Publicacions Matematiques, Vol 35 (1961}, 543-558.

A CLASSIFICATION OF BRAID TYPES FOR
PERIODIC ORBITS OF DIFFEOMORPHISMS OF
SURFACES OF GENUS ONE WITH
TOPOLOGICAL ENTROPY ZERO

J. GuascHl, J. LLIBRE AND R.8. MACKAY

Abstract

We classify the braid types that can occur for finite unions of periodic
arbits of diffeomorphisms of surfaces of genus one with zero topological
entrapy.

1. Introduction

In this paper we classify the braid types that can ocenr for finite unions of
pericdic orbits of diffeomorphisms of surfaces of genus one with zero topological
entropy. This extends the analysis from the case of genus zero [LIM1]. The case
of most interest to us is diffeomorphisms of the torus, isctopic to the identity.
This is relevant to the behaviour of three coupled oscillators, for example. A
good picture of their dynamics is developing [KMG], [LMZ2],[MZ], [H2], [F],
[BGKM)]. We hope that our results will help solve the intriguing problem of
understanding the boundary of zero topological entropy in the space of C!
diffeormorphisms of the torus.

We begin by establishing some notation and recalling the definition of braid
type. Let f: X — X be a diffeomorphism of an oriented manifold X. Write
h{f) for the topological entropy of f. We write 0 — p, 0 — r for orientation-
preserving and reversing, respectively. Given two diffeomorphisms f @ X —
X,g:Y — Y of oriented manifolds, we write f ~ g if there exists an 0 — p
conjugacy between them.

Let M be a surface, i.e. a compact connected oriented 2-manifold. Let
f: M — M be a diffeomorphism of M and let P be a finite union of periodic
orbits for f. Then we define fp . Mp — Mp by removing P from M and
recompactifying by replacing the points of P by circles on which fp is the
projective action of Df[B].
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Given two diffeomorphisms f, g : X — X of a surface X and finite unions
P, @ of periodic orbits for f, g respectively, we say the pairs {P, f} and {Q, ¢)
have the same braid {ype if there exists an o— p homeomorphism &k : Xp — Xg
such that kfpk™! is isotopic to gg. The equivalence class of {P, f}, denoted
[P, £, is called its braid type.

To specify the braid type of 2 pair {P, f} we will use Nielsen-Thurston the-
ory to select a simplest representative of the equivalence class. We refer the
reader to [LM1] for the necessary information about Nielsen-Thurston theory
of classification of surface homeomorphisms up to isotopy, and the definitions
of the classes of diffeomorphisms which we call disc trees, reversing disc trees
and reversing annulus trees.

The plan of the paper is as follows. In Section 2, we classify finite order
homeomorphisms of the torus, which is an important preliminary result. Then
in Section 3, we use Nielsen-Thurston theory to isotope fp to a standard form,
and analyse the possibilities. Qur main result is Theorem 4, but because i is
rather long o state and reqguires notions introduced in Section 2, we leave its
statement until Section 3. In Section 4 we rederive results of [H1], [H2], and
[LMVI2] as corollaries of those of Section 3.

We thank the referee for a careful reading. The first two authors were par-
tially supported by a SERC studentship and a DGICYT grant respectively.

2. Classification of finite order homeomorphisms of the torus

In this section, we give a classification of finite order homeomorphisms of the
torus up o o — p conjugacy. Let T}, z € R?, be translation by z on R?, ie.
T.(y) =y-+z,veR? Let R, w € R/2r7Z be rotation about 0 on R? by angle
w. Let r be the reflection

on R? Define I'g to be the group generated by Tyi0p and Tio1), [a that
generated by Ti; 0y and T(%, 3@) If f: R® > W2 commutes with the action
of a group T on R?, we define f/T : B2/T — R?/T by identifying points of
the same orbit under . For ¢ € N, let ?q be the quotient of 7 under the
equivalence relation generated by the relations p~p+¢, 2~ —p.

Theorem 1. If f: T2 — T? is o homeomorphism of finite order, then il is
o — p conjugate to one of the following:
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(a) Tip,0yq/T for somegeN, pe 2q, with p, ¢ having no commen foctor
{order q).

