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LINEARIZATION AND EXPLICIT SOLUTIONS
OF THE MINIMAL SURFACE EQUATION

ALEXANDER G. REZNIKOV

Abstract

We show that the apparatus of support functions, usually used in
convex surfaces theory, leads to the linear equation Ah+2h = Ode-
scribing locally germs of minimal surfaces. Here A is the Laplace-
Beltrami operator on the standard two-dimensional sphere. It
explains the existence of the sum operation of minimal sur-
faces, introduced recently. In 4-dimensional space the equation
&h + 2h = 0 becomes inequality wherever the Gauss curvature of
a minimal hypersurface is nonzero.

0. Introduction

Recently great progress was achieved in the investigation and con-
struction of examples of minimal surfaces in R? [1]-{3]. The Gauss map
usually plays a significant role and its singularities in a sense control
topology if the surface is complete [4]. It was also noticed [5], [6] that
there exists a “sum” operation M, + My for two minimal surfaces M,
My. It may seem to be strange, for the usual form of the minimal surface
equation is essentially nonlinear. True, given a conformal minimal map
R%2 > U 5 M C R® we have a linear equation Az = 0 [7]. However,
the condition of conformality is nonlinear itself.

In this paper, we show that apparatus of support functions usually
used in convex surface theory leads to the linear and completely inte-
grable equation of minimal surfaces in R®. We are able to write down an
explicit formula describing locally oll minimal surfaces with nonvanishing
curvature which is quite different from the Weierstrass description. We
hope cur method will be useful in global problems, too. It automatically
implies the existence of the sum operation.

The main part of this work was done during the author’s visit to
Lithuania in 1987. I wish to thank Professor F. Weiksa for fruitful dis-
cussions. I also wish to thank the referee for his very valuable remarks,
in particular, for indicating to me that the relation of equation (8) to
minimal surfaces was independently stated in [7].
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1. The main equation

Let M be a smooth oriented hypersurface in RY and G . M — SV-1
be its Gauss map. Then [7] G is a local diffeomorphism wherever the
Gauss curvature of M is nonzero. From now on, we assume that this
condition holds at every point of M. Then G becomes a covering gver
its image G{M). Let U C G{M) be a simply-connected proper dormain,
then G~1{U) is a disjoint union of open V;, i € I, and le,- Vi = Uis
a diffeomorphism which we call G;. We supply SV~ with the canonical
metric of curvature 1.

Definition. By support function h; : U — B we mean
(1) hi(n) = (G (n),m)

Lemma 1. The function hi(n) determines G_'(n) in the following
way:

(2) G;’l(n) = h;(n)n + grad h;(n) ,

where grad hy(n) is computed in terms of the metric of SV~ and looked
at as a vector in RV,

Proof: Let G '(n} = z. For y € V; we have by (1)
(3) ha {Gu(y)) = (. Go(y)) -
If X € T.8Y-1 then, differentiating {3) along X we obtain

(grad h;(Gi(z)), Gi X) = (X, Giz)) + (2,G:. X) .
But {X, Gi{z)) = 0 by the definition of the Gauss map, so
{4) {{z — grad hi{Gilz))} , Gi, X) =0
By the nondegeneracy condition, G,, maps isomorphically T, M onto
TG:.(I}SN*. The latker space coincides with 7, M as a subspace of RV
so, for some p € B, we have
5 — grad by (Gil2)) = pGilz) ,

or

G7Hn) = pn + grad h({n)

Taking scalar product with n and accounting (1) and (grad h¢(n), n) =0
we obtain (2). W
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Lemma 2. Let A(z) be the second fundamental operator in T, M.
Then

(5) A(z) = {(hy{n)E + Hess h;(n)) ™' .

Here n = Gi(z), E is the identity operator in T,S¥-! = T_M and
Hess h,{n) is the Hesstan operator (8] on the sphere SN 1L,

Proof: Denote for a moment F; = G7! on UU. By {2) we have Fi{n) =
h:(n}n + grad h;(n). Let Z € T,57~!. By the definition of the Hessian
operator, Hess h;(n)(Z) = (Vzgrad h,) (n), where V is the Levi-Civita
connection on the sphere. For any vector field v or the sphere we have
[8] Vzv = v} + (v, Z)n, where v} denotes usnal differentiation in BY,
So by (2),

(Hess h,(n))(Z) = Fi, Z — (grad h;(n)}, Z}n — hi(n)Z + (grad hi(n}, Z)n
=F.Z - hi(n)Z

or F;,Z = hi(r)Z + (Hess h;(n}}(Z). Let Y = F,,Z, then Z = G.Y. By
definition of A4, A{z)Y = G, Y = Z, which proves (5). |

Theorem 1. Suppose N =3 and M is minimal. Then for any proper
simply-connected domain U C G(M) and any branch h; we have

(8) Ahy+2h; = 0,

where A is the Laplace- Beltrami operator on the sphere $2. Conversely,
if b is a solution of (6} in an open U C S* then the formula z{n) =
f{n)n+grad h{n) determines o smooth map from U to B3, which is either
a constant or a conformal and minimal immersion outside a locally finiie
set of wsolated singularities (branch peints).

