TORSION UNITS IN GROUP RINGS

VIKAS BIST

Abstract .

Let U(RG) be the unit group of the group ring RG. In this paper we study group rings RG whose support elements of every torsion unit are torsion, where R is either the ring of integers \mathbb{Z} or a field K.

Let R be a commutative ring with identity, G be a group and U(RG) be the group of units of the group ring RG. Denote by T(G), the set of torsions elements of G. It is proved in [2], that if $T(U(\mathbb{Z}G))$ is a subgroup, then $T(U(\mathbb{Z}G)) = \pm T(G)$. In this note we study group rings RG whose support of every torsion unit is in T(G).

Theorem 1. Let R be an integral domain, F be its quotient field and G be a non torsion group. If the support of every torsion unit of RG is in T(G), then T(G) is a subgroup with every subgroup of T(G) normal in G and every idempotent of FT(G) central in FG.

Proof: Let $t \in T(G)$ be of order n and let $x \in G \setminus T(G)$. Then $\alpha = t + (1-t)x(1+t+\cdots+t^{n-1}) \in U(RG)$ and $\alpha^n = 1$.

Since $\operatorname{supp}(\alpha) \subseteq T(G)$; $x = txt^k$ for some $k = 1, 2, \ldots, n-1$, thus $x^{-1}tx = t^x \in \langle t \rangle$. +3 if $x \in G \setminus T(G)$, then $x \in N_G(\langle t \rangle)$, where $N_G(\langle t \rangle)$ is the normalizer of $\langle t \rangle$ in G.

If $y \in T(G)$ and $x \in G \setminus T(G)$, then $x \in N_G(\langle y \rangle)$. Since $N_G(\langle y \rangle)/C_G(y)$ is finite, so $x^m \in C_G(y)$ for some positive integer m. Now $(xy)^m = x^m y^{x^{m-1}} y^{x^{m-2}} \dots y^x y$ and as $y^x \in \langle x \rangle$, so $(xy)^{mk} = x^{mk}$, where k is the order of y. Hence xy is of infinite order. Thus $xy \in N_G(\langle t \rangle)$ and so $y \in N_G(\langle t \rangle)$. Hence $\langle t \rangle$ is normal in G for every $t \in T(G)$. Let e be an idempotent in FT(G) and $x \in G \setminus T(G)$. There exists $r \in R$ such that $rex(1-e) \in RT(G)$ and so $1 + rex(1-e) \in U(RG)$ with $(1 + rex(1-e))^{-1} = 1 - rex(1-e)$. Now for any $t \in T(G)$,

$$\beta = (1 - rex(1 - e))t(1 + rex(1 - e)) \in T(URG) \text{ and}$$

$$\beta = t + x\delta - x^2\Theta, \text{ where } \delta = r(t^x e^x(1 - e) - e^x(1 - e)t) \text{ and}$$

$$\Theta = r^2 e^{x^2}(1 - e^x)(te)^x(1 - e), \delta, \Theta \in RT(G).$$

Since $\beta \in TU(RG)$ and $T(U(RG)) \subseteq (RT(G))$, so $\operatorname{supp}(\beta) \subseteq T(G)$. Thus, $\delta = 0$ and $\Theta = 0$. Now $x\delta = 0$ implies that ex(1-e)t = tex(1-e). Hence ex(1-e) commutes with every element of RT(G).

Thus ex(1-e) = 0.

Similarly, we have (1-e)xe = 0. Thus it follows that $e^x = e$ for every $x \in G \setminus T(G)$.

Now if $y \in T(G)$ and $x \in G \setminus T(G)$, then xy is also of infinite order. So $e^y = (e^x)^y = e^{xy} = e$. Thus e is central in RG. This proves the result.

By virtue of the above theorem the problem thus reduces to determine RG such that $T(U(RG)) \subseteq U(RT(G))$. We now assume that R is either the ring of integers \mathbb{Z} or a field K.

For the integral group rings $\mathbb{Z}G$, we have the following situation.

Theorem 2. Let G be a nontorsion group such that T(G) is a subgroup and that G/T(G) be right ordered. Then, the following conditions are equivalent:

- (1) $TU(\mathbb{Z}G) \subseteq U(\mathbb{Z}T(G))$
- (2) T(G) is either abelian or a Hamiltonian group such that if T(G) is nonabelian, $\alpha \in T(G)$, of odd order n, then the multiplicative order of 2 in \mathbb{Z}_n is an odd number
- (3) $U(\mathbb{Z}G) = U(\mathbb{Z}T(G))G.$

Proof: (1) implies (2). If T(G) is non abelian, then by Theorem 1, $T(G) = A \times E \times K_8$, where A is abelian with every element of odd order, E is elementary abelian 2-group and K_8 is the Quaternion group of order 8.

