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APPLICATIONS OF THE EULER
CHARACTERISTIC IN BIFURCATION THEQORY

SLawOMIR RYBICKI

Abstract

Let f: B x R*¥ — R" be a continuous map such that f(¢, A} = 0 for all
A € R*. In this articie we formulate, in terms of the Euler characteristic of
algebraic sets, sufficient conditions for the existence of bifurcation points
of the equation f(z, A) = 0. Moreover we apply these results in bifurcation
theory to ordinary differential equations. It is worth to point out that in
the last paragraph we show how to verify, by computer, the assumptions
of the theorems of this paper.

0. Introduction

In [A] Alexander has defined an invariant which nontriviality implies the
existence of a bifurcation point of a continuous map f : R® x RF — R™ such
that f(0,A) = O for all A € R*. This invariant is an element of the group
Tk—1(GL{n}). Generally it is difficult {o verify if this invariant is a nontrivial
element in 7 (GL{n}). _

Krasnosielski in [K] has proved a 1-parameter bifurcation theorem which is a
very useful tool in bifurcation theory. This theorem gives sufficient conditions
for the existence of a bifurcation point of f in the case k = 1.

Many authors have proved generalizations of the classical Krasnosielski the-
orem (see [MA], [R1], [R2]}. :

We are interested in formulating sufficient conditions for the existence.of
bifurcation points of f in case the dimension of the parameter space is greather
than one and when the Alexander invariant can not be applied.

In {S1], [S2] and [W] the authors have proved very interesting formulas to a
computation of the Euler characteristic of algebraic sets in terms of the Brouwer
topological degree of suitable maps.

In the first part of this paper (using these formulas) we formulate and prove
sufficient conditions for the existence of bifurcation points of f.

Namely, we define (Def. 1.4.) a set of essential maps (Ess (n, k)) and prove
that 0 € R is not an isolated bifurcation point of any essential map f {Prop.
1.1). :
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We also define (Def. 1.3.) a set of regular maps (Reg (n, k)) and show how
to verify if a regular map is an essential map {Prop. 1.3.}.

In Proposition 1.4. we formulate sufficient condition for the existence of a
bifurcation point of a homogeneous map f (for definition of a homogeneous
map see Def. 1.2.).

As the last case we consider a sct of even maps (Even (n, k), Def. 1.5}, In
Proposition 1.5. we give sufficient conditions for the existence of a bifurcation
point of even map.

Notice that the assumptions of Propositions 1.4., 1.5., 1.6. are expressed in
terms of the Brouwer topological degree of polynomial maps. From this point of
view it is important to compute the Brouwer topological degree for polynomial
maps.

Nierenberg has formulated in [N] an integral definition of the Brouwer topo-
logical degree. We have written a computer prograin which computes the topo-
logical degree for polynomial maps, in a version given by Nierenberg.

The important question is how to verify that f € Reg (n, k). In other words
we must verify if 0 € RF is an isolated point in &~1(0). There are computer
algorithms which allow us to check if 0 € R* is an isolated zero of the polynomial
map ¥ : R¥ — R*. These algorithms are based on the Eisenbud and Levine
results (see [E.L.]). There is a computer program, writen by Andrzej Lecki
from University of Gdansk, which is based on such kinds of algorithms. Using
this program we can verify if f € Reg {n, k).

Acknowledgement. The author wishes to thanks to Andrzej Lecki for
several helpful comments.

In the second paragraph we apply topological resuits of this article to the
bifurcation theory for ordinary differential cquations (Th. 2.1., 2.2., 2.3.).

In the last part of this paper we show how to verify by computer the assump-
tions of the theorems of this paper.

1. Results

Denote by X and Y Banach spaces and by f : X x R® — Y a continuous
operator such that f{0,)) = 0 for all X € R*.

“Definition 1.1. A point Ag € R* is said to be a bifurcation point of the
equation {*} flz, A} =0, if

(0, Ao} € closure {{z,A) € X x B*: f(z,)\} = 0 and z # 0}

The set of bifurcation points of the eguation (+} will be denoted by Bif (f}.
Consider a Cl-map f: R* x R* — R™ such that f{0,A) =0forall A€ R
and define 2 map @ : R* - R by ®(A) = det{D, F(0, A)).
Definition 1.2. A map f is said to be a homogeneous map, if ®(A} is a
homoegeneous polynomial of degree greather than 1.



APPLICATIONS OF THE EULER CHARACTERISTIC 529

The set of homogeneous maps will be denoted by Hom (n, k).