(b) R./To,w = *+n/2, 7, or Ru/Ta,w = xx/3, £2r/3 (orders 4,2,6,3
respectively) (see Figure 1).

(¢) o Tpoyse/Ta, for some g € N, p € iq, with p, ¢ having no common
factor (order g if g is even, order 2q if ¢ is odd).

(d} ro Rxp2/Ta (order 2) (see Figure 2).

Ne twa of the above are 0 — p conjugate.

The proof of Theorem 1 reduces to the classification of isometries of tori, a
well-studied problem {e.g. see [NS]). However, we have not found a compact
treatment in the literature, nor one which considers the question of which
isometries are equivalent up to o — p conjugacy. So we give a derivation in the
Appendix.

For case (b) of Theorem 1, the numbers of pericdic orbits of smaller period
than the order are given by the following theorem.

Theorem 2 ([E]). The rotaiion of order 2 has { fized points. The rotations
of order 3 have 8 fized points. The rotations of order 4 have 2 fized points and
one orbit of period 2. The rotations of order 6 have one fized point, one orbit
of period 2, and one orbit of period 3. (See Figure 1).

3. Results

We firstly recall some definitions and theorems that we will need. We then
go on to state and prove our results.

Let f : M — M be a homeomorphism of a surface of genus one, then
its completion g : T2 — T2, is defined by considering M to be T? minus 2
disjoint union of equal size dises D;, and extending glap, radially into D;[E].
If A{f) = 0, then h{g} = 0. We say a simple closed curve on M is rotational if
it is homotopically non-trivial on T? after filling in the holes.

We recall the following two results.

Theorem A ([LM1)). Let f: X — X be a homeomorphism of a surface of
genus zero. If f is 0 — p, it has either a fired point or an invariant boundory
component. If f is o — r it has either a fized point or an invarient boundary
component, or an orbit of pertod 2 or a boundary component of period 2.

So in both the o—p and o —r cases, if P is a finite union of periodic orbits for
f, and fp does not have a boundary component of period 1 {0 - p} or period 1
or 2 {0—r), we can always append a fixed point or period 2 orbit to 7 in order
to achieve this.
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Theorem B ([LM1]). Let f: X -» X be a diffeornorphism of o surface of
genus zero, with h{f} =0, and let P be a finite union of periodic orbits.

(1)

(2)

If P contains o fized point or f has an invarient boundary component,

then :

{a) If f is 0 — p, [P, f] has a representative which is a disc tree.

(b} If f iso— v [P, f] has o representative which is a reversing disc
tree.

If f is o — v, and P contains no fized point and [ has ne invariont

boundery component, but either P has a point of period 2 or f has @

boundary component of period 2, then [P, f] has a representative which

is a reversing annulus tree.

Let f: M — M be a diffeomorphism of a surface of genus one with h(f) =0,
and let P be a finite union of periodic orbits for f. Let F be a Thurston
canonical form for fp. Then from Thurston's classification of surface homeo-
morphisms, F is either reducible, or of finite order. First we consider the case
that F has a rotational reducing curve.

Theorem 3. Suppose §f : M — M is a diffemorphism of o surfece of genus
one with M{f) =0, and P is e finste union of periodic orbils for f. Let F be a
Thurston canonical form for fp, such that F has o rotationel reducing curve T,
of pericd p. Remove the tubular neighbourhood of I and its images, to obiain
e disjoint union of punctured annuli A;. Then

(i)

(ii)

If all A; have period p, then [P, f] has a representative which is p annuli,
joined by generalised twists, permuied ke o rotation, end of f iso—p
or p 15 cven there erists a disc tree d 1 X' — X' such that FP|4, ~d or
if f is 0 — 1 and p 15 odd there exists o reversing disc tree d' : X' — X'
such that FP|A; ~ d'.

