
Publicacions Matemátiques, Vol 36 (1992), 73-83 .

Abstract

ON THE INTERSECTION FORMS
OF CLOSED 4-MANIFOLDS

ALBERTO CAVICCHIOLI AND FRIEDRICH HEGENBARTH

Given a closed 4-manifold M, let M* be the simply-connected
4-manifold obtained from M by killing the fundamental group .
We study the relation between the intersection forms AM and
AM- . Finally some topological consequences and examples are
described .

1 . Introduction .
Let M4 be a closed connected orientable (PL) 4-manifold with funda-

mental group II1 .
Denote by AM the intersection form of M

Am : FH2 (M) x FH2 (M)

	

-

	

. Z

where FH2 (M) = H2 (M; Z)/torsion (see for example [5], [10]) .
Let M* be the simply-connected closed 4-manifold obtained from M

by killing the fundamental group II, (see [6]) .
Our purpose is to study what relation links \M to AM. . Then we

obtain some topological consequences about M* . Finally we give some
examples which illustrate the results .

2 . Main results .
Let [a] be a generator of II 1 . Since M is orientable, we can extend

e¿ : S i - M to an embedding 0 : S1 x D3 ,M.
Recall that there are two ways to extend a since II1(SO(3)) = Z2 .
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0
Denote by M' = M\O(SI x D3) U D2 x S2 the closed 4-manifold

obtained from M by surgery on 0 .

Since III (M') - 111(M)1[o¿], iterated surgeries on generators of III (M)
give a simply-connected closed 4-manifold M* .

Problem. Study the relations between AM, A M, and AM, AM. respec-
tively .

First we have the following

Proposition 1 . If nI (M) has no elements of finite order, then A M.
is isomorphic over the integers to AM .

The proof is given for example in [1] .

Therefore from now on we will consider manifolds with lI I (M) finite .

Proposition 2 . If [a] has finite order, then

for some integer a E Z .

In any case AM , is indefinite. For there forms there is the following
well-known classification :

(1)

	

0

	

1/
AM,

	

even

	

AM, = pE8 ® q

	

1

	

0
2)

	

AM,

	

odd ==>

	

AM, - p(1) ®q(-1 )

for some non negative integers p, q E Z .
Furthermore, S . K . Donaldson (see [2]) proved the following

Theorem 3 . LetM4 be a closed connected orientable 4-manifold with
arbitrary fundamental group. If AM is definite, then AM is isomorphic
over the integers to either (1) ® . . . ® (1) or (-1) ® . . . ® (-1) .

The parity of Am is related to the second Stiefel-Whitney class

0
Am ®( 1 1)

a -even
0

a)
-

1
AM e (o

0
- 1)

a odd



M.

(1\mt . - AM ®

	

1
0

	

01
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w2(M) E H2 (M ; Z2) as follows . Using the universal coefficient sequence

0 -> Ext(Hi(M) ; Z2) -H2 (M; Z2) -> Hom(H2(M) ; Z2) -0,

it is easily proved that AM is even if and only if w2 (M)E Ext(H1(M); Z2) .
In particular, if Hl (M) has no 2-torsion, then AM is even if and only

if w2 (M) = 0 .
Thus proposition 2 implies the following

Proposition 4. If w2(M) =~ 0 , then

1\m-

	

m (D p

	

1

	

0

	

) 5--- r(1) ED S
(0 -1

for some non negative integers p, r, s E Z .
Further, M* is homeomorphic to the connected sum r(CP~#s(-CP~,

being CP 2 the projective complex plane.

Now we can also apply theorem 2 of [2] to obtain the following conse-
quence of proposition 2 .

Corollary 5. LetM4 be a closed connected orientable spin 4-manifold
with fundamental group II (M) - Z�,, .

If AM has a positive parí of rank 1, then M* is homeomorphic to either
2(CP2)#(2 - v(M)) (-CP2 ) or 2(S2 x S2) .

In the last case, AM =

	

o

	

~) . Here u(M) denotes the signature of

Proof..- By proposition 2, we have either AM. = AM ®

	

0

	

1 ) or

In the first case, AM. i s even . Since Hl(M*) = 0 has no 2-torsion,
theorem 2 of [2] implies that

~M " - ~0
10/

® CO

hence AM. has a positive part of rank 2 .

ól - Am E)

	

o

	

i)
1

hence AM =

	

0

	

1 ) (see [7J, [9]) and M*
TOp

2(52 x S2) as required .