Definition 1.3. A map f: R™ x R* — R™ is said to be a regular map, if
1) f € Hom (n,k),
2) $ has an isolated critical point at the origin.

The set, of regular maps will be denoted by Reg (n, k).

Define a map ¥ : R¥ — R* by the formula

v = ([56%(/\)} 4 LIV [S_i(,\)} " @(A)?)

and notice that if T{Ag) =0, then T{t- Ap) =0 for allt € R.
Remark 1.1. The map ® has an isolated critical point at the origin iff
¥-1{0) = {0}.
Using this remark we will show that a map considered in Example 3.2. is a
regular map.
Definition 1.4. A map f : R* x R¥ — R" is said to be an essential map, if
1) f € Reg (n, k),
2) ¢71(0) # {0}.

The set of essential maps will be denoted by Ess (r, &).

Proposition 1.1. If f € Ess (n,k), then Bif (f) = ®71(0). In particular,
Bif (f) # @.

Proof: The set #71(0) — {0} is a (k — 1}-dimensional manifold.

Fix Ap € ®1(0)— {0} and 1-dimensional manifold N(Ag) such that manifolds
N{Ao) and ®~1(0)— {0} are transversal at the point Ay. It is easy to sce that the
map © changes sign, at the point Ao, along N{Ag). So, applying Krasnosielski
theorem (see [K]) we show that Ap € Bif {f). The set Bif (f) is closed, that is
why 0 € Bif (f). &

Denote by d® : R* — R* the gradient of the map &.

If f € Reg (n, k) then d®~1(0) = {0}. Denote by x(B) the Euler character-

istic of the manifold B and by deg d® the Brouwer topological degree of d@
with respect to a disc centered at the origin.

Proposition 1.2. If f € Ess {n, k), then for anye >0
) @ Y0)NSEL s a (k — 2)-dimensional manifold,
i) x(@HO) N SEY) = (14 (= D)%) - (1 - deg d¥).

Proof: Notice that & ~*(0)— {0} is a {k — 1)-dimensional manifold transversal
to $&~1. That is why &71(0) N S5 ! is a (k — 2)-dimensional manifeld.

Let us put the following notations 4, = {A € S¥71. @A) >0}, A_ ={X ¢
SE=1.B(0) <0}, L= {A €S a(A) =0},
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C.T.C. Wall in (W] has shown that x{4;) = 1 + (~1)*~! . degd® and
x{A_) =1 —degdd.

It is well known that x(L) = x{A+) + x{4-) — x(S*1).

Using the above formula and C.T.C. Wall results we obtain the thesis. B

Proposition 1.3. If f € Reg (n, k) and {1+ (~1)%)- (1 — deg d®) # 0, then
/€ Ess (n, k).

Proof: If f € Reg (n, k), then " 1{0)NS*~! is a (k—2)-dimensional manifold
or is an empty set. From Proposition 1.2. and from the assumptions it follows
that ®~1(0) N S5~ is not empty set. So our proof is completed. W

In this part of the paragraph we formulate sufficient conditions for the exis-
tence of bifurcation points, in a case when f € Hom (n, k).

Let us denote B; = {A € 5771 (1) @(\) > 0} for i = 1,2 and let m be
the degree of the polynomial ®{A).

If m is an odd number then © has to change a sign near the origin that is
why it is enough to consider only the case of even m.

Define polynomials T; : B* — R by the formula

La(A) = (=1)'®(A) — [IAI™*2,

for i = 1,2. By dI'; : R* — R* we denote the gradient of T';.

By deg {Q, D¥,0) we will denote the Brouwer topological degree of the map
@ computed on the disc D* with respect to the origin.

Proposition 1.4. There is a positive number ¢ > 0 such that dU'7*{0) N D¥
= {0}. If deg {dTy, DF,0) # (—1)* for i = 1,2, then for eny €, > 0 Bif {f)
NSE-! £ @, in particular, 0 € Bif {f). Moreover the topological dimension of
the set Bif ()N S5~ is equal to k — 2.

Proof: First of all we will show that x{B;) # x{§% 1} for i = 1,2. Szafraniec
has shown in (S2] that there is € > O such that dT71(0) N DF = {0}.
If deg (dT;, D%,0) # (—1)%, then 1 — deg(dl,,D5,0) # 14+ (1) 1. Tt is
well known fact that x(5*7') = 1 + (—1)*~}, From Corollary 1 in [S2] it fok-
lows that x{B;) = 1 —deg(dTl';, D¥,0). So, we have x{B;) # x(S§**}. From the
above it follows that B; # 8% Y fori=1,2. Fix \; € 851 —B;fori=1,2. Let
£:[0,1] — S*! denote a continuous map suck that £(0) = Ay and £&(1) = Aq.

