TORSION UNITS IN GROUP RINGS

Vikas Bist

Abstract

Let $U(R G)$ be the unit group of the group ring $R G$. In this paper we study group rings $R C$ whose support elements of every torsion unit are torsion, where R is either the ring of integers \mathbb{Z} or a field K.

Let R be a commutative ring with identity, G be a group and $U(R G)$ be the group of units of the group ring $R G$. Denote by $T(G)$, the set of torsions elements of G. It is proved in [2], that if $T(U(\mathbb{Z} G))$ is a subgroup, then $T(U(\mathbb{Z} G))= \pm T(G)$. In this note we study group rings $R G$ whose support of every torsion unit is in $T(G)$.

Theorem 1. Let R be an integral domain, F be its quotient field and G be a non torsion group. If the support of every torsion unit of $R G$ is in $T(G)$, then $T(G)$ is a subgroup with every subgroup of $T(G)$ normal in G and every idempotent of $F T(G)$ central in $F G$.

Proof: Let $t \in T(G)$ be of order n and let $x \in G \backslash T(G)$. Then $\alpha=$ $t+(1-t) x\left(1+t+\cdots+t^{n-1}\right) \in U(R G)$ and $\alpha^{n}=1$.

Since $\operatorname{supp}(\alpha) \subseteq T(G) ; x=t x t^{k}$ for some $k=1,2, \ldots, n-1$, thus $x^{-1} t x=t^{x} \in\langle t\rangle .+3$ if $x \in G \backslash T(G)$, then $x \in N_{G}(\langle t\rangle)$, where $N_{G}(\langle t\rangle)$ is the normalizer of $\langle t\rangle$ in G.

If $y \in T(G)$ and $x \in G \backslash T(G)$, then $x \in N_{G}(\langle y\rangle)$. Since $N_{G}(\langle y\rangle) / C_{C}(y)$ is finite, so $x^{m} \in C_{G}(y)$ for some positive integer m. Now $(x y)^{m 2}=$ $x^{m} y^{x^{m-1}} y^{x^{m-2}} \ldots y^{x} y$ and as $y^{x} \in\langle x\rangle$, so $(x y)^{m k}=x^{m k}$, where k is the order of y. Hence $x y$ is of infinite order. Thus $x y \in N_{G}(\langle t\rangle)$ and so $y \in N_{G}(\langle t\rangle)$. Hence $\langle t\rangle$ is normal in G for every $t \in T(G)$.

Let e be an idempotent in $F T(G)$ and $x \in G \backslash T(G)$. There exists $r \in R$ such that $\operatorname{rex}(1-e) \in R T(G)$ and so $1+\operatorname{rex}(1-e) \in U(R G)$ with $(1+\operatorname{rex}(1-e))^{-1}=1-\operatorname{rex}(1-e)$. Now for any $t \in T(G)$,

$$
\begin{aligned}
& \beta=(1-r e x(1-e)) t(1+r e x(1-e)) \in T(U R G) \text { and } \\
& \beta=t+x \delta-x^{2} \Theta, \text { where } \delta=r\left(t^{x} e^{x}(1-e)-e^{x}(1-e) t\right) \text { and } \\
& \Theta=r^{2} e^{x^{2}}\left(1-e^{x}\right)(t e)^{x}(1-e), \delta, \Theta \in R T(G)
\end{aligned}
$$

Since $\beta \in T U(R G)$ and $T(U(R G)) \subseteq(R T(G))$, so $\operatorname{supp}(\beta) \subseteq T(G)$. Thus, $\delta=0$ and $\Theta=0$. Now $x \delta=0$ implies that $e x(1-e) t=t c x(1-e)$. Hence ex $(1-e)$ commutes with every element of $R T(G)$.

Thus $\operatorname{ex}(1-e)=0$.
Similarly, we have $(1-e) x e=0$. Thus it follows that $e^{x}=e$ for cvery $x \in G \backslash T(G)$.

Now if $y \in T(G)$ and $x \in G \backslash T(G)$, then $x y$ is also of infinite order. So $e^{y}=\left(e^{x}\right)^{y}=e^{x y}=e$. Thus e is central in $R G$. This proves the result.

By virtuc of the above theorem the problem thus reduces to determine $R G$ such that $T(U(R G)) \subseteq U(R T(G))$. We now assume that R is either the ring of integers \mathbb{Z} or a field K.

For the integral group rings $\mathbb{Z} G$, we have the following situation.
Theorem 2. Let G be a nontorsion group such that $T(G)$ is a subgroup and that $G / T(G)$ be right ordered. Then, the following conditions are equivalent:
(1) $T U(\mathbb{Z} G) \subseteq U(\mathbb{Z} T(G))$
(2) $T(G)$ is either abelian or a Hamiltonian group such that if $T(G)$ is nonabelian, $\alpha \in T(G)$, of odd order n, then the multiplicative order of 2 in \mathbb{Z}_{n} is an odd number
(3) $U(\mathbb{Z} G)=U(\mathbb{Z} T(G)) G$.

Proof: (1) implies (2). If $T(G)$ is non abelian, then by Theorem 1, $T(G)=A \times E \times K_{8}$, where A is abelian with every element of odd order, E is elementary abelian 2-group and K_{8} is the Quaternion group of order 8.

