H & * * *
 x * * ok * * *  * *
\‘*’ * * * * * - * k' * * o+

Disregarding the first column of each block, and repeating the opera-
tion on the remaining columns, we get the form

(l o0 -~ 0 0 0 0 0 0 0 0 0\
«~ 1 0 --- Q0 0 0 0 0 0 0 0 0
x * * * * * 0 0 « *  x *
x x * o * 0 0 = *  * *
* % x — * *x x * N *
+* * * * - & * * * k3 +* W
* * * & * * * k * * =

\* e * * * * # * * * +* *)

where the 1 on the diagonal again is a consequence of the assumption in
Step 1, and the maximal rank. This process may obviusly be continued
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until we reach the form

1 4 oo -0 g 00 -~ 00 0
* 1 0 6 0 --- 0 g 00 - 0O 0
* % 1 g 98 .. 0 g 006G -~ 0 O 0
* kW 1 0 4; 0 0 0 0 0 0
¥
* ok ok ok ok ees % d ok ke ok ke %
h ok ke ok ok e % T
+* * * rrw * * L * * - * k3 & '*
\* =* * * +* - * * * * * +

and muitiplication on the right by a symplectic matrix of the form

A 0
0 tATH )

may be used to¢ obtain the form

(1 g q -~ 00 it 0 0 0 o ¢ - G
o190 -- 0 0O 0 0 0 0 ¢ ¢ -+ O
0O ¢ 1 --- 0 0 4; 0 0 0 o 0 - G
0 0 0 10 4 6 & ¢ 6 0 0
* k% *  * * W ok ok * ok *
* ok K * E3 * Ak ok * % *
* ok K *  * * * Kk * x *

\-k * Ok ek k- ok * ok & e Kk ke *}

The formula

MM - (—Mz‘Ml + M*My  —My'Ma + M;‘Mq) ,

—Mz[!M] -+ M;;f'Mg —Mthg + MgtM.;

now enables us to conclude that M{'Ms = A, and so M, must have A
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as an initial m x m block. Hence the matrix has the form

fr 00 ... 00 .- 00 0 0O - g 0 : 0\
010 --040 .00 0 0 - 0 0 - 0
001 .00 --00 0 0 - 0 0 - 0
0 0 0 1 0 0 0 0 0 0 0 0
ok ke * k- +* dl 0 ] i} * - > '
* ok * * Kk * 0 dp O g = *
* ok Kk e * kv * 0 0 d3 P {1 x e *
\* xR e *  w e * { ] 0 - drn e *)

where each d; i1s a multiple of d;41.

Step 4. Operating on the last n — m columns of cach block, we may
proceed as in the first part of Step 3 to obtain a matrix of the form

io - 0G0 -~ 0 0 0 - o o ¢ -~ 0
o1 ... 009 - 0 0 0 - o o ¢ - 0O
0 --- 184604 -~ 0 0 0 - o o0 -+ 0
* % -~ % kK 0O -+ 0 &4 0 -- 0 Q00 - 0
I R * ok ke X { d? 0 * s -
* ok e % ow ox - % 00 o d, o x o« 0

where the element k& need not be 1. If & = 0, then d; = 1 by the
assumption of Step 1, and hence A = E by the assumption of Step 2.
Herce, all the starred entries of block M, may be removed by subtracting
appropriate multiples of the first wn columns, To make the operation
symplectic, this must be compensated for by adding multiples in the
opposite order of corresponding columns in the first half of the matrix,
but this will not affect any of the non—starred entries there. 'We shall
return to this case later.

If £ # 0, it follows from the assumption in Step 1 that & and d; must
be relatively prime. Then, if k¥ # 1, we may apply the Picard trick to
colurnns 1 and m+ 1 of each block to replace & by 1. This will not alter
the matrix except possibly in the starred section of Mz and My, and will
not violate the assumption of Step 2. From the equation

—Mg‘Ml + Ml':Mz —MgtMg + MLLJM,] )

tar _
MI'M= (—Mqt.Ml + MMy Myt My 4+ MytM,
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it now follows that MMy is symmetric. Writing out the matrices, we
have

* Gy o O \
b2 * P *
di 0 0 0 0 0
g ds 0 x2 x *
My M= L b;‘ ; e
g 0 dem T * * * *
0 x - w

where certain elements have been identified in order to facilitate the
following argiment. Comparing the first row and the first column of the
product, symmetry implies dya; = d;b; 4 z;, whence it follows that d; is
a divisor of z;. Hence we may replace z; by 0 by subtracting a multiple
of the column containing d; fromn the column contaluning x;, as in the
case above. We have then reached a matrix of the form