Suppose some A; has period g # p (so g = p/2), then p = 2, and there
are two such annuli Ay, As. If f is 0o — p, [P, f] has a representative
which is two annuli, joined by generalised twists, and there exist dise
trees D X' — X' i =1,2 such that F|A; ~ D;. If fiso—-r, [P, f]
has a representative which is twe ennuli, joined by generalised funsts,
and for each of A,, Az there ezist reversing disc trees DY : X' — X'
such that FlA; ~ D' or reversing annulus trees 5, : X — X, such that
Fl4; ~ 8, according as F|A; has an inveriont boundary component or
fized point, or not,

Proof: Suppose ' has period p. Define A = {FT : 0 € k¥ < p}. Then
F permutes the elements of A. If we remove the tubular neighbourhood of T’
and its images, we obtain a disjoint union of annuli A; with holes, which are
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permuted. Then the A; either have period p, or if p is even, some of the 4;
may have period p/2 {i.e. the two boundaries of A; in A arc interchanged by
FP/2) This gives two cases:

(1) If the A; have period p, F permutes the A, and there are two subcases:
(a) If fiso—p,orif fiso—r and p is even, then F?|4; is 0 — p,
s0 by Theorem B, there exists a disc tree d : X’ — X’ such that
FpiA" ~d.
(b) If f is o — r and p is odd, then FP|4; is 6 — r, so by Theorem B,
there exists a reversing disc tree d’ : X’ — X’ such that F?|4, = d".
(i) Suppose p is even, and there exists some A; {without loss of generality
i = 0) such that A; has period p/2. Put g = p/2. Then we claim that
g=1

To prove the claim, suppose Ag has period g > 1. Write Ag = F*{4g}, 1 <
k < g. Consider the situation on the torus; then each Ay has two boundary
components Fg), I‘f) € A, say, for 0 € k < q. Then for j £ &, I‘g’) # [‘g:),
i{=1,2, e no two distinct A have a boundary component in common. For
suppose 1"_(:)' = I‘g) for some 4,1 € {1,2}, 7 # k {see Figurc 3(a}). Then since
F? interchanges I‘Ll) and I'f} for each k, then F‘-‘(I‘;”) = I‘E-"H) = F"(FS)} =
[‘SH); hence there are only two distinct elements of A, so ¢ = 1, a contradiction.

Since the Ay have no boundary components in common, there exist precisely
g tubular regions By, ..., By, such that each B; lies between two Ag, ie. each
B, has two distinct elements of A as its {rotational) boundary components,

Consider one such element of {B;}1_;, B, say. Then without loss of gener-
ality, it lies between Ap and Ay, for some k, and has boundary components
Fél), I‘,(cl} € A (see Figure 3(b)). B is invariant under F*?. Since T has period
2¢, B must have period either q or 2g. Suppose it has period g, then F? inter-
changes its boundary components, so I‘L” =F Q(I‘(()U). But F9 interchanges the
boundary components of 4p so F L1'(F((31}} = sz)’ therefore Ay and Ay have a
boundary component in common, which we have shown does not occur. Hence
B has period 2g¢.

However FR(Ag) = Ay, for k < g, and considering F*¥¥9(A4g) = Ay, if nec-
essary, then F*(T{) = 1Y and F*(T{®) = I'?). But the clements of A are
permuted like a rotation or rotation with reflection by F, since f is a diffeo-
morphism, hence F* (FS)) = 1"(()1), therefore F*(B) = B, a contradiction, as B
has period 2¢. This proves the claim.

So g = 1, and T has period 2, with A = {T, F(T'}}. If we remove the tubular
neighbourhoods of I and F(I'), we obtain two disjoint annuli Ag and 4,. Then
there are two subcases to consider:
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{a) If fis 0—p, then F|A;{i = 0,1} is 0 — p, so by Theorem B, [P, f] has
a representative which is two annuli joined by generalised twists, such
that F|A; is a disc tree.

{b) If fisT — o, then F|4;(i = 0,1} is 0 — r, so by Theorem B, [P, f] has
a representative which is two annuli joined by generalised twists, such
that F|A; is a reversing disc tree or a reversing annulus tree, according
as f has an invariant boundary component or P contains a fixed point
in A;, or not.