Proof: M is minimal iff tr A(x) = 0 everywhere. For an invertible
operator 4 in 2-space we have tr 471 = a’-‘% so by (5}, trA(z) = 0
is equivalent to 8 = tr (h.(n)E + Hess h;(n}) = 2h; + Ah;. This proves
the first statcment of the theorem. Now suppose h yields (6). Denote
F(n) = h{n)n + grad h. From the proof of the Lemma 2 we know that
F.(n) = h(n)E + Hessk(n). In particular, it means that F,(n} maps
T,8? to itsell and is symmetric in 7,52, Further, by (6), tr F,(n) =
0. Note that any symmetric operator with the zero trace in 2-space is
represented by a matrix (: j’a) in any orthonormal basis and is thus

conformal, so F is conformal, and for n € U either rank F.(n) = 2 or
F.(n) = 0. Denote by Z the set of points where F, = 0. As (6) is
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elliptic, F(n} is analytic along with h(n), so if I is non-constant, then
Z is nowhere dense. Qutside Z, F(n) is a conformal immersion and
we have just shown that Trem)F{U) = T,S8?, so, for the Gauss map
we have G(F(n})) = n. Hence the support function hof F{U ~ Z)
is k{n) = (h(n}n + grad h{n),n} = h{n). From the first part of the
thcorem we see that F | UnzZ is minimal. It follows that F is harmonic
in / ~ Z, but F is analytic in IV and Z is nowhere dense, hence F is
harmonic everywhere in U. Locally in conformal coordinates (z,y} we
havene Z & g—f = %—‘E = 0, hence Fi{n) = 0 where z =z + 1y and F
is holomorphic and Re F = F, 5o Z is locally finite. W

Theorem 2. Suppose N = 4 and M is minimal. Then for any proper
simply-connected U € G{M) and any branch hy, Ahi{n) + 2h,(n} doesn’t
change sign in U.

Proof: Let Aj{x), 1 € i € 3, be the principal curvatures of M in z.
Then A; + Az + A3 = 0 by minimality condition. Suppose Ah{n} +
2hi(n) = 0. somewhere in U and let z = G7(n). As tr A~ l{z) =
Ddetsapddoda we obtain by (5) that Az + Mg + A2ds = 0. This
implies A% + A2 + /\% = (A1 4 Ao+ A3)2 —2(h1Ahs + M3+ AoA3z) =0in
z which is impossible by nondegenéracy condition. B

2. Applications

We turn to applications of our result. Let M, My be two minimal
surfaces in R® such that G{M)} N G{M3) has a nonempty interior in
52, In [5] and [6] their sum A + M is defined by parametrization
z{n) = Gy (n) + G5 (n). Let h,{.l) and hff) be two branches of support
functions of M; and M; respectively. Then by (2) we have z(n) =
hin)n+ grad h{n). where h = h‘{-” + h§2). Next, both hél) and hﬁg) yield
(6) which is linear, hence A yields (6), too. Theoremn 1 implies thus the
minimality of M; + M,. Moreover, given a minimal M and any Killing
vector field Z in 52 we can define the derivaiive surface MY by

(7) h{M3z) = h7 ,

which is also minimal.
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Example. Let M; be a catenoid defined in euclidean coordinates
(z,y,7) by the equation 22 + y? = {chz)?. Then direct computations
show that

(8) hi(n) = h{ns,ny,m1}) =1 - nz arctan h nz ,

and G(M;) = S? ~ {&p} where p = (0,0,1). Let g; € SO(3), i =

2,...,m, g1 = id be rotations such that the sets {£g,p} are pairwise

disjoint. Let A = ) hj0g;, and V = §2 ~ { J{Zg:p}. Then we have the
i

following

Proposition 1. The surface ¢ : n — hA{n)n + grad h is o complete
minimal surfoce in R® with only a finite number of branch points, and
its Gauss imoge omits precisely 2m-point set | J{xg:p} (compare [5]).

Proof: First we note that in some neighbourheod of p, ¥ cannot
have branch points. Indeed, suppose det(h{(n}E + Hessh{n)) = 0,
then for some vector X € T,5% || X)| = 1, (hi(n)E + Hessh(n})X =
— 2 52 (Ri(n)E + Hess h;(n)} X. We know that for i > 2 h,(n) does not
have singularities near p, so in some neighbourhood of p and for some
constant C we would have

I} (hi{n}E + Hess hy(n)) Xil < C|IX] .