In the second case, Am . = 2(1) ® (2 - u(M))(-1), hence

M* Tóp
2(CP2 )#(2 - a(M))(-CP2) .
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3 . Examples .
3.1) Let K = ` {zó + zi + z2 + z3 = 0} C CP3 be the Kummer surface

and let T : CP3 -> CP3 be the fixed point free involution defined by

T(zo, Z1, z2, z3) = (zl, - zo, z3, -z2)

Since T (K) = K, we can consider the orbit space M = K/T, called the
Habegger manifold (see [4]) .

It is known that I1 1 (M) = Z2 and the intersection form

(

0 1)
Ana _

(-E8)
®

	

1

	

00

is even with a positive part of rank 1 .
Since w2(M) z,¿ 0, proposition 2 gives

A M. - ( -E8) ® ( 1

	

0 ) ® ( 0

	

01

	

- 10(-1) ® 2(1),
-)

hence M* - 10(-CP 2)#2(CP2 ) by the Freedman classification (see
TOP

(3l) .
We also recall that C . Okonek (see [8}) has shown that all homotopy

Enriques surfaces are horneomorphic to the Habegger manifold .

3.2) Let M' = S(r7 ® 71 (D 17) be the sphere bundle of 77 ® 77 ® 71, where
---> RP2 is the canonical bundle over the real projective 2-space .
Then we have Am = 0, w2(M) ~ 0 and II1(M) l--- Z2, hence

and M* - CP2 #(-CP2 ) = S2 x S2 .
TOP

	

TOP ti

3 .3) Let M`1 = S(,, ® E2 ) be the sphere bundle of 77 ® E2 , where
E2 = El ®el ---> RP 2 is the 2-dimensional trivial bundle over RP2 .

Then we have AM = 0, w2(M) = 0 and II1(M) = Z2 .
It is very-easy to see that

H2 (M; Z2) --' H2(Mo ; Z2) f- H2 (1VI* ; Z2)
,so

	

¡so
0

where Mo = M\0(SI x D3), V : S1 x D3 - M represents the generator
of II1(M) and i : Mo -+ M, i' : Mo - M* are the natural inclusions .

Thus w2 (M*) = 0, hence AM* = ( 0

	

1 ) is even and M*
TóP

S2 x S2 .
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Proof of proposition 2 : For conveniente we assume that III(M)
Z,,,m > 0, with generator [a) = [VIS~xol . For the general case, see
remark 1 below .

0
We set Mo = M\O(SI x D3) and consider the cobordism

W=MxIUOD2 xD3 (I=[0,1])

betweenM and M' = Mo U D2 x S2.
Obviously the pairs (W M), (W, M') are homology equivalent to

(D2 x D3, SI x D3) and (D2 x D3 , D2 x S2 ) respectively.
We have the following diagram

0 --~ H3 (M, Mo) ~-_ Z ---~

	

H2(M0)

	

-~

	

H2(M)

	

-0

¡so

0

	

H3(WM') - Z --~

	

H2(M')

	

---,

	

H2(W)

	

---, 0

Z = H2 (M, Mo) -~ H2 (W M)

HI(Mo) '--- H, (M) -- Z,,,

0
where i, i', j, k are inclusions .

Obviously H2 (M') is a free group of rank rkH2 (M) + 2 and H2(Mo)
is free of rank rkH2(M) + 1 since it injects into H2 (M) .

Here we often identify an element of H2(M0) with its image under i* .
Now we have

AM (z* (u), a . (v)) = Am, (z* (u), z* (v))
for every u, v E H2(Mo) .

Let e E H2 (Mo) be a primitive element such that ¡ * (e) generates the
subgroup TorH2(M) - Z,;, and suppose that f E H2(M') maps to the
integer m E Z - H2(M',Mo). Similarly f is chosen to be primitive .
Furthermore, denote by V the span of {e, f} in H2 (M') .
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Lemma 6 . With the above notation, we have

~-_ 0 1
AM, 1 v

	

1

	

a

where AM, (f, f) = a E Z .

A . CAVICCIIIOLI, F . HI3GENBARTI- 1

Proof.- From the diagram, it follows that

(1)

	

Am,(a*(x),y) = Aw(x,j*(y))

for every x E H3(W M') and y E H2 (M) .

Note that

and

a* [D2 x D3 , D2 x S2 ] = mi;(e) = me

j* (f) = m[D2

where [, ] denotes the fundamental class .
Thus relation (1) implies

hence AM, (e, f ) = 1 as required .
Furthermore, we have

D3 , S I x D3 ],.