This completes the proof of Theorem 3. B

Next we consider the case where there is no rotational reducing curve. Either
F is of finite order, or has a non-rotational reducing curve C, in which case we
may remove the decomposition components {of genus zero) of C and its images
from M. So in both cases, we can find a unique decomposition component 5 of
genus one, such that F|S is of finite order. Let G : T? — T2 be the completion
of F|§. Then G is of finite order, so is © — p conjugate to one of the cases of
Theorem 1.

This leads to the following theoremn, which is our main result:

Theorem 4. Suppose F : M — M 1is a Thurston canonical form for @
homeomorphism of a surfece of genus one, with unique decomposition compo-
nent S of genus one. Let G: T2 — T2 be the completion of F|S. Then one of
the following is true:

{a) G~ T(,.0//To, and all boundary components of S have period g. Fur-
ther, for each orbit O1,...,8, of boundary components of S not in OM,
there exists a disc tree d: X' — X' such that the component X; of M\S
inside §; s homeomorphic to X', and F9\|X; ~ d.

(b} G ~ R,/Tn,w = txn/2, 7 {order k = 4,2), or G ~ R,/Ta,w =
+u /3, X2n/3 (order k =6,3). If k = 2, then all boundary components
of § have period 1 or 2, with al mast { of peried 1. If k = 3, then ail
boundary components of S have period I or 3, with at most 3 of period
1. If k = 4, then all boundary components of S have period 1, 2 or 4,
with at most 2 of period 1, and 1 orbit of period 2. If k = 6, then all
boundary components of S have period 1, 2, 3 or 6 with at most 1 of
period 1, I orbit of period 2, and 1 orbit of period 8. In case, for each
orbit of boundary components of period p, 61,...,0p, of S, not in 8M,
there exists o dise tree d: X' — X' such that the component X; of M\S
inside J; is homeomaorphic 10 X', and FP|X; ~d.

(€) (i) G = (roTi0y6)/To. If q is even, all boundary components have
pertod . If g is odd, all boundary components have pericd g or 2q.

(i) G = (roR.;2)/Tc. All boundery components of S have period either
1ork



BRAID TYPES WITH ZERQ ENTROPY 549

In both parts of case (¢}, for each orbit of boundary components of
period p, H1,...,08y, of S not in 8M, there exists a disc treed: X' — X'
such that the component X; of M\S inside §; is homeomorphic to X' and
FP|X; = d if p is even, or there ezists a reversing disc treed’ : X' — X'
such that the component X! of M\S inside 8; is homeomorphic to X'
and FP|X! ~d' if p is odd.

Proof: We apply Theorem 1 to the completion G : T2 — T2 of FIS.

Case (a) G ~ T(;,05/4/ D, so 2l points of T2 have period g under G. Hence
all boundary components of S have period g, and if we consider the orbits
8,...,8, of those not in M, the corresponding decomposition components
X, of M\S inside §; are of genus zero, and we may apply Theorem B, so there
exists a disc tree d : X' — X' such that X; is homeomorphic to X', and
F qu i o= d

Case (b) G ~ R, /Tp,w = ¥7/2, 7 : k = 4,2, 00 G ~ R, /Ta,w =
/3, +2x/3:k =86,3.

The statements about the orbits of boundary components are an immediate
consequence of applying Theorem 2 to the completion G : T2 > T2 Asincase
(a), since G is 0 — p, we obtain disc trees in each orbif of boundary components
of S not in OM. ’

Case (C) (i) G~ (‘f’ o T(p’g)/q)/rg,

From the proof of Theorem 1, the boundary components of S have period g
if ¢ is even, or they have period g or 2¢ if ¢ is odd.

Case (¢) (ii) G = (r o Ry/2)/To.

Again from the proof of Theorem 1, the boundary components of S have
period 1 or 2.

In both parts of case {c), each component of T?\$ inside a boundary com-
ponent not in &M of even period r contains & disc tree since F7 iso—p, whilst
those of odd period r’ contain a reversing disc tree since F7 is o—r, by Theorem
B. u
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4. Two Corollaries

As a corollary of the results of Section 3 we obtain the genus one case of
{H1]:

Theorem 5. Lei f: M — M be an o — r diffeornorphism of a surface M of
genus one. If f hos periodic orbits, or orbits of boundary components, with 3
distinct odd periods, then R{(f) > 0.