Consider a composition @ ¢ £ : [(,1] — R. It is cbvious that {& o £){A;)-
{@ 0 £){A2) < 0. So, from Krasnosielski theorem (see [K]) it follows that

Bif (/) N&([0, 1) # 2.

It is easy to verify that if Ag € Bif (f), then t- Ag € Bif (f) for all ¢t € R. S,
our proof is completed. W
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In the last part of this section we turn to a case when a map f is such that
&()) is not necessary an homogeneous polynomial.

Definition 1.5. A map f: R™ x R¥ — R" is said to be an even map, if
&{)) is a polynomial such that ${—X) = ®(A}.

The set of even maps will be denoted by Even {n, k).

Fix f € Even {n, k) and denote by d the degreee of &. Choose any € > 0.
Define a map A; : DF¥1 - R as follows

AE(/\)=AS(A1‘-”,Ak+I)—_-||’\"d+2.¢(6A1 SA]C)

m’...,m

Remark 1.2. Notice that A.()) is 2 homogeneous polynomial and that
sgn Ag(A) = sgn S(P(N)) for A € 5%, where P : S¥ — DF is the projection
given by the formula P{A) = (A, ..., Ak).

Define polynomials 3 ¢ : R**! — R as follows

e " e
TN =(-1 AdAY — ()\"1’ + -+ A£+1)[ z ]"‘1?
fori=1,2. By d} : RF+1 _, RF+1 we will denote the gradient of 3 ;.

Proposition 1.5. For sufficiently small &1 > 0, if deg (d).:, DEF,0)
# (=D* for i = 1,2, then Bif (f) N DE # @; moreover the topological
dimension of the set Bif {(f)N Dfl is equal to k — 1.

A proof of this proposition is a consequence of Proposition 1.4. and Remark
i.2.

2. Applications

In this section we will use the notations of the first section.
Consider a Cl-map g : R X B® x R¥ — R™ and assume that g(¢,, A) can be
expressed in the form

glt, 2, M) = A(\)z + ft, 2, A},

where
1) A{\) is 2 n x n-matrix such that A(Q) = 8,
2} ©(t,0,A) =0 for all {£,0,)) € R x R® x R¥,
3) Dotp{t,0,)) = 0 for ail {¢,0,A) € R x R x R,
We are interested in describing the set of bifurcation points of the following
boundary value problem

£(t) = g{t, z(t), A)
) { 2(0) = z{1).
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Let us denote X = {z € CH{(0,1]} : z(0) = z(1)} and Y = C%([0, 1]). Define
an operator F: X x RF — Y by the formula

Flz(t), A} = L)) - olt, z(th A),

where L{A}(z{t)} = () — A(X)z(t). Notice that zeroes of the operator f are
in one-to-one correspondence with solutions of the problem (x).

Let f: R™ x R* — R™ be the map defined by f(z, ) = A(M)z. Now we are
in a position to formaulate the main theorem of our paper.

Theorem 2.1. If f € Ess {n, k) and e is a sufficiently small positive number,
then
1) Bif (F)yn DE = $~1(0) N D¥,
2) Bif (FYN S5 is o (k — 2)-dimensional manifold,
3) x(Bif (F)N 81 = x(@7H0YN S51) = (14 (-1)%) - (1 — deg d®).

Proof:

Notice that L{0) : X — Y defined by L{0}{z(¢}) = z{¢) is a Fredholm
operator with Fredholm index § and that X = Xp @ Xh and ¥V = Yy @ Y,
where

Xo = ker L(0) = R™ = {subspace of constant functions},
Yy = R™ = {subspace of constant functions},

1
¥i = im L(0) = {z € C[0, 1] - / 2(s)ds = 0},
1]

{see [M] for more details).

We begin with the Lyapunov-Schmidt reduction.

Let Polz) = fnl z{s}ds and Py{z) ==z - fol z(s} ds denote the projections of
Y onto ¥, ¥, respectively. Then the equation F(z, A} = 0 is equivalent to the
system of eguations

P{)(F(.'L'G + 3‘1,/\)) =0, PI(F(IG + 331:’\)) =4,

where £ = zg + 21, zo € Xo, 21 € X;.

