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AN INTEGRAL FORMULA ON SUBMANIFOLDS
OF DOMAINS OF ¢*

TELEMACHOS HATZIAFRATIS

Abstract

A Bochner-Martinelli-Koppeiman type integral formula on submanifolds
of pseudoconvex domains in C™ is derived; the resnit gives, in particular,
integral formulas on Stein manifolds.

1. Introduction

The method of integral representations in several complex variables has been
proved tc be quite efficient in constructing holomorphic functions and more
general analytic objects (differential forms solving the 8-equation, sections of
holomorphic vector bundles etc); see, for example, Henkin and Leiterer [4], [5],
Henkin and Polyakov [6] and Range [10]. This method revolves about Bochner-
Martinelli-Koppelman's integral formula: if D € C™ is a bounded domain in
C" with smooth boundary 8.0 then

(i.1) u:/ u/\Kq—fEuAKq+3(]uAKq_1)
an n D

for every {0, ¢)-form u with C?-coefficients on D, where K, are appropriately
constructed kernels (see Ovrelid [9]}. The integral formula (1.1) can be modified
to produce a variety of other formulas with which various problems (such as
the J-equation and interpolation problems) can be solved; thus (1.1) is the first
main step in several constructions.

The purpose of this paper is to construct an analogue of {1.1) if D is replaced
by a submanifold M of D. More precisely let D1 be a bounded domain in €®
and D a pseudoconvex one with D C D let M be a {closed and complex)
submanifold of D and let M = DN M. Assume that M = {(DYNM is
smooth. Then we will construct kernels K, (¢, 2) defined for (¢, z) € MxM
with { # z so that

(12) u(z) = /C MO A G )=
f Mof\xq(c,ma(f w(Q) A Kyor(C2))
{EM CEM
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for u € C(lo'q)(ﬁ) and z € M.

In [3] we derived an integral formula like {1.2) in the case M is a complete
intersection {i.e., if there exist functions Ry, ..., hp, holomorphic on D, so that
M={hy =---=h, =0} and dhy A--- Adh, # 0 on M), the construction in
the general case (i.e.,, when M is not necessarily a complete intersection) will
be based on the result of [3).

A similar construction was carried out by Berndtsson [1]. As a matter of fact
our kernels are equivalent to those of Berndtsson but written in a different way.
We think however that cur version of the construction as well as the different
proof of the integral formula are of further interest.

Here is an outline of the construction. First we cover M by sufficiently small
open sets {{/,} {open in C%) so that each M N U, is a complete intersection.
Then the result in [3] gives kernels K for which (1.2) holds in M NU,. Such
kernels are not unique in the sense that there are certain choices that can be
made, in particular, K7 depends on Hefer decompositions of the holomorphic
functions which define M NU, {as the set of their common zeros}. But using a
result of Berndtsson [1] we show that such Hefer decompositions can be chosen
appropriately so that

KZ =KJon MNU,NU,;
thus we can define a giobal kernel K (by setting K, =: K7 on MU,). Then
we have to show that {1.2) holds; and this is done along the same lines as in
[3]. Here is an outline of this proof in the case u is a holomorphic function on
M. In this case we have to show that

(1.3) uw=lmﬁmmma zeM

Fix a 2 € M and pick a U, with 2 € U,. Bui, as a computation shows,
de K§ = 0 (for each 7 and { # z) and hence d¢[u{(}KG (¢, 2)] = 0; thus (1.3) is
equivalent {via Stokes’ theorem} to

we)= [ 0Kl )

which holds by the result of (3] {or (2] for that case) since Ko = K§ in U, N M.
Our result gives, in particular, integral formulas for domains D CC X, if X
is a Stein manifold, via the theorem that Stein manifolds admit embedding in
sorne CV,
Integral formulas on Stein manifolds have been constructed previously, using
different techniques, by Henkin and Leiterer [4]. Related is alsc the work of
Berndtsson (1], Hortmann [7], Palm [9] and Stout [11].
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2. Notation

Let & = {hi,..., hy) where the hls are holomorphic functions defined in some
open set of C™ and suppose that {h;;{(,2}),7 =1,...,n} is a Hefer decomposi-
tion of hy, i.e., f;;(¢, z) is holomorphic in both ¢ and z and

Ral€) = hilz) = D hiy (G20 — Zhi=1,...,p
i=1

We associate to these data the following differential forms.

