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AN INTEGRAL FORMULA ON SUBMANIFOLDS
OF DOMAINS OF Cn

Abstract
A Bochner-Martinelli-Koppelman type integral formula on submanifolds
of pseudoconvex domains in C' is derived ; the result gives, in particular,
integral formulas on Stein manifolds.

The method of integral representations in several complex variables has been
proved to be quite efficient in constructing holomorph_ic functions and more
general analytic objects (differential forms solving the á-equation, sections of
holomorphic vector bundles etc) ; see, for example, Henkin and Leiterer [4], [5],
Henkin and Polyakov [6] and Range [10] . This method revolves about Bochner-
Martinelli-Koppelman's integral formula : if D C C'' ís a bounded domain in
C' with smooth boundary óD then

(1.1)

	

.=f uAK,- f á.AKq +8(J UAKy-1)
D D

	

D

for every (0, q)-form u with C1 -coefficients on D, where K9 are appropriately
constructed kernels (see Ovrelid [9]) . The integral formula (1.1) can be modified
to produce a variety of other formulas with which various problems (such as
the á-equation and interpolation problems) can be solved ; thus (1 .1) is the first
main step in several constructions.
The purpose of this paper is to construct an analogue of (1.1) if D is replaced

by a _submanifold M of D. More precisely let D_be a bounded domain in C'
and D a pseudoconvex one with D C_D; let M be a (closed and comp_lex)
submanifold of D and let M =: D fl M. Assume that áM = (0D) n M_is
smooth. Then we will construct kernels K,«, z) defined for z) E M x M
with ( ~ z so that

(1 .2)

	

u(z) = f

	

U«) A Kq«, z)-
SEaM
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for u E Cho a) (M) and z EM.
In [3] we derived an integral formula like (1.2) in the case M is a complete

intersection (i .e ., if there exist functions hl,...,hp, holomorphic on D
_

, so that
M = {hl = . . . = hp = 0} and dhl n . . . n dhp :~ 0 on M); the construction in
the general case (Le ., when M is not necessarily a complete intersection) will
be based on the result of [3] .
A similar construction was carried out by Berndtsson [1] . As a matter of fact

our kernels are equivalent to those of Berndtsson but written in a different way .
We think however that our version of the construction as well as the different
proof of the integral formula are of further interest .
Here is an outline of the construction . Fir_st we cover M by sufficiently small

open sets {U,} (open in C-) so that each M n Uo is a complete intersection .
Then the result in [3] gives kernels K9 for which (1 .2) holds in M n U,. Such
kernels are not unique in the sense that there are certain choices that can be
made, in particular, K9 depends on Hefer decompositions of the holomorphic
functions which define M nUo (as the set of therr common zeros) . But using a
result of Berndtsson [1] we show that such Hefer decompositions can be chosen
appropriately so that

K9 =K9 onmnu,nu, ;

thus we can define a global kernel K9 (by setting K9 =: K9 on M n U,) . Then
we have to show that (1 .2) holds ; and this is done along the same lines as in
[3]] . Here is an outline of this proof in the case u is a holomorphic function on
M. In this case we have to show that

(1.3)

	

u(z) = ~

	

u«)Ko«, z),

	

z E M
CEa~u

Fix a z E M and pick a Uo with z E U, . But, as a computation shows,
dCK0 = 0 (for each T and ( 7~ z) and hence dC[u«)Kó«, z)] = 0 ; thus (1 .3) is
equivalent (via Stokes' theorem) to

u(?) =

	

u«)Ko«, z)f
CEaU,

which holds by the result of [3] (or [2] for that case) since Ko = Kó in Uv nM.
Our result gives, in particular, integral formulas for domains D CC X, if X

is a Stein manifold, via the theorem that Stein manifolds admit embedding in
some ON.