Notice that the map PyoF : Xp® X, ®R* — Y, is continuously differentiable
near (0,0,0) € Xo ® X1 & R*, P, o F(0,0,)) = 0, and the Fréchet derivative
of Py o F with respect to z, at {0,0,0), D, P o F{0,0,0) is an isomorphism of
X onto Y.

Therefore by the implicit function theorem, there is an open neighbourhood
U of (0,0) € Xo® RF and z; € CY(U, X,) such that the zeros of F near {6,0,0)
are given by (o, 1{xo, A), A) for (zo, A} € Xo @ R*.

It is easy to see that x{zg, A} = 0(||za||} at zo = 0, uniformly for ) near 0.
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From the above if follows that zeros of F are in one-to-one correspondence
with zeros of a finite dimensional map @ : U — Yp defined by the formula
Q(zo, A) = (Po o F}{zo + z1(z0, A), A}

It is not difficult to verify that {zg, A} is a2 map of the form

Qlzo, A} = ~A(N)zo + (x0, A},

where ¥(0, A) = 0 and D,,¥(0,A) = 0. Notice that @ € Ess (n, k).
The rest is a conscquence of Propositions 1.1. and 1.2. B

The next theorems give sufficient conditions for the existence of bifurcation
points of the operator F for more general class maps than the class Ess {(n, k).

Theorem 2.2. If f € Hom (n, k) and deg (dls, D5, 0) # (—1)* fori=1,2,
then for any €1 < € Bif (FYN S5 54 &. In particular, 0 € Bif (F). Moreover
the topological dimension of the set Bif (F) N S5~ 1is equal to k — 2.

This theorem is a consequence of Proposition 1.4. A proof of this theorem is
similar to the proof of Theorem 2.1.

Theorem 2.3. Lei f € Even(n,k). Then for sufficiently small € +f
deg (5.5, DFF1.0) # (—1)**! for i = 1,2, then Bif (F)N D¥ £ @, More-
over the topological dimension of the sei Bif (F) N DE is equal to k — 1; in
particular, 0 € Bif (f).

This theorem is a consequence of Proposition 1.5. A proof of this theorer is
similar to the proof of Theorem 2.1.

3. Examples

We shall remind well known results from singularity theory {see {E.L.]}.

Let 8, be the ring of germs of real analytic functionsat 0 € B™. If g1,...,9»
€ @,, let us denote by {(g1,...,9-) the ideal in §, generated by the elements

g1, 1 Ga-
For g = {(g1,..-,gn) : (R™,0) — (BR",0) we put

Q(g) = 8a/(91,- .., 9n)-

If g is finite, in the sense that Q{g) is finitc dimensional real vector space, then
0 € R™ is isolated in ¢71{0).
Consider the following boundary value problem

£(8) = g(t,2(8), N,
(=) { 2(0) = 2(1)
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and assume that the map g satisfies all the assumptions of the previous para-
graph. So we can express g in the form g(#, r, A} = A{A)z+9(¢, 2, A). Theorems
2.1., 2.2., 2.3, show that it is cnough to examine only the matrix A{A).

Example 3.1. Assume that n = k = 3 and that the matrix A{}) is of the
form

A Ag, Ax + Ag, A+ Az
AN = A1+ A+ A3, At —Az, 2:A41-3 Az
As, At, 0

Using a computer program we show that deg (dly, D3,0) = 1 for ¢ = 1,2.
From this it follows that deg (dl'y, P3,0) # (—1)%, so the assumption of The-
orem 2.2. is fulfilled. Applying Theorem 2.2 we claim that therc exists g > 0
such that for any £; < ¢ the intersection of the set of bifurcation points of the
problem () with S2 is not empty, in particular 0 € Bif (F). Moreover the
topological dimension of this intersection is equal to 1.

Example 3.2, Assume that n = k& = 2 and that the matrix A(A) is of the

form
AL = Ag, pLmp Y

AN= a2 00 Mode—agl

Define a map f: R? x R? — R? by f(z,)) = A{Q)z.

We will show that f € Ess (2,2). Using a computer program we show that
dim Q(¥) = 16, so from the resuits from singularity theory it follows that
@10} = {0}, that is why f € Reg (2, 2).

Computing the Brouwer topological degree {by computer) we obtain deg 4@
= —2 and consequently

X(@THO) N8 = 1+ (~1)F) - (1~ degd®) = (1+ (1)) - (1 - (-2)} = 6

From this it follows that ®~1{0) # {0}, so f € Ess (2,2).

So from Theorem 2.1 it follows that Bif (F) N D? consist of exactly six inter-
vals, which emanate from the origin.
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