First
n—p—1
—
(2.1) o™(¢,z) = cdetlhy, ., by, vi, (B + 820
where ¥ = (711,...,7-) is some smooth function (we will be more specific about
~ later) and ¢ is normalizing constant: ¢ = (- 1)2{%_” W + L, where m =
7 — p. In the determinant of (2.1), 7 runs from j = 1 up to 7 = »n forming the
(EC + _8-2)71
n rows of it; also the column of differential forms ! is repeated
(EC + (sz Y

in the determinant (n — p— 1)-times (as it is indicated); for properties of such
determinants see [4]. Also define

—_ nE
A 5, Ah =
(2.2) B (g) |Vh(C)|2 det 6—<j,1 ! acp dCJ
where {
3 M
VHOP= Y e ‘cb)(o

1€ <. <5 sn
of course 8"(¢) is defined for { with |VA(¢)| # 0. With this notation set

K*(¢,2) = &®(¢, 2 A BMQ).

Let 0:2 be the part of o™ which is of type (0,¢) in z and (O,n —p—¢—1)in{,

le.,
g mna—p—g-1
n—-p—1 S 5
C}.’? =C( E ) det[hlj,,,.,hpj,-yj,aﬂj, 84')3 ]

Also let KP(¢,2) = a2(¢,2) A B7(Q)-

Of course K;" depends on the choice of the Hefer decompositions {hs;} of
#:, although we do not indicate this in the notation; but it will be clear from
the context which choice we will be using in each case. Also we have been
vague about the domains in which the above functions and differential forms
are defined, because here, we simply introduced notation and we will be very
specific about this later.
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3. Construction of the kernels

First we describe the setting. Let D, D be domains in C* with D bounded,
D pseudoconvex and D C D. Let M be a closed complex submanifold of D of
{complex} dimension m. Set M = DNM and M = (8D)NM and assume that
8D is smooth and that M meets D transversally so that 8 is also smooth.

Let v = (yi,--.,7%m) : D x D — {¢ = 2z} — C™ be 2 smooth map satisfying

(3.1)
Z'yj((j—zj)zland'yj = l%_ pe for 0 < |[¢ — 2| < & for some small § > 0
=1

{an example of v is given by v, = %_;f[’g all {,z with { # 2).
In this setting we will now construct the kernels. Let {U,} be a sef of small
convex open sets of C™ so that M C Ua {J, and moreover let

= ha“_.)ha):ﬁacp‘pz;n—m’
(h p

be holomorphic maps so that MNU, = {z € U, : k°(z) = 0} and |VA°} # 0on
Mn U,; that such functions hY exist follows from Cartan’s Theorem A since
D is assumed to be psendoconvex. '

Furthermore there exist p x p matrices Ay, = [(Aor)ik]i1<ik<p Of functions

kY h{
{Agr )ik, holomorphic in U, NU;, so that A, | = : on U, NU,,
| k) \hg
ie.,
]
(3.2) B = Y (Aor)ithlyi = 1,...,p.

k=1

The existence of such matrices A,, follows from Cartan’s Theorem B since
U, MU, is convex.

Lemma 1.
an ot
a; a¢; ~
Aa"r : = . ,j=1,,..,n,<€U‘7nU¢nM‘
oiy siz
¢; 8¢5

Proof: Differentiating (3.2) we obtain

(9h" ahT 8(140'1')31'«
Aa‘r 1 h .
3 D 5, Z FTaG
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Since A, =0 for { e U, NU. N ﬂ, the formula of the lemma follows immedi-
ately. &

The following lemma is proved by Berndtsson (1, p.414]; its proof is based
on Cartan’s Theorem B, using again the pseudoconvexity of D.