Let $a \in A$ be of oder n. Then by [4, II 2.6]

$$
\left.Q(\langle a\rangle) \times K_{8}\right)=(\mathbb{Q}\langle a\rangle) K_{8}=\oplus \sum_{d \mid n} \mathbb{Q}\left(\xi_{d}\right) K_{8}
$$

Also $\mathbb{Q}\left(\xi_{n}\right) K_{8} \cong \mathbb{Q}\left(\xi_{n}\right) \oplus \mathbb{Q}\left(\xi_{n}\right) \oplus Q\left(\xi_{n}\right) \oplus \mathbb{Q}\left(\xi_{n}\right) \oplus S$, where S is either a division ring or $M_{2}\left(Q\left(\xi_{n}\right)\right)$. By Theorem 1 , every idempotent of $Q T(G)$.
is central in $\mathbb{Q}(G)$, so $\mathbb{Q}\left(\xi_{n}\right) K_{8}$ has no noncentral idempotents. Thus S is a division ring and therefore, $\mathbb{Q}\left(\xi_{n}\right) K_{8}$ has no nonzero nilpotent elements. By [4, VI.1.13] $a^{2}+b^{2}+c^{2}=0$ has no nonzero solution in $Q\left(\xi_{n}\right)$ and by [4, VI.1.15], this happens provided the multiplicative order of 2 modulo n is odd.
(2) implies (3) is by [1].
(3) implies (1), follows from an easy observation that $U(\mathbb{Z} G) / U(\mathbb{Z} T(G)) \cong$ $G / T(G)$.

Finally for group algebras we have the following theorem. Here $K * G$ denotes the crossed product of G over K.

Theorem 3. Let K be a feld of characteristic $p>0, G$ be a non torsion group such that $T(G)$ is a subgroup and $G / T(G)$ be right ordered. Further let G be such that for every finitely generated subgroup H of $G, T(H)$ is finite. Then $T(U(K G)) \subseteq U(K T(G))$ if and only if $T(G)$ is abelian group having no p-elcments and every idempotent of $K T(G)$ is central in $K G$.

Proof: Suppose that $T(U(K G)) \subseteq U(K T(G))$. Then by Theorem 1 , every subgroup of $T(G)$ is normal in G with cvery idempotent of $K T(G)$ central in $K G$.

If char $K=p>0$ and $t \in T(G)$ with $o(t)=p$, then as $\langle t\rangle$ is normal in G, so $\left|G: C_{G}(t)\right|<\infty$. Since G is non torsion, there exists an element x of infinitc order in $C_{G}(t)$. Then $(1+x(1-t))^{p}=1$ and $1+x(1-t) \notin K T(G)$. Hence $T(G)$ has no p-elements.

Finally if $T(G)$ is non abelian, then the Quaternion group, $K_{8} \subseteq T(G)$ and $p \neq 2$ as $T(G)$ has no p-elements. So

$$
\mathbb{Z}_{p} K_{8} \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \odot M_{2}\left(\mathbb{Z}_{p}\right)
$$

contains a non central idempotent. Hence $T(G)$ is abclian.
For the converse, we may assume that G is finitely generated and so $T(G)$ is finite. Now

$$
K T(G)=\oplus \sum_{i=1}^{m} F_{i}, \text { a direct sum of fields },
$$

since $T(G)$ is finite abelian and p does not divide $|T(G)|$.
It is given that cevery idempotent of $K T(G)$ is central in $K G$. Hence

$$
K G=K T(G) * G / T(G)=\oplus \sum_{i=1}^{m} F_{i} * G / T(G)
$$

and so

$$
U(K G) \cong \operatorname{Dr}_{i=1}^{m} U\left(F_{i} * G / T(G)\right)
$$

Since $G / T(G)$ is right ordercd, by [4, VI.1.6] $U\left(F_{i} * G / T(G)\right)$ has only trivial units and so

$$
T(U(K G)) \subseteq \operatorname{Dr}_{i=1}^{m} T\left(U\left(F_{i} * G / T(G)\right)\right)=\operatorname{Dr}_{i=1}^{m} T\left(U\left(F_{i}\right)\right) \subseteq U(K(T(G))
$$

This proves the theorem.
By Theorem 3 and [3] we have
Corollary 4. Let K be a field of characteristic p and G be nontorsion nilpotent or $F C$-group having no p-elements. Then $T(U(K G)) \subseteq$ $U(K T(G))$ if and only if $T(U(K G))$ is a subgroup.

References

1. A.A. Bovdr, Construction of an integral group ring with trivial elements of finite order, Sibirsk. Mat. Zh. 21 (1980), 28--37.
2. C.P. Milies, Group whose torsion units form a subgroup, Proc. Amer. Math. Soc. 81 (1981), 172-174.
3. C.P. Milies, Group whose torsion units form a subgroup II, Comm. Algebra 9 (1981), 699-712.
4. S.K. Sehgal, "Topics in groups rings," Marcel Dekker, New York, 1978.

Department of Mathematics
Punjab Unjversity Chandigarh - 160014 INDIA