Integral formulas on Stein manifolds have been constructed previously, using
different techniques, by Henkin and Leiterer [4] . Related is also the work of
Berndtsson [1], Hortmann [7], Palm [9] and Stout [11] .
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2. Notation

Let h = (h1, . . . . hp) where the his are holomorphic functions defined in some
open set of Cn and suppose that {hij (~, z), j = 1, . . . , n} is a Hefer decomposi-
tion of hi , Le., h?j «, z) is holomorphic in both ( and z and

n

hi(S) - hi(z) = E hij(S,z)(Sj - zj),i = 1, . . .,p.
j-1

We associate to these data the following differential forms.
First

n-P-1

5D(2.1)

	

1
ah«, z) = cdet[hlj, . . . , hpj, yj, (C +

	

z)yj]

where y = (yl, . . . , yn) is some smooth function (we will be more specific about

y later) and c is normalizing constant : c = (-1) -(-2-1)

	

1

	

1

	

where m=:(2-ri ^~ ' Trc!
n - p. In the determinant of (2 .1), j runs from j = 1 up to j = n forming the

(gis + az)yl

n rows of it ; also the column of differential forms

in the determinant (n - p - 1)-times (as it is
determinants see [4] . Also define

(2 .2)

where

(a~ + "C7z)yn

n-P
1 8h1 h

ah
¡oh(C)12

det

	

á~P , d(j

Ioh(S)1 2 =

	

y:

	

1 a(h1 . . . . . , hP) (~) 2 .

1<jl <. ..<jp<n

	

a(Sjl, . . . , (jv)

indicated) ; for properties of such

of course Q'«) is defined for ( with Joh(« :yÉ 0. With this notation set

Kh (~, z) =
ah

«~ z) n ~3h(~) .

Let ce, be the part of ah which is of type (0, q) in z and (0, n -p- q - 1) in ~,
i .e.,

Also let Kq(~, z) = a9 «, z) nQh (~) .

- )

	

_~- _
ctq = c

C

n

	

q

-
1

	

det[hlj, . . . . hpj, yj, azyj,

	

aCyj

is repeated

Of course Kq depends on the choice of the Hefer decompositions {hij} of
hi, although we do not indícate this in the notation ; but it will be clear from
the context which choice we will be using in each case . Also we have been
vague about the domains in which the above functions and differential forms
are defined, because here, we simply introduced notation and we will be very
specific about this later.
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3. Construction of the kernels

_ First we describe the setting . Le_t D, D be domains in C" with D bound_ed,
D pseudoconvex and D C D . Let M be a closed complex su_bmanifold of D of
(complex) dimension m._SetM = DnM and aM = (OD)nM and assume that
aD is smooth and that M meets aD transversally so that aM is also smooth .

Let ,y = (-y,, . . ., -yn) : D x D - {~ = z} - C' be a smooth map satisfying
(3.1)

((j

	

zj) = 1 and

	

(- z' for 0 < j( - zi < 6 for some small 6 > 0
j=1

	

zl2
n

	

(j
7j

	

^y.,
I-

(an examPle of

	

ls g
.lven bY

	

-z' all (, z with (

	

z).7

	

hj =

	

Z

In this setting we will now con_struct the kernels. Let {Ua } be a set of small
convex open sets of en so that MC Ua Ua and moreover let

ha = (he,', . . . . ha) : D~ CP,p = : n - m,

be holomorphic maps so that MnU, = {z E Ua : ha (z) = 0} and_

	

17ha l ~ 0 on
M_ n Ua ; that such functions há exist follows from Cartan's Theorem A since
D is assumed to be pseudoconvex .

Furthermore there exist p x p matrices A,T = [(Av,)ik]1<i,k<p of functions
hi ~

	

í hi
(A,T)ik, holomorphic in Ua n UT, so that A, T

Le .,

(3 .2)

The existence of such matrices A.T follows from Cartan's Theorem B since
Ua n UT is convex.

Lemma 1 .
ah; ah,;

_
AuT

	

~eua nuTnM .
ahp ahp
ac; aS;

Proof:: Differentiating (3 .2) we obtain

ahá

a5j

ahk
(A,T)ik-+

k=1 a(j k=1

p
há = E(A,T)ikhk, i = 1, . . . , p.

k=1

hT a(AoT)ik .
k

a(j

on u, n uT ,



Since hk = 0 for C E UQ n UT n M, the formula of the lemma follows immedi-
ately.
The following lemma is proved by Berndtsson [1, p.414] ; i_ts Proof is based

on Cartan's Theorem B, using again the pseudoconvexity of D .

Lemma 2.

	

There exist functions h~«, z), i = 1, . . . . p,j = 1, . . . , n, holo-

morphic in (C, z) E (U, n M) x M so that

hij i

	

ihlj
(3.3)

1
h-j j

	

\h-pi
Furthermore h~«, z) Nave holomorphic extensions in C in a neighbourhood (in
en) of Ua n M, satisfying

Then

T

Proof. Defining
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n

forj=1, _, n,CEu,nu,nM,zEM

(3.4)

	

1: híj (C, z) (SJ - zj) = h°«) for z E M.
j=1

Lemma 3 . Let A E CPXP and B,C E CnxP so that

A - BT = CT (T denotes transpose) .

and, hence, ahh' = det(A,)

det[C, * * *] = det(A) det[B, * * *]
where * * * denote appropriate differential forms (the same on both sides of the
equation) so that the matrices [B, * * *] and [C, * * *] are n x n.