(1 o ... 06 -..0900 -~ 0 00 .- 0\
61 ... 0060 . 000 - 0 ¢80 -0
¢¢ .- 19090¢0...029490 -~ 0 C0 - 8
* % .- % 1 0 . 0 d 0 --- 0 &6 0 --- 0
* ok * Kk * « 0 d& -+ 0 0 %« - %
\* * -0 ok ok * e % 0 o ... d‘m 0 = - %

The procedure of Step 4 may now be applied to the last n—m—1 columns
of each block, yiclding at first the matrices

* x x - % 1 ¢ 0 -+ 0
* ok ok % *« k0 -~ 0
Ms=1* * x - % * ok k L
* * k3 * * * * *
d 0 0 --- 0 0 00 0\
0 d 0 ... 0 0 0 0 0!
My=|0 0 d - O 0 '
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Where apain k may be zero, in which case d; = 1 for 7 > 2, and the
starred cutries in M,y may be removed as before. I & # 0, it must be
relatively prime to da, and we proceed as above to bring the matrices to
the form

x K * * 1 0 &

* * * * * 1 0 (3
Ms=|* » % - % LN N R 2 N

* ok * * * Kk *

and

d 0 ¢ - 0 g 60 ... 0
0 do 0 -+ O g 00 - 0
My=| 0 O ds -+ 0 0 0 % --- =
0 0 0 dm 0 0 * ¥

get

* Kk K * 1 040 - 0
* * * * 0 1 0 {}
My= | * * =* * * K * *
* * * * * ok ok *

This will not alter any unstarred entrics in the matrix, as the compen-
sating addition of a muitiple of colurmn n+ m + 1 fo column n+m + 2
only involves »ero cntries.

Continuing these operations will, in any case, lead to a matrix where
all the starred entrics in My are replaced by zcros. For M there are a
numbcr of possibilities.

Step 5. Consider first the case where k = 0 in the first application
of Step 4. As argued above, this implies that d; = 1 for all §, and the
matrix is then on the form
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1 0 0 0 0 0 0 0 06 0 0
0 1 0 0 0 0 06 0 0 0 0 0
0 0 L 0 0 0 0 0 0 0 0 0
S # {0 0 1 60 0 0 0]
* % * ok w * 0 1 0o 0 0 4]
* % * kK * 0 0 1 0 0 0

We may now replace the stars in the last n—m columns of Mz by zeros
by subtracting snitable multiples of the first mn columns of My, This may
be effected through multiplying M on the right with a symplectic matrix

of the form
E Q0
s B

where S is a syminetric # x n matrix. Since § must be symimetric, this
will, at the same time alter the starred entries in the first m columns of
M3, but nothing clse.

Consider next the possibility that the procedure of Step 4 has produced
a series of 1's on the main diagonal, followed by a 0. The situation is
illustrated by the matrix

L 0 0 0 0 0 0 0 0 0 0 )]
01 0 0 0 0 0 0 0 00 0
0 0 1 00 6 0 0 0 0 0 0
* * 1 0 0 4 0O 0 0 Q 0
* * * x 0 0 0 00 0 U
®* Kk 0 K %x % -+ x 0 0 - 1 00 - 0

As in the previous case, the starred entries below the second row of
My may be replaced by zeros by subtracting suitable multiples of the
columns of My. Note that this argument could also be carried through
if the entry 1 in M3 and the entry. dy in My were identity and diagonal
matrices, respectively.
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The last possibility to be considered is that Step 4 leads to a matrix
excmplificd by the form

10 --- 000 G 0 --- 0 00

1 - 000 0 0O --- 0 00
60 - 100 0 0 -~ 0 00
* % -~ * 1 D d 0 - 0 0 0
% % o % 0 1 0 d - 0 0 0
\* B O o0 - dn 0 0

where all but four eutries of Ms are starred. By the assumption of Step
1, d; = 1 for 7 > 3, and hence the starred entries in the last two columns
of My muay be replaced by zeros as beforc.

We have thus arrived at & matrix on the block form
E 0 0 0
Y X A 0}
whore X s on the form described in the formulation of the theoremn and

Y is an unknown m x m matrix. It may be replaced by a zerc matrix
by multiplication on the left with the matrix

E 0
-Y B}
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