Let $a \in A$ be of oder n. Then by [4, II.2.6]

$$\mathbb{Q}(\langle a
angle) imes K_8) = (\mathbb{Q}\langle a
angle) K_8 = \oplus \sum_{d \mid n} \mathbb{Q}(\xi_d) K_8.$$

Also $Q(\xi_n)K_8 \cong Q(\xi_n) \oplus Q(\xi_n) \oplus Q(\xi_n) \oplus Q(\xi_n) \oplus S$, where S is either a division ring or $M_2(Q(\xi_n))$. By Theorem 1, every idempotent of QT(G)

is central in $\mathbb{Q}(G)$, so $\mathbb{Q}(\xi_n)K_8$ has no noncentral idempotents. Thus S is a division ring and therefore, $\mathbb{Q}(\xi_n)K_8$ has no nonzero nilpotent elements. By [4, VI.1.13] $a^2 + b^2 + c^2 = 0$ has no nonzero solution in $\mathbb{Q}(\xi_n)$ and by [4, VI.1.15], this happens provided the multiplicative order of 2 modulo n is odd.

(2) implies (3) is by [1].

(3) implies (1), follows from an easy observation that $U(\mathbb{Z}G)/U(\mathbb{Z}T(G)) \cong G/T(G)$.

Finally for group algebras we have the following theorem. Here K * G denotes the crossed product of G over K.

Theorem 3. Let K be a field of characteristic p > 0, G be a non torsion group such that T(G) is a subgroup and G/T(G) be right ordered. Further let G be such that for every finitely generated subgroup H of G, T(H) is finite. Then $T(U(KG)) \subseteq U(KT(G))$ if and only if T(G) is abelian group having no p-elements and every idempotent of KT(G) is central in KG.

Proof: Suppose that $T(U(KG)) \subseteq U(KT(G))$. Then by Theorem 1, every subgroup of T(G) is normal in G with every idempotent of KT(G) central in KG.

If char K = p > 0 and $t \in T(G)$ with o(t) = p, then as (t) is normal in G, so $|G : C_G(t)| < \infty$. Since G is non torsion, there exists an element x of infinite order in $C_G(t)$. Then $(1 + x(1 - t))^p = 1$ and $1 + x(1 - t) \notin KT(G)$. Hence T(G) has no p-elements.

Finally if T(G) is non abelian, then the Quaternion group, $K_8 \subseteq T(G)$ and $p \neq 2$ as T(G) has no *p*-elements. So

$$\mathbb{Z}_p K_8 \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus M_2(\mathbb{Z}_p),$$

contains a non central idempotent. Hence T(G) is abelian.

For the converse, we may assume that G is finitely generated and so T(G) is finite. Now

$$KT(G) = \bigoplus \sum_{i=1}^{m} F_i$$
, a direct sum of fields,

since T(G) is finite abelian and p does not divide |T(G)|.

It is given that every idempotent of KT(G) is central in KG. Hence

$$KG = KT(G) * G/T(G) = \bigoplus \sum_{i=1}^{m} F_i * G/T(G)$$

and so

$$U(KG) \cong \bigcup_{i=1}^m U(F_i * G/T(G)).$$

Since G/T(G) is right ordered, by [4, VI.1.6] $U(F_i * G/T(G))$ has only trivial units and so

$$T(U(KG)) \subseteq \bigcup_{i=1}^{m} T(U(F_i * G/T(G))) = \bigcup_{i=1}^{m} T(U(F_i)) \subseteq U(K(T(G)).$$

This proves the theorem. \blacksquare

By Theorem 3 and [3] we have

Corollary 4. Let K be a field of characteristic p and G be nontorsion nilpotent or FC-group having no p-elements. Then $T(U(KG)) \subseteq U(KT(G))$ if and only if T(U(KG)) is a subgroup.

References

- 1. A.A. BOVDI, Construction of an integral group ring with trivial elements of finite order, *Sibirsk. Mat. Zh.* **21** (1980), 28-37.
- 2. C.P. MILIES, Group whose torsion units form a subgroup, Proc. Amer. Math. Soc. 81 (1981), 172-174.
- 3. C.P. MILIES, Group whose torsion units form a subgroup II, Comm. Algebra 9 (1981), 699-712.
- S.K. SEHGAL, "Topics in groups rings," Marcel Dekker, New York, 1978.

Department of Mathematics Punjab University Chandigarh - 160014 INDIA

Rebut el 27 de Novembre de 1990

50