Proof: This is a straightforward computation based on the multilinearity of
the determinants (as functions of their columns) and the definition of the de-
terminants. (This generalizes the fact that the determinant of the product of
square matrices is equal to the product of the determinants of these matri-
ces) .

Lemma 4. If
aho

is the form (2.1) associated to the Hefer decompositions
{h9'j ande¿

hr
is defned similarly, then

(3 .5)

	

ah' = det(A,T ) . ah' for ( E Uo n UT n M, z E M

and similarly HT , we obtain from Lemma 2 that
AoT - (HT)T = (Ha) T for (E U, n U, n ú, z E M;

thus Lemma 3 applies and gives (3.5) .
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Lemma 5. We have

(3.6)

	

ph =

Proof.. By Lemma 1 we obtain

Therefore

1
det(

	

phr
f°r

	

E UQ n UT nM.

rah°

	

rahi= AaT

	

]r

~N9k 1<i,k<p

	

N.9k 1<i,k<p .

a(hi, . . .,hP) = det(AQT)

	

a(hi . . . .,hP)
, ~; p )

	

a«il , . . . , ~;p)

and

(3.7)

	

j7ho l 2 = 1 det(A,)1 2 jVhT12

(this also shows that det(A, T ) ,-~ 0 on UQ n UT n M) . Also setting

and similarly for BT we see that Lemma 1 gives

Hence, by Lemma 3,

8h1
aC, . . . acá

&h,' ah,
aC � . . . aCn

1T
. (BT)T = (Bu )T

(3 .8)

	

det

	

ah1 , . . . ,
ahP

C;

	

a(;
,d

	

= det(A,) - det

Now (3.6) follows from (2.2), (3.7) and (3.8) .

We are now ready to define the kernels :

n-p
ahi

	

ahT ~
,

a(,
. . . ,

	

, dja(j

K«, z) =: Kh' (~, z) = ah «, z) A
Qho

(~) for ( E UQ n M, z E M, ~ r,~ z .

By Lemmms 4 and 5, it follows that K(~, z) is well-defined for

	

E M, z E M,
z . Similarly we defineK9 = aq

	

,Qhv for q > 0 and K_1 = 0.
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4. The integral formula

With the kernels just constructed we will prove the following theorem .

Theorem 1 . If u E Cho e) (M) (0 < q < m) and z E M then

u(z) = ~

	

u«) n Kq(C, z)-
(EaM

First a lemma :

Lemma 6. We have
(,9 c + c9z)K(S, z) = 0.

Proof. : It sufices to show

(4.1)

	

(8S +áz ) K
ho (C, z) = 0 for c E Uo fl M, z E M, c =~ z .

Now observe that

(4.2)

	

«I - zj)aho (S, z) = det

Proof of Theorem 1 :
It suffices to show that

for W E (Có (M))(m,m- q) .

fCEM
-bu«) AK9(S, z) + áz

IEM
u«) AK9-1 (C, z)] .

(4.3)

	

J

	

U(Z) A W(z) = J

	

fEBM
u n Kq A W-

zEM

	

zEM ~

n,-r-1

hay

	

. . .

	

hay	7j

	

(ac + az)yi J 2<j<n

(in the above determinant j runs from j = 2 to j = n forming the 2nd upto
the nth row of it) .
We obtained (4.2) in the following way : (SI - z1) multiplied the first row of

the determinant which defines
aho

«, z) and then we added to that first row
the jth-row multiplied by (Si - zj) (j = 2, . . . , n) . Then (4.2) follows in view
of the first of the assumptions in (3.1) and (3.4) . Now (4.2) easily implies that
(áC + Óz)aho = 0 ; since, moreover, 5CQ«) = 0 (by [2, Corollary 1, p . 76]), we
obtain (4.1) which completes the proof of the lemma .

