THE FORMAL COMPLETION OF THE NÉRON MODEL OF $J_0(p)$

ENRIC NART*

A	hetrant	
4	DCTTRTT	

For any prime number p > 3 we compute the formal completion of the Néron model of $J_0(p)$ in terms of the action of the Hecke algebra on the \mathbb{Z} -module of all cusp forms (of weight 2 with respect to $\Gamma_0(p)$) with integral Fourier development at infinity.

Let p be a prime number greater than three. Let $\mathcal{J}_{|\mathbb{Z}}$ be the Néron model of the jacobian $J_0(p)_{|\mathbb{Q}}$ of the modular curve $X_0(p)_{|\mathbb{Q}}$. In a joint work with Deninger we proved that the formal completion of \mathcal{J} along the zero section is determined by the relative L-series of $J_0(p)$ with respect to $\mathbb{T} \otimes \mathbb{Q}$, where \mathbb{T} is the Hecke algebra [2]. In fact, we explained how to construct a formal group law for \mathcal{J}^{\wedge} from a formal Dirichlet series made up with the integral matrices reflecting the action of the Hecke operators on the Lie algebra of \mathcal{J} .

In this note we show that such a formal group law can also be constructed with the integral matrices reflecting the action of $\mathbb T$ on the $\mathbb Z$ -module $S_2(\Gamma_0(p),\mathbb Z)$ of all cusp forms (of weight 2, with respect to $\Gamma_0(p)$) with integral Fourier developement at infinity. We obtain in this way an effective result since, with the aid of a computer, it is possible to find explicit $\mathbb Z$ -basis of $S_2(\Gamma_0(p),\mathbb Z)$ and to compute the action of the Hecke algebra.

Acknowledgements. This question was raised in a conversation with Christopher Deninger. I thank him for this and the IHES at Bures-sur-Yvette for hospitality.

Let g be the dimension of $J_0(p)$. Our aim is to prove the following theorem:

^{*}partially supported by grant PB89-0215-0 from CICYT

538 E. NART

Theorem. Let $U_p \in M_g(\mathbb{Z})$ and $T_l \in M_g(\mathbb{Z})$, for all primes $l \neq p$, be the matrices of the Atkin-Lehner operator and the Hecke operators, with respect to any \mathbb{Z} -basis of $S_2(\Gamma_0(p), \mathbb{Z})$. Since these matrices commute, the formal Dirichlet series:

$$\sum_{n=1}^{\infty} A_n \cdot n^{-s} = (I_g - U_p \cdot p^{-s})^{-1} \cdot \prod_l (I_g - T_l \cdot p^{-s} + I_g \cdot p^{1-2s})^{-1},$$

is well-defined and $A_n \in M_g(\mathbb{Z})$ for all n. Let L(X,Y) be the g-dimensional formal group law with logarithm:

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} A_n X^n \in \mathbb{Q}[X_1, \dots, X_g]^g,$$

where X^n is the notation for $(X_1^n, \ldots, X_g^n)^t$. Then, L(X,Y) is defined over \mathbb{Z} and it is isomorphic to the formal completion of \mathcal{J} along the zero section.

Honda [4] proved an analogous result for Shimura curves, but a finite (fairly big) set of primes had to be left aside. In fact, our proof follows the same pattern, but we have at our disposal deep results of Deligne-Rapoport [1], Deligne [5, thm. A.1] (which was implicitely used in [2]) and Mazur [5, II, sections 3 and 6], which allow us to deal with the bad primes.

After [2], in order to prove the theorem it is sufficient to show that Lie (\mathcal{J}) and $S_2(\Gamma_0(p), \mathbb{Z})$ are isomorphic as \mathbb{T} -modules. To this aim is devoted the rest of the paper. The proof consists on adding some details (checking of some compatibilities, essentially) to certain results of Mazur.

For any integer $N \geq 5$, let $M_0(N)$ be the curve over \mathbb{Z} representing the fine moduli stack classifying generalized elliptic curves over $\mathbb{Z}[1/N]$ with a cyclic subgroup of order N. Let $X_0(N) \stackrel{i}{\longrightarrow} M_0(N)$ be its minimal regular resolution. These two curves become isomorphic over $\mathbb{Z}[1/N]$.

The Atkin involution $w=w_N$ extends to an involution of $M_0(N)$ [1, IV, Prop. 3.19] and by minimality, to an involution of $X_0(N)$ commuting with i. Hence, wasts on $H^1(X_0(N), \mathcal{O})$ and on $H^1(M_0(N), \mathcal{O})$ in a compatible way. That is, we have a commutative diagram:

Now, let l be * prime different from p and consider the finite morphism [5, II, section 6]:

$$c M_0(pl) \longrightarrow M_0(p), (E, (H_l, H_p)) \longrightarrow (E, H_p).$$

Here (H_l, H_p) denotes a cyclic subgroup of E of order pl (canonically) decomposed as a product of its p-primary and l-primary parts. By minimality c raises to a finite morphism between the regular resolutions fitting into a commutative diagram:

