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APPLICATIONS OF THE EULER

CHARACTERISTIC IN BIFURCATION THEORY

Abstract

SLAWOMIR RYBICKI

Let f : R" x Rk -. R" be a continuous map such that f(O,,\) = 0 for all
A E Rk . In this article we formulate, in terms of the Euler characteristic of
algebraic sets, sufficient conditions for the existente of bifurcation points
of the equation f(x, A) =0. Moreover we apply these results in bifurcation
theory to ordinary differential equations . It is worth to point out that in
the last paragraph we show how to verify, by computer, the assumptions
of the theorems of this paper.

0. Introduction

In [A] Alexander has defined an invariant which nontriviality implies the
existente of a bifurcation point of a continuous map f : R' x Rk --> R' such
that f(0, A) = 0 for all A E Rk. This invariant is an element of the group
7rk_1(GL(n)) . Generally it is dificult to verify if this invariant is a nontrivial
element in 7rk-I(GL(n)) .

Krasnosielski in [K] has proved a 1-parameter bifurcation theorem which is a
very useful tool in bifurcation theory. This theorem gives sufficient conditions
for the existente of a bifurcation point of f in the case k = 1 .

Many authors have proved generalizations of the classical Krasnosielski the-
orem (see [MA], [R1], [R2]) .
We are interested in formulating sufficient conditions for the existence .of

bifurcation points of f in case the dimension of the parameter space is greather
than one and when the Alexander invariant can not be applied .

In [S1], [S2] and [W] the authors Nave proved very interesting formulas to a
computation ofthe Euler characteristic of algebraic sets in terms of the Brouwer
topological degree of suitable maps .

In the first part of this paper (using these formulas) we formulate and prove
sufficient conditions for the existente of bifurcation points of f .

Namely, we define (Def. 1 .4 .) a set of essential maps (Ess (n, k)) and prove
that 0 -E R is not an isolated bifurcation point of any essential map f (Prop .
1 .1 .) .



528

	

S . RYBICKI

We also define (Def. 1 .3 .) a set of regular maps (Reg (n, k)) and show how
to verify if a regular map is an essential map (Prop . 1 .3 .) .

In Proposition 1.4 . we formulate sufficient condition for the existence of a
bifurcation point of a homogeneous map f (for definition of a homogeneous
map, see Def. 1 .2 .) .
As the last case we consider a set of even maps (Even (n, k), Def. 1 .5 .) . In

Proposition 1 .5 . we give sufficient conditions for the existence of a bifurcation
point of even map .

Notice that the assumptions of Propositions 1.4 ., 1 .5 ., 1 .6 . are expressed in
terms of the Brouwer topological degree of polynomial maps . From this point of
view it is important to compute the Brouwer topological degree for polynomial
maps .

Nierenberg has formulated in [N] án integral definition of the Brouwer topo-
logical degree . . We have written a computer program which computes the topo-
logical degree for polynomial maps, in a version given by Nierenberg .
The important question is how to verify that f E Reg (n, k) . In other words

we must verify if 0 E Rk is an isolated point in IP -1(0) . There are computer
algorithms which allow us to check if 0 E Rk is an isolated zero of the polynomial
map, T : Rk --> Rk . There algorithms are based on the Eisenbud and Levine
results (see [E.L .]) . There is a computer program, writen by Andrzej Lecki
from University of Gdansk, which is based on such kinds of algorithms . Using
this program we can verify if f E Reg (n, k) .
Acknowledgement. The author wishes to thanks to Andrzej Lecki for

several helpful comments .
In the second paragraph we apply topological results of this article to the

bifurcation theory for ordinary differential equations (Th . 2 .1 ., 2 .2 ., 2 .3 .) .
In the last part of this paper we show how to verify by computer the assump-

tions of the theorems of this páper .

1 . Results

Denote by X and Y Banach spaces and by f

	

X x Rk -> Y a continuous
operator such that f(0, A) = 0 for all a E Rk .