To derive this from the above, we require the genus zcro result of [BF], [H1],
also derived by [LM1]:

Theorem C. Let f: X — X be an 6 — r diffeomorphism of a surface of
genus zero. If f has pertodic orbits or orbits of boundary components with two
distinet odd periods, then h{f) > 0.

Proof of Theorem §: Let f: M — M be an 0— r diffeomorphism of a surface
M of genus one. Let P be the union of three orbits of distinct odd period. Let
F be a Thurston canonical form for fp. Suppose 2(f) = 0. Then there are two
cases:

Case {&): Suppose there is a rotational reducing curve, [, say, with period
p- Remove its annular neighbourhood and its images, then we obtain a disjoint
union of annuli 4;, From Theorem 3, there are two possibilities. In the first
case, the A; have period p, so the A; are permuted by F, and thus p divides the
order of each pericdic orbit, hence p is odd. So if we consider any A;, FP|A; is
o—r, since f is 0~ r. A; must contain boundary components corresponding
to the three orbits of distinet odd period. So by Theorem C, &{(f) > 0, a
contradiction.

The other possibility is when p = 2, and there are two invariant annuli
Ag, A1. Then one of 4p, A, must contain boundary components corresponding
to at least two of the three orbits, and since F|A; (i = Q,1} is 0 — », Theorem
C implies that A{f) > 0, a contradiction.

Case {b}: Suppose there is no rotational reducing curve. Then there exists a
unique decomposition component § of genus one. Let & : T2 — T? be the com-
pletion of FIS. Then we are in Case (¢} of Theorem 4. If G 2 {ro T, 6y/,} /Ty
all boundary components of § have period g or 2¢. If G = (ro R, ;2)/T, then
all boundary components of S have period 1 or 2. In particular, all boundary
components of § of odd period have the same period p, and the remaining
boundary components corresponding to 7 must lic within decomposition com-
ponents X, of genus zero whose outer boundaries have period p. Since FP|X;
is o—r, and af least one of the X; contains boundary components of odd order,
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not p, corresponding to the orbits of P, then Theorem € implics that A(f) > 0,
a contradiction. W

As a second corollary we will derive a result of [LM2|, [H2] for diffeornor-
phisms of the torus isotopic to the identity. We refer the reader to [LM2] for
definitions of lifts, rotation vectors, etc. We recall that for a continuous map
f:T? = T2 with Lift f: ®2 — ®R2, if I is the group of integer translations
Ym B T4+ m, z € B2, m & 7% and if f is homotopic to the identity, then

{x) Jy=~fforalvyel.

Theorem 6. Let f: T2 — T? be ¢ homeomorphism of the torus isotopic to
the identity, and suppose h{f} = 0. Then all rotation vectors associated with
the periodic orbits of [ are collinear.

Proof: Suppose that f has a finite union of periodic orbits, with associated
distinct rotation vectors p/¢i, ¢ = 1,...,N. Then from [LMZ2], since [ is
homotopic to the identity, for each i € {1,..., N} there exists 2 periodic orbit
&, of primitive rotation type (p;, ¢:). Let P = U;’il &J:, and let F be a Thurston
canonical form for fp.

Suppose F is of finite order, then using (%) and Theorem 1, we see that
F ~Tp0/q/To, for some g €N, p € Z,, so all points of T? are periodic with
pericd ¢ and rotation vector {p, 0}/¢.

The remaining possibility is that F is reducible {with finite order components,
though we shall not need this). There are no non-rotational reducing curves
for F. For suppose I' were such a curve, then it muyst surround at least two
holes, but they must come from the same orbit, so the rotation type of that
orbit cannot be primitive, which is a contradiction.