(2)
$$X_0(pl) \xrightarrow{c} X_0(p)$$

$$\downarrow \qquad \qquad \downarrow i$$

$$M_0(pl) \xrightarrow{c} M_0(p).$$

Let us denote $X = X_0(p)$, $X' = X_0(pl)$, $M = M_0(p)$, $M' = M_0(pl)$. The morphism $c: X' \longrightarrow X$ induces covariant and contravariant homomorphisms:

$$\operatorname{Pic}_{X'/\mathbb{Z}}^0 \stackrel{c^*}{\underset{c_*}{\rightleftharpoons}} \operatorname{Pic}_{X/\mathbb{Z}}^0.$$

At the level of invertible sheafs, c^* is the usual homomorphism and c_* is the norm-homomorphism defined by Grothendieck [3, 6.5]. Via the canonical identification of $H^1(X,\mathcal{O})$ with the tangent space of $\operatorname{Pic}^0_{X/\mathbb{Z}}$ at the zero-section, c_* and c^* induce homomorphisms:

$$H^1(X',\mathcal{O}) \stackrel{c^*}{\underset{c}{\rightleftharpoons}} H^1(X,\mathcal{O}).$$

 c^* is the natural homomorphism induced by $\mathcal{O}_X \longrightarrow c_* \mathcal{O}_{X'}$ and the homomorphism $H^1(X, c_* \mathcal{O}_{X'}) \longrightarrow H^1(X', \mathcal{O}_{X'})$ given by the Leray spectral sequence; whereas c_* is the trace-homomorphism defined in terms of Čech cocycles by:

$$c_*(f_{\alpha\beta}) = Tr_{X'|X}(f_{\alpha\beta}),$$

for any affine open covering: $X' = \cup_{\alpha} c^{-1}(U_{\alpha})$, for U_{α} an affine open covering of X. This trace is well-defined since $\Gamma(c^{-1}U_{\alpha}, \mathcal{O}_{X'})$ is a finite $\Gamma(U_{\alpha}, \mathcal{O}_{X})$ -module. In fact, the identification of $H^{1}(X, \mathcal{O})$ with the tangent space of $\operatorname{Pic}_{X/\mathbb{Z}}^{0}$ can be realized through the exact sequence:

$$0 \longrightarrow H^1(X, \mathcal{O}) \xrightarrow{\exp} H^1(X \otimes \mathbb{Z}[\varepsilon], \mathcal{O}^*) \longrightarrow H^1(X, \mathcal{O}^*),$$

where $\mathbb{Z}[\varepsilon]$ is the ring of dual numbers and $\exp(f) = 1 + f\varepsilon$. The above description of the action of c^* and c_* can be easily deduced from this sequence, working with Čech cocycles and having in mind that $1 + Tr_{X'/X}(f) \varepsilon$ is the norm of $1 + f\varepsilon$.

540 E. Nart

By Grothendieck duality we obtain homomorphisms:

$$H^0(X',\Omega_{X'}) \stackrel{c^-}{\underset{c_+}{\longleftrightarrow}} H^0(X,\Omega_X),$$

where Ω_X is the dualizing sheaf, that is, the sheaf of regular differentials, which is defined as the only non-vanishing homology group (in degree -1) of the complex $R\pi^!\mathcal{O}_{\text{Spec}\mathbb{Z}}$, where π is the structural morphism of X.

We need to check the compatibility of these homomorphisms c_* , c^* with the analogous homomorphisms defined by Mazur at the level of the curves $M_0(N)$ [5, page 88], which we denote by $(c^*)_M$, $(c_*)_M$. More precisely, we need the following diagrams to commute:

(3)
$$H^{1}(X',\mathcal{O}) \xleftarrow{c^{\bullet}} H^{1}(X,\mathcal{O})$$

$$i^{\bullet} \uparrow \qquad \qquad \uparrow_{i^{\bullet}}$$

$$H^{1}(M',\mathcal{O}) \xleftarrow{(c^{\bullet})_{M}} H^{1}(M,\mathcal{O})$$

$$(4) \qquad H^{0}(X',\Omega) \xleftarrow{c^{*}} H^{0}(X,\Omega)$$

$$\downarrow i_{*} \qquad \qquad \downarrow i_{*}$$

$$H^{0}(M',\Omega) \xleftarrow{(c^{*})_{M}} H^{0}(M,\Omega),$$

where i_{\star} is defined from i^{\star} by duality. Now, diagram (3) commutes since it is obtained from (2) by taking everywhere the natural homomorphisms induced by i and c. Since the \mathbb{Z} -modules involved are free [5, II, Lemma 3.3 and (3.2)] it is sufficient to check the commutativity of diagram (4) after tensoring with \mathbb{Q} . Then, the commutativity amounts to the fact that the natural homomorphism: $H^0(X'_{\mathbb{Q}}, \Omega^1) \stackrel{c^*}{\longleftarrow} H^0(X_{\mathbb{Q}}, \Omega^1)$ is dual to the trace-homomorphism, $Tr_{X'/X}: H^1(X'_{\mathbb{Q}}, \mathcal{O}) \longrightarrow H^1(X_{\mathbb{Q}}, \mathcal{O})$, under Serre duality, and this is a consequence of the classical trace-formula [7, page 32].