Am , (me, f) _ Am, (a* [D2 x D
3
, D2 x S2 ], .f)

= mAw([D 2
x D3 , D2 x S2 ], [D 2 x D3 , Sl x D3 ]) = m,

m2 ñM , (e, e) = AM, (me, me)

= AM, (a* [D2 x D3 , D2 x S2], a* [D 2 x D3 , D2 x S2 ])

= Aw([D2 x D3 , D2 x S2],j* o a*[D 2 x D3 , D2 x S2]) = 0

since j* o &; = 0 by the exactness . Thus AM, (e, e) = 0 and the proof of
Lemma 6 is completed .

Lemma 7. Let V1 C H2(M') be the ortlzoyonal complement of V .
Then VL C H2 (Mo) and the restrirtion

is an isomorphism.

¡* ¡ vi- : V1 --, FH2(M)

Proof.. To prove that V-L C H2(Mo), we have to show that for every
y E H2(M') with

AM4, e) = AM, (y, .f) = 0,



then y E H2(Mo) , i . e . j . (y) =0 .
Suppose, on the contrary, j . (y) 7~ 0, i . e . j . (y) = q[D2 x D3 , S 1 x D3 ]

for some integer q 7L 0 . Then we have

AM , (me, y) =Am, (a* [D2 x
D 3 , D2 x S2], y)

= Aw([D2 x D3 , D2 x S2],j.(y))
= qAw([D2 x D3 , D2 x S2 ], [D2 x D3 , S 1 x D3]) = q 7~ 0,

hence AM , (e, y) ~¿ 0, whicli is a contradiction .
To prove that i.1 �L is mono, let x E V1 be an element such that

i, (x) E TorH2 (M) - Z, .
Then we have i, (x) = hi. (e) for some integer h, and so i . (x - he) = 0 .
By the exactness, it follows that

hence mh'e = x - he, h, h' E Z.
But we have (use (1))

(2 )AM,(a'(h'[D2 x D3 ,D2 x S2 ]), f) = Aw(h'[D 2 x D3 , D2 x S2

	

(f»

= Aw(h [D2 x D3 , D2 . x S2 ], m[D2 x D3 , S' x D3]) = rr¿h'

and
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a'(h'[D 2 x,D3 , D2 x S2]) = i; ( .x - he),

Am, (a'(h'[D2 x D3 ,D2 x S2]), f) =AM,(2:(x-he),f)
= AM, (x - he, f )
= AM, (x, f) - hAM, (e, f ) _ -h.

Comparing relations (2) and (3) gives mh' = -h, hence mh'e = x - he
implies that x = 0 as required .
To prove that i, lvl is epi, let z E H2 (M) and let u E H2 (Mo) be an

element such that ¡ * (u) = z .
We consider the element u' = u -AM , (u, f)e E H2(Mo) .
Then we have

AM , (me, u') = AM, (a' [D2 x D3 , D2 x S2 ], u, )

since j, o i; = 0 ; therefore Am, (u', e) = 0 .
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Furtheririore

i . e . U' =- ¡'* (U') E V' .
Finally

This completes the proof.

By Lemmas 6 and 7, we have the result

Proof of Proposition 4 :
Suppose now zu2(M) =,,': 0 . Because (M, Mo) and (M', Mo) are hompl-

ogy equivalent to (SI x D3, SI x S2 ) and (D2 x S2, SI x S2) respectively,
we have also the diagram

which implies

Am, (u', .f) = AM, (u - Am, (u, f)e, f)

= AM,(U, .f) - AM, (u, f) = 0,

¡.(u') = ¡,(u) - Am, (u, f)z* (e)
= ¡.(u) = z mod TorH2 (M) .

0

i , .

H2 (M' ; Z2)

AM,-AM®
0 1

(1 a) .

H2 (Mo ; Z2) ---- H2 (M ; Z2) -	0

i*(za2(M)) = W2 (M0) = i' * (7112(M')) .

Since i* is injective, relation (4) and w2 (M) =~ 0 give W2 (M) :~ 0, hence
AM, is odd. E

Remark 1. Th<; proof of proposition 2 can be easily generalized to
manifolds with arbitrary fundamental groups . Indeed, this follows from
Lemma 8 below .



Suppose now M a closed connected orientable (PL) 4-manifold with
fundamental group rIi .

and

Let

be dis.ioint embeddings which kill r11.
Setting

we have
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01,02, . . .,Op :S1 xD3	>M

Mo =M\ U Oj(S1 x D3)
j=1

p
M* = Mo U U (D2 x S2 ),

j=1

Lemrna 8 .