Denote (h\{n)E+Hess h)(n)) X=Y, then |[{(h;(n) E+Hess by (n)} "' Y| >
C7Y Y. Actually (hi(r)E + Hess h1(n))~" is the second fundamental
operator of the catenoid M, as we saw in Lemma 2, therefore, its eigen-
values are 1/ —K{n), where K(n) is the Gaussian curvature at G~ !{n).
As it is well-known (and easy to verify) that K is decaying to zero at
infinity, the above inequality is impossible, Of course, the same is true
about all the singular points +g;p, hence, being locally finite, the set
of branch points should be finite. Next, as the metric of catencid is
complete, we have f,]f [| (Ri{n)E + Hess hy(n)) 7{(£)]) = oo for any curve
v : [0,00) — 5% such that Ll_l'n; ~4(#} = p. Hence the same arguments
show that this is true for k instead of h and finally, ¥ is complcte. W

Now consider the Enneper surface {7] € : R? — R3. The composi-
tion G o€ with the Gauss map coincides with the inverse stercographic
projection ' : B2 — §% ~ {p}, so K # 0 and the support func-
tion & is defined in S? ~ {p}. Straightforward computations show that
K — —0 on e, hence we can apply the sarme construction to obtain

E— OO
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Proposition 2. For any given finite set E C S? there emists a com-
plete minimel surface in R® with only o finite number of branch points
whose Gauss trmage omits precisely the set E,

The conjecture of Meeks [4] states that for every k > 1 there exists an
embedded minimat surface homeomorphic to a compact manifold pune-
tured in k points. The problem of Osserman (7], solved by Fujimoto [4],
asks whether the statement of our Proposition 2 holds for some smooth
complete minimal surface (without branch points).

Concluding Remarks.

1. Our main equation (6} admits separation of variables. Fix
zo € S?, then in spherical polar coordinates near (r, @} near o
the spherical metric becomes dr? + sin? rdp? and the Laplace-
Beltrami operator becomnes Af = f1 + 8280 4 - f" Sub-

stituting f{r, ¢} = V,%;g(r, @) we obtain that Af + 2f = 0 is

equivalent to g7 + g (ke + 1) + ;%}'—; = 0. By Fourier methods
one finds

gre)= Y, Cm(r)e™

L=

where Cp () satisfy

1 ¢
C:;+Cm((1—m2) > +-)) =0.

4 sim°r 4

2. A rather surprising phenomenon follows from our description.
Namely, if Ah+2h =0 inanopen U C S2, then the “Monge-
Ampere” o = det(hFE + Hess h) satisfies some second order PDE.
Indeed, we know from Theorem 1 that the surface M parametrized
by F(n} : n— h{n)n + grad h{n) is minimal and its curvature at
F{n) is ¢ Y{n). Let’s pull back on S? the minimal surface’s met-
ric. We will obtain § = u{n)gs, because the Gauss map F~{n}
is conformal (here gp is the spherical metric}. To compute p(n),
we note that F* ds = ti(n) dsg, where ds, dsg are the area ele-
ments on M, 52 respectively, Hence, g = |¥/(n)|go. Therefore, the
curvature of —¥{nlgg is ¥~ '(n) (compare with Ricci-Curbastro
Theorem, [10]). This is equivalent to some PDE.

3. Suppose M is a complete minimal surface of finite total curvature.
Then by the theorem of Osserman (7] the Gauss map G : M —
52 extends to a holomorphic map & of the completion M, and
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M~ Mis finite, say M~M= {p1,.- pm}. Let £ C M be
the finite set of branch points of G, say £ = {¢1-..4x}. Then
N=M~ ((Eff ~ M)YUL) (is the finite covering of §2 ~ (ﬂi((ﬁffu ~
M)U L)) Next, the support function A{n) becomes single-valued
on N and we see that every complete minimal surface of finite
total curvature determines a solution of the equation AR +2h =0
in ¢ fintte covering of the standord sphere punctured in a finite
number of points,

4. Consider the flat metric ¢ = dr?+dy*—dz? in R%1. If for a surface
M C R®!, g|,, is positively defined, then there exists a correctly
defined Gauss map G from M to the hyperboloid S : 22 + 2 —
22 = —1. It is well-known that ¢ | § is the standard hyperbolic
metric. Just as before we can define a support function h{n).
Formula (2) in this case reads G7'(n) = —hi(n) + grad hi(n).
Formula § becomes A{z} = {—h;(n)E + Hess hg(n))_' and (6)
becomes Ah;{r) — 2hi(n) = 0 for minimal surfaces M with time-
like normals.
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