We are ready to analize the action of the Hecke algebra. The Hecke algebra \mathbb{T} is the subalgebra of $\operatorname{End}_{\mathbb{Q}}(J_0(p))$ generated by all the operators T_l and the Atkin involution w. The Hecke operator T_l is, by definition, the endomorphism of $J_0(p)$ induced by correspondence on $X_0(p)_{|\mathbb{Q}}$ determined by the morphisms:

$$X'_{\mathbb{Q}} \xrightarrow{c_{\mathbb{Q}}} X_{\mathbb{Q}}$$

$$(cw_{\ell})_{\mathbb{Q}} \downarrow \qquad \qquad X_{\mathbb{Q}}$$

To be more precise, T_l is the composition of the two homomorphisms:

$$T_l: J_0(p) \xrightarrow{(cw_l)_{\mathbb{Q}}^*} J_0(pl) \xrightarrow{(c_{\mathbb{Q}})_*} J_0(p),$$

induced by $c_{\mathbb{Q}}$ and $(cw_l)_{\mathbb{Q}}$ on $\operatorname{Pic}^0_{X_0(N)/\mathbb{Q}} = J_0(N)$, for N = p, pl. By the universal property of the Néron model, T_l operates on \mathcal{J} and on its connected component as:

$$T_l: \mathcal{J}^0 \stackrel{(cw_l)^*_{\mathbf{Z}}}{\longrightarrow} (\mathcal{J}')^0 \stackrel{(c_*)_{\mathbf{Z}}}{\longrightarrow} J^0,$$

where $(\mathcal{J}')^0$ is the connected component of the Néron model of $J_0(pl)$. By a theorem of Raynaud [6, 8.1.4], the connected component of the Néron model of $J_0(N)$ represents the functor $\operatorname{Pic}^0_{X_0(N)/\mathbb{Z}}$. Hence the homomorphisms:

$$\operatorname{Pic}_{X'/\mathbb{Z}}^{0} \overset{(ew_{\ell})^{*}}{\underset{c_{*}}{\longleftrightarrow}} \operatorname{Pic}_{X/\mathbb{Z}}^{0},$$

induced by the finite morphisms $X' \xrightarrow{c_i cw_l} X$, coincide with $(cw_l)_{\mathbb{Z}}^*$, $(c_*)_{\mathbb{Z}}$, since they induce the same homomorphism on the generic fiber. Thus, T_l acts on $H^1(X, \mathcal{O})$ and (by duality) on $H^0(X, \Omega)$. We have a commutative diagram:

(5)
$$T_{l}: H^{1}(X, \mathcal{O}) \xrightarrow{(cw_{l})^{\bullet}} H^{1}(X', \mathcal{O}) \xrightarrow{c_{\bullet}} H^{1}(X, \mathcal{O})$$

$$i^{\bullet} \uparrow \qquad \qquad i^{\bullet} \uparrow \qquad \qquad \uparrow_{i^{\bullet}}$$

$$H^{1}(M, \mathcal{O}) \xrightarrow{(cw_{l})^{\bullet}_{M}} H^{1}(M', \mathcal{O}) \xrightarrow{(c_{\bullet})_{M}} H^{1}(M, \mathcal{O}).$$

The left-hand square is diagram (3) for cw_l and the right-hand square is the dual of diagram (4). Mazur shows that $i^*: H^1(M, \mathcal{O}) \longrightarrow H^1(X, \mathcal{O})$ is an isomorphism [5, II, Prop. 3.4]; hence, through this isomorphism we obtain (by (1) and (5)) the same structure of \mathbb{T} -module on $H^1(M, \mathcal{O})$ as the one taken by definition by Mazur. That is, we have isomorphisms as \mathbb{T} -modules:

$$H^1(X,\mathcal{O})\cong H^1(M,\mathcal{O}), \qquad H^0(X,\Omega)\cong H^0(M,\Omega).$$

Therefore we have T-isomorphisms:

$$\operatorname{Lie}(J^0) \cong T_0(J^0)^{\wedge} \cong H^1(X, \mathcal{O})^{\wedge} \cong H^0(X, \Omega) \cong H^0(M, \Omega),$$

and this last group is isomorphic to $S_2(\Gamma_0(p), \mathbb{Z})$ as a T-module, as shown by Mazur [5, II, (4.6) and (6.2)].

References

- P. Deligne M. Rapoport, "Schémas de modules des courbes elliptiques," Vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp (1972), Lecture Notes in Mathematics 349, Berlin-Heidelberg-New York, Springer 1973.
- 2. C. Deninger E. Nart, Formal groups and L-series, Comm. Math. Helv. 65 (1990), 318-333.
- 3. A. GROTHENDIECK, Étude globale élémentaire de quelques classes de morphismes (EGA II), Publ. Math. IHES 8 (1961).
- 4. T. HONDA, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246.
- 5. B. MAZUR, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33-186.
- M. RAYNAUD, Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 27-76.
- 7. J.P. SERRE, "Groupes algébriques et corps de classes," Hermann, Paris, 1959.

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN

Rebut el 22 d'Abril de 1991