Definition 1.1 . A point ao E Rk is said to be a bifurcation point of the
equation (*) f (x,,\) = 0, if

(0, \o) E

	

closure {(x, .\) E X x Rk : f(x, .1) = 0 and x :,A 0} .

The set of bifurcation points óf the equation (*) will be denoted by Bif (f) .
Consider a C1-map f : R' x Rk - > R' such that f(0, .~) = 0 for all A E R

and define a map (D : Rk -> R by ~P(A) = det(D.,f(0, A)) .
Definition 1.2 . A map f is said to be a homogeneous map, if -P(A) is a

homogeneous polynomial of degree greather than 1 .
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The set of homogeneous maps will be denoted by Hom (n, k) .
Definition 1.3 . A map f : R" x Rk -> R' is said to be a regular map, if
1) f E Hom (n, k),
2) <D has an isolated critical point at the origin .

The set of regular maps will be denoted by Reg (n, k) .
Define a map IP : Rk --> Rk by the formula

2 + .p(a) 2
, . . . ,

La
4) (A)] 2 + ~(a)2

and notice that if T(Ao) = 0, then xP(t - Xo) = 0 for all t E R.
Remark 1 .1 . The map ~¿ has an isolated critical point at the origin iff

IP-1(0) = {0} .
Using this remark we will show that a map considered in Example 3.2 . is a

regular map.
Definition 1.4 . A map f : Rn x Rk -> Rn is said to be an essential map, if

1) f E Reg (n, k),
2) P-1(0) =,A { 0 } .

The set of essential maps will be denoted by Ess (n, k) .

Proposition 1.1 . If f E Ess (n, k), then Bif (f) = ~D-1 (0) . In .particular,
Bif (f) =~ 0 .

Proof:: The set <I)-1 (0) - {0} is a (k - 1)-dimensional manifold .
Fix Ao E ob-1(0)-{0} and 1-dimensional manifold N(A0) such that manifolds

N(Ao) and (D-1(0)-{0} are transversal at the point Ao . It is easy to see that the
map <D changes sign, at the point Ao, along N(Ao) . So, applying Krasnosielski
theorem (see [K]) we show that Ao E Bif (f) . The set Bif (f) is closed, that is
why0eBif(f) . a

Denote by d(D : Rk - Rk the gradient of the map I¿ .
If f E Reg (n, k) then dD-1 (0) = {0} . Denote by X(B) the Euler character-

istic of the manifold B and by deg H the Brouwer topological degree of d(D
with respect to a disc centered at the origin .

Proposition 1.2 . If f E Ess (n, k), then for any E > 0
i) D-1(0) n SÉ-1 is a (k - 2)-dimensional manifold,
ü) X ( ,P-1(0) n SE-1 ) _ (1 + (-1) k ) ' ( 1 - degd<D) .

Proof:: Notice that <P-1 (0)-{0} is a (k-1)-dimensional manifold transversal
to SÉ-1 . That is why <I>-'(O) n SÉ-1 is a (k - 2)-dimensional manifold .

Let us put the following notations A+ _ {A E SÉ-1 : ID(A) >_ 0}, A_ _ {A E

SÉ-1 : -P(A) < 0}, L = {R E SÉ-1 : -P(A) = 0} .

	

,
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C.T.C . Wall in [W] has shown that X(A+) = 1 + (-1)k-1 - degdP and
x(A_) = 1 - deg d-D .

It is well known that X(L) = x(A+) + X(A_) - X(Sk-1) .

Using the above formula and C.T.C . Wall results we obtain the thesis .

Proposition 1.3 . If f E Reg (n, k) and (1+ (-1)k ) - (1-deg dD) 7~ 0, then
f E Ess (n, k) .

Proof.- If f E Reg (n, k), then ~P -1 (0)nSÉ-1 is a (k-2)-dimensional manifold
or is an empty set . From Proposition 1.2 . and from the assumptions it follows
that ~¿-1 (0) n SÉ-1 is not empty set . So our proof is completed .

