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Abstract

THE FORMAL COMPLETION OF THE
NÉRON MODEL OF Jo (p)

ENRIC NART*

For any prime number P > 3 we compute the formal completion of the
Néron model of Jo(p) in terms ofthe action of the Hecke algebra on the Z-
module of all cusp forms (of weight 2 with respect to ro(p» with integral
Fourier developement at infinity .

Let p be a prime number greater than three . Let -7, a be the Néron model
of the jacobian Jo(p)IQ of the modular curve Xo(p),Q . In a joint work with
Deninger we proved that the formal completion of ,7 along the zero section is
determined by the relative L-series of Jo (p) with respect to T ® Q, where T is
the Hecke algebra [2] . In fact, we explained how to construct a formal group
law for ,7^ from a formal Dirichlet series made up with the integral matrices
reflecting the action of the Hecke operators on the Lie algebra of ,7 .

In this note we show that such a formal group law can also be constructed
with the integral matrices reflecting the action ofT on the 7-module S2 (ro (P), 7)
of all cusp forms (of weight 2, with respect to Fo(p)) with integral Fourier de-
velopement at infinity. We obtain in this way an effective result since, with the
aid of a computer, it is possible to find explicit 7L-basis of S2 (Fo (p), 7L) and to
compute the action of the Hecke algebra .
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Let g be the dimension of Jo (p) . Our aim is to prove the following theorem :
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Theorem . Let U, E M, (Z) and TI E M_,(Z), for all primes l :~ p, be the
matrices of the Atkin-Lehner operator and the Hecke operators, with respect to
any Z-basis of S2(Fo(P), Z) . Since these matrices commute, the formal Dirichlet
series :

n` = (I9 - Up . p-3)-1 . fl(Iy _TI . p-S + Iy .P1-2s)-1
a

is well-defined and An E M9 (7L) for all n. Let L(X,Y) be the g-dimensional
formal group law with logarithm:

00
1

f(x) = ~ nAnXn E q[X1~ . . .,X9]9,
n=1

where Xn is the notation for (Xi , . . . , X9)t . Then, L(X,Y) is defined over
and it is isomorphic to the formal completion of ,7 along the zero section.

Honda [4] proved an analogous result for Shimura curves, but a finite (fairly
big) set of primes had to be left aside . In fact, our proof follows the same
pattern, but we have at our disposal deep results of Deligne-Rapoport [1],
Deligne [5, thm . A.1] (which was implicitely used in [2]) and Mazur [5, II,
sections 3 and 6], which allow us to deal with the bad primes .

After [2], in order to prove the theorem it is sufficient to show that Lie (,7)
and S2 (Fo (p), 7L) are isomorphic as T-modules . To this aim is devoted the rest
of the paper . The proof consists on adding some details (checking of some
compatibilities, essentially) to certain results of Mazur .

For any integer N >_ 5, let Mo(N) be the curve over Z representing the fine
moduli stack classifying generalized elliptic curves over 7L[1/N] with a cyclic
subgroup of orderN. Let Xo(N) iMo(N) be its minimal regular resolution .
These two curves become isomorphic over Z[1/N] .
The Atkin involution w=wnr extends to an involution of Mo(N)

[1, IV, Prop. 3.19] and by minimality, to an involution of Xo(N) commuting
with i . Hence, w acts on H1 (Xo(N), O) and on H1(Mo(N), O) in a compatible
way . That is, we have a commutative diagram :

H1 (Xo(N),O) ẁ' H1(Xo(N),(9)

H1 (Afo(N), 0)

	

. .

	

' H1(Mo(N), 0) .

Now, let l bE -, prime different from p and consider the finite morphism [5,
II, section 6] :

c . -Yo (pl) - Mo(p), (E, (Hc, Hr)) -(E, Hr).
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Here (HI, H.) denotes a cyclic subgroup of E of order pl (canonically) decom-
posed as a product of its p-primary and l-primary parts . By minimality c raises
to a finite morphism between the regular resolutions fitting into a commutative
diagram :

Xo(pl)

	

' Xo(P)

Mo(P1)

	

' MO(P)

Let us denote X = Xo(p), X' = Xo(pl), M = MO(p), M' = Mo(pl) . The
morphism c : X'

	

> X induces covariant and contravariant homomorphisms :

Pic °x,/ a c PicX/a .

At the level of invertible sheafs, c* is the usual homomorphism and c* is the
norm-homomorphism defined by Grothendieck [3, 6 .5] . Via the canonical iden-
tification of H 1 (X, O) with the tangent space of Pic o

/a at the zero-section, c*
and c* induce homomorphisms :

H' (X', O) ; Hl (X, O) .

c* is the natural homomorphism induced by Ox -> c*Ox, and the homomor-
phism Hl (X, c*OX,) - HI(X', OX, ) given by the Leray spectral sequence ;
whereas c* is the trace-homomorphism defined in terms of Cech cocycles by :

c. (f.,9) =Trx, 1x(f.IR),

for any afine open covering : X' = U,,c-'(Ua), for U. an affine open covering of
X. This trace is well-defined since F(c-'U,,, Ox , ) is a finite F(Ua , Ox)-module.