áuAKy Acp+ J

	

(az(]

	

uAK9-1))A9
zem CEM

	

zEM

	

(EM
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Let us point out the way in which the various forms in the right-hand side
of (4 .3) depend on the variables ~ and z: u_

	

«5u«)

	

u«), K9 = K,«, z), K9-1 =

Kq-1 «, z), cp = ;o(z) and 8u =

	

. By degree reasons, (4.3) is equivalent .to

(4 .4)

	

L

	

u(z) n w(z) =

	

u nK A cp-
EM ó(MxM)

(in obtaining (4.4) we used also the fact that

J lS~,z)

	

uAKAW=

	

uAKAW
E(óM)xM

	

8(M x M)

which holds since u has compact support in M) .
By Stokes' formula

(4.5) fa(mxm)uAKAW=Ld[UAKAW]+L uAKA<p

where CE = {((, z) E M x M : j( - zi = E} .
By Lemma 6 and degree reasons

L buAKA(p+~ (áz(J uAK))AW
MxM

	

M M

1~~

	

d[uAKAW] =

	

auAKAW-(-1)9J

	

uAKn77cp;
MxM-{~~-z~<E} Mxm

	

MxM

hence (4.4) will follow from (4.5) as soon as we establish the following

(4.6)

	

lim

	

u A K A ;o =

	

u(z) n W(z) .E-0 £,z)EQ

	

f.EM

But we may assume without loss of generality that supp(u) C Ua f or some u.
Then for E small enough

uAKAcw= uAKh'n ;o
CE

	

CE

and (4.6) follows from

(4.7)

	

lim

	

u A
Kho

A cp =

	

u(z) 1\ w(z)E-0 fcE

	

IzEM

But (4.7) is exactly what is proved in [3, p. 339 341] (in that part of the proof,
(3 .4) plays an important role) . This completes the proof of the theorem.



this is an analogue of Cauchy's integral formula on M .
Continuing to assume D to be strictly pseudoconvex and the gj's as above,

let us set

and
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As we mentioned in the introduction the integral formula that we proved
can be used to derive various other integral formulas . Here we discuss two
examples .
With notation as before assume furthermore that D is a strictly pseudoconvex

domain . Then, by a classical construction of Henkin and Ramirez (see [51),
there exist functions gj (~, z), j = 1, . . . , n defined for «, z) E (aD) x D, which
are smooth in ( and holomorphic in z, so that G(~, z) _ : ~~i(~

j -zj
)gj «, z)

0 . Thus if we set

n-p-1

C«, z) _ [C(~, z)1� -p
det[hit, . . . ; h'i, g~, DZgj 1 A

aho
(C)

for ( E Uv naM and z E Mthen C«, z) is w ell-defined for

	

E aM and z EM,
holomorphic in z and (as it follows'from theorem 1) it reproduces holomorphic
functions on M, Le, for f E O(M) fl C(M) we Nave

?7,(S,z,~)=(1- .1) i'- zI2+aG(S'z) for(EaD,zeD, .1E[0,11

L9(~,z,,\)=CCn-p-1/4

5. Applications

f(z) = f
CEaM

f(0C«, z),

9 n-P-9-1

det [hit, . . . , hpi, rl� a

	

;, (aS~+ \da

	

n ah~

	

E Uo n aM, z E M ;

then L.«, z, .\) is well-defined for -C E 8M, z E M. Also set

B,«, z) = : L«, z, \)1>,-o ;

zeM;

then it is clear that B,(~, z) is defined for ~, z E M, ( :,A z .

	

Using the above
kernels we define the following operators :

T9u(z) =
f

	

u(S) A Le-1(S, z,\) + f

	

u(S) n BQ-1(S,z),z E M
(C,a)E(aM)X[0,1]

	

CEM
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for u E C(o,q) (M), q > 1 .

Now, using theorem l, we can easily derive the following Leray-Koppelman
type formula :

If u E C(o~q) (M), q > 1, then u admits the following decomposition : u =
á(Tqu) + Tq+I (au) on M.

Also one can use theorem 1 to derive integral formulas (of the type of
Koppelman-Leray-Norguet-Weil) for ánalytic polyhedra on Stein manifolds (in
a way analogous to the one in Henkin-Leiterer [4, chapter 4], in which they use
their construction on Stein manifolds instead of theorem 1) .

Finally, since our kernels are given locally by explicit formulas, their estima-
tion is immediate_(by the corresponding results in domains of Cn ) and various
estimates for the 8-equation on Stein manifold can be derived .
Acknowledgements. I would like to thank Professors Lutz Bungart and

Lee Stout for discussions related to this paper .
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