In this part of the paragraph we formulate sufficient conditions for the exis-
tence of bifurcation points, in a case when f E Hom (n, k) .

Let us denote Bi = {A E Si -1 : (-1) i+1 - -D(A) >_ 0} for i = 1, 2 and let m be
the degree of the polynomial P(A) .

If m is an odd number then ob has to change a sign near the origin that is
why it is enough to consider only the case of even m.

Define polynomials Fi : Rk -> R by the formula

for i = 1, 2 . By dri : Rk , Rk we denote the gradient of Fi .
By deg (Q, DÉ, 0) we will denote the Brouwer topological degree of the map

Q computed on the disc DÉ with respect to the origin .

Proposition 1.4 .

	

There is a positive number E > 0 such that dF~1 (0) n DÉ
_ {0} .

	

If deg (dFi,DÉ,0) ~ (-1)k for i = 1, 2, then for any el > 0 Bif (f)
n5,k,-1 =,A 0, in particular, 0 E Bif (f) . Moreover the topological dimension of
the set Bif (f) n 5,k,-1 is equal to k - 2 .

Proof.. First of all we will show that X(Bi) 7~ X(Sk-1 ) for i = 1, 2 . Szafraniec
has shown in [S2] that there is s

	

>

	

0 such that dFZ1
(0) n DÉ

	

=

	

{0}.
If deg (dFi, Dk , 0) =~ (- 1) k , then 1 - deg(dF i , DÉ , 0) 5E 1 + (-1)k-1 .

	

It is
well known fact that X(Sk-1 ) = 1 + (-1) k-1 . From Corollary 1 in [S2] it fol-
lows that X(Bi) = 1-deg(dFi , DÉ, 0) . So, we have x(Bi)

	

X(Sk-1). From the
above it follows that Bi

	

Sk-1 for i = 1, 2 . Fix Ai E Sk-1 - Bi for i = 1, 2 . Let
[0,1] -> Sk-1 denote a continuous map such that l;'(0) _ A1 and j(1) = A2 .
Consider a Pmposition <P o 1 : [0,1] --> R. It is obvious that (~P o )(~1)

(4> o 1) (A2) < 0 . So, from Krasnosielski theorem (see [K]) it follows that

Bif (f ) n «[0,1]) =,A Q) .

It is easy to verify that if Ao E Bif (f), then t - Ao E Bif (f) for all t E R. So,
our proof is completed .



In the last part of this section we turn to a case when a map f is such that
d>(A) is not necessary an homogeneous polynomial .
Definition 1.5 . A map f : R'E x Rk -> R", is said to be an even map, if

-D(A) is a polynomial such that 4)(-A) =
The set of even maps will be denoted by Even (n, k) .
Fix f E Even (n, k) and denote by d the degreee of <> . Choose any e > 0 .

Define a map A, : DÉ+I -, R as follows

Remark 1 .2 .

	

Nótice that A, (A) is a homogeneous polynomial and that
sgn A, (A) = sgn D(P(A)) for A E SÉ , where P : SÉ -> DÉ is the projection
given by the formula P(A) = (al, . . . , \k).

Define polynomials Ei : Rk+I -> R as follows

for i = 1,2 . By d r_' : Rk+I --> Rk+I we will denote the gradient of Es,

Proposition

	

1.5. For sufjiciently small El

	

>

	

0,

	

if deg (d E', Dk 1, 0)
(-1)k+ 1 for i = 1, 2, then Bif (f) n Dk

	

:,A 0; moreover the topological
dimension of the set Bif (f) n Dk

	

is equal to k - 1 .

A proof of this proposition is a consequence of Proposition 1 .4 . and Remark
1.2 .