In fact, the identification of HI(X, 0) with the tangent space of Pico	can
be realized through the exact sequence :

p , H'(X, O) ep. Hl (X ® 7L [e], O*) - H 1 (X , O*),

where 7L [e] is the ring of dual numbers and exp(f) = 1 + fe .

	

The above
description of the action of c* and c* can be easily deduced from this sequence,
working with Cech cocycles and having in mind that 1 + Trx-1x (f) e is the
norm of 1 + fe .
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By Grothendieck duality we obtain homomorphisms :

H°(X',S2x,)

	

H°(X,Qx),

where Qx is the dualizing sheaf, that is, the sheaf of regular differentials, which
is defined as the only non-vanishing homology group (in degree -1) of the
complex R7r'0sp ec2, where n is the structural morphism of X .
We need to check the compatibility of these homomorphisms c* , c* with the

analogous homomorphisms defined by Mazur at the level of the curves Mo (N)
[5, page 88], which we denote by (c*)M, (c*)m . More precisely, we need the
following diagrams to commute :

Hl (X', 0)

	

'

	

-

	

H1(X, 0)

H'(M',0) é
(cw)M

	

Hl(M,0)

H° (X', 92)

	

'

	

y

	

Ho(X, 9)

(4)

	

i.

	

i.

H°(M', Q)

	

(C *)M

'

	

HO
(M, Q),

where i * is defined from i* by duality. Now, diagram (3) commutes since it is ob-
tained from (2) by taking everywhere the natural homomorphisms induced by i
and c. Since the 7L-modules involved are free
[5, 11, Lemma 3.3 and (3.2)] it is sufiicient to check the commutativity of di-
agram (4) after tensoring with Q. Then, the commutativity amounts to the
fact that the natural homomorphism : H° (XQ, 9 1 ) -c

	

H°(XQ ) 91) is dual to
the trace-homomorphism, Trx,Ix : Hl (X, ()) ,Hl (XQ, C)), under Serre
duality, and this is a consequence of the classical trace-formula [7, page 32] .
We are ready to analize the action of the Hecke algebra . The Hecke algebra

T is the subalgebra of EndQ(Jo(p)) generated by all the operators TI and the
Atkin involution w . The Hecke operator Ti is, by definition, the endomorphism
of Jo(p) induced by correspondence on Xo(p),Q determined by the morphsm :

X~

	

®-~ XQ

(CW1)Q1

XQ
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To be more precise, Ti is the composition of the two homomorphisms :

Ti : Jo (P)
(Cw1).j Jo(pl)

(CQ) .
Jo (P),

induced by cQ and (cwt)Q on PicX0(N)IQ = JO(N), for N = p, pl . By the
universal property of the Néron model, Ti operates on ,7 and on its connected
component as :

Ti
:'70 (cw()i, (J')° (C.

)
iz

J°,

where (,7')o is the connected component of the Néron model of Jo(pl) . By a
theorem of Raynaud [6, 8 .1 .4], the connected component of the Néron model
of Jo (N) represents the functor PicXo(N)Ia . Hence the homomorphisms :

P¡ex,/a
(cc

)R Picx/z'

induced by the finite morphisms X' ce
w` X, coincide with (cwj)*r, (c*)n, since

they induce the same homomorphism on the generic fiber . Thus, T, acts on
Hl (X, C)) and (by duality) on H'(X, 9) . We have a commutat¡ve diagram :

TI : Hl (X, C))

	

(`, Hl
(X

,
, 0)
*,

	

Hl(X, 0)

Hl(M,0`)

	

(cwi)iy,
Hl (M', 0)

	

1, H'(M, 0) .

The left-hand square is diagram (3) for cwl and the right-hand square is the
dual of diagram (4) . Mazur shows that i* : Hl (M,0) - Hl(X, 0) is an
isomorphism [5, 11, Prop . 3 .4] ; hence, through this isomorphism we obtain (by
(1) and (5)) the same structure of T-module onHl (M, C)) as the one taken by
definition by Mazur . That is, we have isomorphisms as T-modules :

Hl (X, C)) -Hl (M, 0),

	

Ho(X, 9) - Ho(M, S2) .

Therefore we have T-isomorphisms :

Lie(JO ) = To(Jo)A = H1 (X, C))^ =H0(X, 9) = H0(M, S2),

and this last group is isomorphic to S2(Fo(p),7L) as a T-module, as shown by
Mazur [5, 11, (4.6) and (6.2)] .
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