Suppose there is a rotational reducing curve I for F. Let G : T2 = T? be
the completion of F, and let G : B? — ®? be a lift of G. Let m € Z%\{0} be
the homotopy type of T, and ¢ be its period. Then ' lifts to an infinite set
of curves [, each invariant under T,,, which partition the plane into infinite
strips S each within a bounded distance of some straight line of direction m.
Furthermore, there exists p € Z? such that F9T,I' = I', and since F is invertible
the same holds for the strips §. Hence the rotation set of F, and in particular
the rotation vectors of the chosen periodic orbits, are contained in the straight
line {p/g+tm : t € R}.

This completes the proof. B

Appendix: Proof of Theorem 1

To prove Theorem 1, we reguire the following:
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Theorem 7 [E]. If f is a finite order homeomorphism of o compact ori-
entable manifold M, then there exists a Riemannian mefric R of constant cur-
vature on M such that f is o diffeomorphism preserving R.

Let £ be the Euclidean metric on ™, and let E™ be the group of isometries of
(R™,&). It consists of all transformations y — Ay + 7, with z € R, A € O(n).
In the case n = 2, E? is generated by Ty, R, and r, where z € R?, w € R/2rZ.

Theorem & (Killing, Hopf, see [W]). Let (M™,R) be a Riemannian mani-
fold of dimension n > 2 with metric ®. Then (M™,R) is complete, connected
and of constant curvature K = 0 if and only if it is isomelric to a gquotient
(R"™, £Y/T, where [ is a subgroup of E™ which acts freely and properly discon-
tinuously.

Theorem 9 ([S]). Suppose R, € SO(2), R, # Id, commuies with T on
®?, where T is o subgroup of E? with two generators, and which acts freely
and properly discontinuously. Then w = ka /3, £7/2, £27/3, or =, and T is
conjugate in the group generated by SO(2) end isoiropic scele changes to I'g if
w==xa/2 orm, orTa if w=%n/3 or +27/3.

Proof of Theorem 1: Suppose f is a finite order homeomorphism of T2, The-
orem 7 implies that there exists a Riernannian metric R of constant curvature
on T2, such that f is a diffeomorphism and preserves R. By the Gauss-Bonnet
formula {c.g. [DC]}, the curvature is zero. By Theorem 8, {T?, R} is isomet-
ric to (R2,£)/T, for some T < E?. Since T? is compact, I’ must be a group
generated by two translations Ty, Ty,, with g1, y2 linearly independent, and
without loss of generality, y1 is along the r-axis (by rotating coordinates). To
find the finite order isometries f : (T%, R} «, it suffices to find all the isometries
f:(R?, &) o, such that fI =Tf, and f™ € T, for some m. If f is 0 — 7, then
ro fis 0 — p and satisfies the same conditions. So let us take f tobe o— p.

If f has no fixed point, then it is a translation Ty, z € B2. If f™ € T'then z is
a rational combination of 1; and yp. Hence f ~ T,/ /Tg, for some p € 7%, g€

N. However, many of these are o — p conjugate. Let 2 = ﬁ%l, which we
assume is in lowest terms. Suppose m and ps have no common factors. Consider

the orbit of T,/,/T'n under SL(2,7). Then for A = [‘; Z] € SL(2,7),

[a b] [pl/q] _ {ap1 + bpa, cpy + dp2)

¢ dllpjg| ™ g

and 2BiEP2 gng e2139P2 have no common factors. For suppose apy -+ bpy —
kni, epy + dpz = kng, for some integers ny, ng, k # £1. Then
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)= [l
P2 ng

but we assumed that p; and p; were coprime, a contradiction. Now p; and ps
are coprime if and only if there exist integers 4, b such that ap; +bp; = 1. Let
¢= —pe and d = p, then

£ 0] ez fesman

Conversely given coprime integers a, ¢ we can find integers b, d satisfying ad —
be =1, and

2 20 [g ma= [z 2esson

Suppose p; and py are not coprime but have highest common factor
hef (p1,p2) = k. Then E%l = ki_".‘;ﬂl, where m and n are coprime. Hence the
orbit of Ty /Tn under SL(2,7) is all Ty /To, with ¢’ = ¢ and hef (pf, po) =
hef (p1, p2), where ¢’ = (p},ph).