(1) H,(Mo) = H, (M), H3 (M0) = ® Z
p-1

(2) H2(Mo) is o, directt summand of the free .group H2 (M*)
(3)

0 ---, H2 (M0) -+ H2 (M*) -H2 (M*, MO) = (DZ -~
p

H2 (M) = H2 (M0) = H2 (M*)

Hl (Mo) = Hl (M) -0

0 ---, H3(M)

	

, H3(M, Mo) = (1) Z -H2 (Mo) ---, H2 (M) ---, 0
p

Hl (M) - H3(M) -H3(M, Mo) - ®Z.
p

The proof is straightforward .
Now we indicate llow Lemrna 8 yields Propositiorl 2 iri the general

case .
Suppose II 1 (M) finitely gerierated by elements of finite orders, Vence
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Hl (M) = Z,�,, ® . . . ® Z�z p . Since H3(M) - H1 (M) - FH1(M) - 0,
by Lemma 8 we have the same diagram as at the beginning of section 4
with

and

H3 (M, Mo) = H3 (W, M*) = ®,Z,
H2 (M * ,MO) --H2(w,M) - ®pZ

H, (M) = H1(Mo) = Z,,, ® . . . ® Z"p .

Observe that H2(M*) is a free group of rank rkH2(M) + 2p and
H2 (M0) is free of rank rkH2(M) + p.
Now we can choose primitiva elements

el, e2, . . .,e, E H2(Mo) and fl,f2, .-,fp E H2 (M
*
)

such that i*(eQ generatos the subgroup Z�t ,, C TorH2(M) and fí,
maps to the integer mh which belongs to the corresponding h` factor of
H2 (M*, Mo), for h = 1, 2, . . . , p .
Now we apply the previous results by replacing V with the span Vh of

{eh, fh} . As a consequence we also obtain

=Ame
0 1

(1 a1)®
. .
.®

0 1
(1

ap) .

Remark 2. Let M be a closed connected orientable spin 4-;manifold
with II1(M) finite.

Let 0 : S1 x D3 , M be an embedding which represents a generator
[01 E II (M) .
Then

(AM'

	

0

	

1)
- Ana ®

	

1

	

aa

by proposition 2 and a defines a map

á : n1 (M)

	

> Z2

where E 1 (M) is a certain extension of 111 (M) by Z2 which takes cara
not only of [ce] but also of its extension 0 (for details sea [10, p . 44]) .
What type of invariant is á ? : the examples show that á, is not trivial . .



INTERSECTION FORMS OF 4-MANIFOLDS

	

83

References

1 .

	

A. CAVICCHIOLI, F.HEGENBARTH, Manifolds of type C(p, q), Kobe
Math . J. 7 (1990), 139-145 .

2 .

	

S .K . DONALDSON, The orientation of Yang-Mills moduli spaces and
4-manifold topology, J. Diff. Geometry 26 (1987), 397-428 .

3 .

	

M. FREEDMAN, The topology of four-dimensional manifolds, J.
Diff. Geometry 17 (1982), 357-453 .

4.

	

N. HABEGGER, Une varieté de dimension 4 avec forme d' intersec-
tion paire et signature -8, Comment . Math . Helvetici 57 (1982),
22-24 .

5 . R . MANDELBAUM, Four-dimensional topology : an introduction,
Bull . Amer. Math . Soc . 2 (1980), 1-159 .

6.

	

J. MILNOR, A procedure for killing homotopy groups of differen-
tiable manifolds in, Proc . Symp . in Pure Math . 3, (Differential Ge-
ometry) Amer . Math . Soc., (1961), 39-55 .

7.

	

J . MILNOR, D.HUSEMOLLER, "Symmetric bilinear forms," Springer-
Verlag Ed ., Berlin-Heidelberg-New York, 1973 .

8 .

	

C . OKONEK, Fake Enriques surfaces, Topology 27 (1988), 415-427 .
9 .

	

O.T . O' MEARA, "Introduction to quadratic forms," Springer-Ver-
lag Ed., Berlin-Heidelberg-New York, 1963 .

10 . C .T.C . WALL, "Surgery on compact manifolds," Academic Press,
London-New York, 1970 .

Alberto Cavicchioli :
Dipartimento di Matematica
Universitá di Modena
Via Campi 213/B
41100 Modena
ITALY

Rebut el 12 de Desembre de 1990

Friedrich Hegenbarth :
Dipartimento di Matematica
Universitá di Tor Vergata
Via Fontanile di Caracaricola
00133 Roma
ITALY