Lemma 2. There ezist functions hf{(,2), i = 1,...,p,5 = 1,...,n, holo-
morphic in ((,z) € (U N M) % M so that
1 i
(3.3} Ao : = ; fori=1,....nlelU,nU.NM,zec M.
b P

Furthermore h{,((, z) have holomorphic extensions in { in a neighbourhood (in

C™) of U, N M, satisfiying
(3.4) STRG(C,2)(G - 23) = RT(Q) for z € M.
=1

Lemma 3. Let A € CPXF gnd B, C € TP 5o that
A- BT = C7T (T denotes transpose).
Then
det[C, * * »] = det(4) det{B, + * x|
where = % x denote appropriate differentiel forms (the same on both sides of the
equation) so that the matrices [B,+ = %] and [C,» + +] are n x n.

Proof: This is & straightforward computation based on the multilinearity of
the determinants (as functions of their columns) and the definition of the de-
terminants. {This generalizes the fact that the determinant of the product of
square matrices is equal to the product of the determinants of these matri-
ces). B

Lemma 4. If a*” is the form (2.1) associated to the Hefer decompositions
{h%;} and o™ is defined similarly, then

(3.5) o™ =det{dyr) - o for (e U,nU, N MizeM

and, hence, o’ = det(Aq-) o .

Proof: Defining

o o
ook

He =1 :
o o
Ry, ... hp,

and similarly H™, we obtain from Lemma 2 that
Agr {HDT = (H) for C€ U, NU, O M,z € M,
thus Lemma 3 applies and gives (3.5). W
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Lemma 5. We have

1

= gt LN UL 0 M.
det(Ao,)ﬁ forCelU;nlk

(3.6) e

Proof. By Lemma 1 we obtain

EAPREEN
i raipey L icine

Therefore
8(hg,... B AhT,.. . hT
(123 _ enia,y . O D)
8((}'1:-'-: jp) 6(Cj1,"‘,gjp)
and
(3.7} VA2 = | det{Aor )P VRT)?

(this also shows that det{A,.) # 0on U, N U N M). Also setting

A
a6 T 2

B = : :
Hn 7T e

and similarly for BT we see that Lemma 1 gives
A_a'r i (BT)T — (Bﬂ)'f‘.

Hence, by Lemma 3,

n—p n—p
ah"i’ ah; o~ B ryaras s 8&'{ ah; —
(38) det [B—CJ-"” ,8—9,@3] —det(Agr)-det [agj, ,a—gjﬁdcj

Now (3.6) follows from {2.2), (3.7) and {3.8). B

We are now ready to define the kernels:
K(¢,2) =t KM (¢, 2) = o™ () A B (Q for (e U, N M,z € MyC # 2.

By Lemmas 4 and 5, it follows that K{, 2z} is well-defined for { € ﬁ, z€ ﬁ?,
¢ # z. Similarly we define K, = a’q‘“ ABY forg>0and K., =0.
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4. The integral formula

With the kernels just constructed we will prove the following thcorem.

Theorem 1. [fu € C(lo‘q)(ﬁ) (0L g<m) and z € M then

Mﬂ=1£@Mu@)AK4¢m—
/ %mmxmwwﬁ{/ w(Q) A Kar (G,2)] -
Ceﬁf e

First & lemma:

Lemma 6. We have o
@, +B.)K((,2) =0.

Proof.: Tt suffices to show

(4.1) B + )K" (¢,2) =0for (e U, NM,2€ M, # 2.
Now observe that
n—p=-1
0 o 1 o
(4.2) (¢ — 210" (¢, 2) = det o
G hy ij @C +8.)v 2<i<n

(in the above determinant j runs from j = 2 to j = n forming the 2nd upto
the nth row of it}.

We obtained (4.2} in the following way: (1 — z1) multiplied the first row of
the determinant which defines & (¢, z) and then we added to that first row
the jth-row multiplied by ({; — z;) {7 = 2,...,n). Then {4.2) follows in view
of the first of the assumptions in (3.1) and (3.4). Now {4.2) easily implies that
(Bc + d.)a"” = 0; since, moreover, 8;8(C) = 0 (by [2, Corollary 1, p. 76]}, we
obtain {4.1) which completes the proof of the lemma. B

Proof of Theorem 1:

It suffices to show that

(4.3) [ZEM u(z) Aplz) = /z'eM /¢eaM uhKqhp—

] gu/\qu,cH—/ (52(/ uAK, 1)) Ay
M JleM zEM CeEM

for ¢ € (C3(M))(m,m — g).
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Let us point out the way in which the various forms in the right-hand side
of (4.3) depend on the variables { and z: u = u((}, Ky = Ky((,2), K1 =
K, 1(C, 2), v = p{z) and u = Su((). By degree reasons, (4.3) is equivalent to