Thus every element in this orbit is a translation by %‘(a,b), with k& = hef
(p1,p2), and hef {a,b) = 1. Thus we may choose a representative Ty, 0),,/T0,
with p € Z,, and p, ¢ having no common factors.

If f has a fixed point, we may assume by making a translation if necessary
that O is fixed. So f(z) = Az, for some A € SO(2). The case of f = Id is
included in part (a). Otherwise, by Theorem 9, [ is conjugate to I'g or a,
and w = +n/2, m in the case I'n, +£27/3, £7/3 in the case [a.

Thus when f is 6 — p, it is ¢ — p conjugate to one of the cases given in parts
(a) and (b). It can be seen that no two of these cases arc 0 — p conjugate.

If f is o — 7, then it is 0 — p conjugate to the composition of r with one of
the cases in parts (&) and {b). However, some of these are o — p conjugate to
each other, so they are not distinct cases. There are two classes to consider.

(1) f ~ g = (roT(p0)/¢}/To {Case (c}). On T2, there are two curves invariant
under g; they are y = 0 and y = % Under g, the z-coordinate has period g,
and the y-coordinate has period 1ify =0 or %, and period 2 otherwise. Seif ¢
is even all points in T2 have period ¢. If g is odd, all points in T2 have period ¢
or 2g, according as they lie on an invariant curve or not. The invariant curves
have rotation number p/¢ € T}, where T? stands for the quotient of R under
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the equivalence relation generated by x ~ z+ 1, x ~ —z. The rotation number
is an invariant of o — p conjugacy. Hence the cases in part (¢) are distinct,

(i f=g=(oR)ow=mEr/2,or f g =(roR,}/Ta,w=
+7/3, £2x/3. Without loss of generality {(by conjugation by R_.), we take w
to be positive,

If w = 7, then on R? this corresponds to perpendicular reflection in £ = 0,
so by a change of coordinates, f ~ r, which is already included in Case {c}.

If w = m/2 {Case (d)), then on R? this corresponds to perpendicular reflection
in the curve z + v = 0. It is the only invariant curve, and is composed of fixed
points.

If w = n/3, then on R? this corresponds to perpendicular reflection in x +
v3y = 8. On T2, there is one curve fixed pointwise by g, and ¢ is a reflection
in it.

If w = 2m/3, then on R? this corresponds to perpendicular reflection in
z+ %y =0 OnT% z+ %y = 0 is the only curve fixed pointwise by g, and
g is a reflection in it.

Let hy = roR,3/Tn, ha = reRyn3/Ta. Then hy and hy are o—p conjugate.
To see this, we need to find an o — p homeomorphism k : R2/I'g ~» RB?/Ta such
that khy = hok, or equivalently an o — p homeomorphism K : B — R? such
that KH, = Ho K, where by = Hi/['p and he = H3/Ta, and also such that
for each yg € T'p there exists a ya € Fa such that Kyq = va K and vice versa.
This is satisfied by

i
L3
K:

{with respect to the basis vectors of I'g), which is a shear taking the generators
of g to Ta. Hence hy and hp are o—p conjugate. Similarly the case ro R, 7a/Ta
is 0 — p conjugate to h;, by taking

1 %

K= :
0 _‘/_5
2

The cases hy and r are distinct because the case r has two invariant curves,
whilst the case h; has only invariant curve. B
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Figures
K [} .
{a) cT o . e Fixed point
| I
| I
| 1
- __J
"
B
(b} : ) ¢ Period 2
I
TN

@ . |
\ % Period 3

Figure 1: Finite order o — p diffeomorphisms of the
torus with a fixed point:

(a) Rx/T'o

(b) B3 /To
(¢} Rz /T'a
(d) BRg/Ta
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Figure 2. The o — r diffeomorphism r o Ry /T,

Fj(iﬂ} 1—}(") _ p(kli 1—;((“-1)

{b)

Figure 3: Proof of Theorem 6: (a) no two distinct
A have a boundary component in com-
mon, {b) a tubular region B.
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