(4.4) /GMu(z) A p{z) :_/ uANK A g—

B¢ M x M)

fMXMguAK/\Lp+ /M{Ez(/Mu/\K))Aga

{in obtaining {4.4) we used also the fact that

u/\K/\tp=/ uhK Ny

/(c,z)e(aM)xM 8{M x M)

which holds since u has compact support in M).
By Stokes’ formula

(4.5) / u/\K/\q::/ d[u/\K/\qa]+f uAK Ay
B(M x M) MxM—{|(—zl<e} c

€

where Ce = {{{,z) e M x M : |¢ — z| = £}
By Lemma, 6§ and degree reasons

lim dunK Ayl = /

3uAK/\(p—(—1)q/ uAK ABy;
E0 S M M- {[C-2)<e} Mo M

MBS

hence {4.4) will follow from {4.5) as soon as we establish the following

{4.8) lim uAK Ayp= / ulz) A p(z).
=0 Ji¢ xec, zEM

But we may assume without loss of generality that supp{u) C U f or some o.
Then for ¢ small enough

/u/\K!\xp:/ un K" Ay
Ce [

and {4.6} follows from
E—

(4.7) lim/ v AKY Ap = / w(zy Aglz)
0/c, sEM

But (4.7} 15 exactly what is proved in [3, p. 33% 341] (in that part of the proof,
(3.4) plays an important role). This completes the proof of the theorem. B
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5. Applications

As we mentioned in the introduction the integral formula that we proved
can be used to derive various other integral formulas. Here we discuss two
examples.

With notation as before assume furthermore that D is a sirictly pseudoconvex
domain. Then, by a classical construction of Henkin and Ramirez (sec [5]),
there exist functions ¢;{¢,2), j = 1,... ,n defined for ((, 2} € (8D) x D, which
are smooth in ¢ and holomorphic in z, so that G{(, 2) =: 3 7_,{(;—2;)9;((, 2) #
0. Thus if we set

n—p—1
C,2) = e det[RE, ke, 9; ?] ABR ()
2 = g e et By g0 Bcas

for { € U,N8M and z € M then C{, 2} is w ell-defined for { € &M and 2 € M,
holomorphic in #z and {as it follows from ‘theorem 1} it reproduces holomorphic
functions on M, i.e., for f € O{M)NC{M)} we have

f(2) = f FOCE2), ze b,
(eaM

this is an analogue of Cauchy's integral formula on M.

Continuing to assume I to be strietly pseudoconvex and the g,'s as above,
let us set

iz, A =(1 —/\)l%'__jljz +z\ng,§§’3 for{ € 8D,2e D, Ac[0,]]
and
LGan=e{" 1)
L n—p—g—]

o mm— — Ao
det[A;,. .. R, 1, 02my, (G + da)p] A B" ((), (€U, NAM, 2 € M

then L((, 2, A) is well-defined for { € OM, £ € M. Also sct
Bo(¢, z) =: L{{, 7, A a=0;

then it is clear that B,{(,2) is defined for {,z € M, { # z. Using the above
kernels we define the following operators:

T,u(z) = / Q) A Lgor(C,20) + ] w(¢) A Byr(¢2),z € M
{C,A}E(@M)K[G,I] Ler
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for u € C(O_q)(ﬁ), g =L

Now, using thecrem 1, we can easily derive the following Leray-Koppelman
type formula:

Ifue C(lo,q)(ﬂ), g > 1, then u admits the following decompaosition: u =
B(Tyu) + Ty 1 (Bu) on M.

Also one can use theorem 1 to derive integral formulas {(of the type of
Koppelman-Leray-Norguet-Weil) for analytic polyhedra on Stein manifolds {in
a way analogous to the one in Henkin-Leiterer [4, chapter 4], in which they use
their construction on Stein manifolds instead of theorem 1}.

Finally, since our kernels are given locally by explicit formulas, their estima-
tion is immediate {by the corresponding results in domains of C*) and varicus
estimates for the J-equation on Stein manifold can be derived.
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