In this section we will use the notations of the first section .
Consider a Cl-map g : R x R' x Rk -+ Rn and assume that g(t, x, A) can be

expressed in the form

where
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. _1
AE(a) =AE(a1, . . .,ak+I) = II~IId+2

	

CP\11
Eñl

' . .'' II~1I

EAk

J

Lri (A)
_ (-1)'AE(A) - (al +

	

. . + ñk+I)`~'+I

2. Applications

g(t, x, A) = A(A)x + (p(t, x, A),

1) A(A) is a n x n-matrix such that A(0) = 0,
2)

	

W(t, 0, A) = 0 for all (t, 0, A) E R x Rn x Rk,
3) Dx cp(t, 0, A) = 0 for all (t, 0, A) E R x Rn x Rk.

We are interested in describing the set of bifurcation points of the following
boundary value problem

(*)

	

x(t) = g (t, x(t), ~)

x(0) = x(1) .
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Let us denote X = {x E Cl ([0,1]) : x(0) = x(1)} and Y = Co ([0,1]) . Define
an operator F : X x Rk -> Y by the formula

F(x(t), A) = L(A)(x(t)) - cp(t, x(t), A),

where L(A)(x(t)) = x(t) - A(A)x(t) . Notice that zeroes of the operator f are
in one-to-one correspondence with solutions of the problem (*) .

Let f : R' x Rk ---> R'' be the map defined by f(x, A) = A(A)x. Now we are
in a position to formulate the main theorem of our paper .

Theorem 2.1 . Iff E Ess (n, k) and E is a sufcciently small positive numóer,
then

1) Bif (F) n DÉ = 4-1 (0) n DÉ ,
2) Bif (F) n SÉ-1 is a (k - 2)-dimensional manifold,
3) x(Bif (F) n SÉ-1 ) = x(D-1(0) n SE-1 ) = (1 + (-1)k ) . (1- degdD) .

Proof.
Notice that L(0) : X --> Y defined by L(0)(x(t)) = x(t) is a Fredholm

operator with Fredholm index 0 and that X = Xo ® Xl and Y = Yo ® Y,,
where

Xo = ker L(0) = Rn = {subspace of constant functions},

(see [M] for more details) .

Yo = R' = {subspace of constant functions},
1

Yl = im L(0) = {x E C o [0,1] : f x(s) ds = 0},
0

We begin with the Lyapunov-Schmidt reduction .
Let Po(x) = fo x(s) ds and P, (x) = x - fó x(s) ds denote the projections of

Y onto Yo, Y,, respectively. Then the equation F(x, A) = 0 is equivalent to the
system of equations

Po(F(xo + xl, A)) = 0, P,(F(xo + x1, A)) = 0,

where x = xo + x1, xo E Xo, -xl E Xl .

Notice that the map Pl oF : Xo ®Xl ®Rk --+Y, is continuously differentiable
near (0, 0, 0) E Xo ® Xl ® Rk, Pl o F(0, 0,,\) = 0, and the FYéchet derivative
of Pl o F with respect to xl at (0, 0, 0), Dxl Pl o F(0, 0, 0) is an isomorphism of
Xl onto Y, .
Therefore by the implicit function theorem, there is an upen neighbourhood

U of (0, 0) E Xo ®Rk and xl E Cl (U, XI ) such that the zeros of F near (0, 0, 0)
are given by (xo, xl (xo, A), A) for (xo, A) E Xo ® Rk.

It is easy to see that xl(xo, A) = 0(Ilxo11) at xo = 0, uniformly for A near 0 .
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From the above it follows that zeros of F are in one-to-one correspondence
with zeros of a finite dimensional map Q : U -+ Yo defined by the formula
Q(xo , A) = (Po - F)(xo + xl (xo, A) , A) .

It is not difficult to verify that Q(xo, A) is a map of the form

Q(xo, A) = -A(A)x0 + T(xo, a),

where T(0, A) = 0 and D,,T(0, A) = 0 . Notice that Q E Ess (n, k) .
The rest is a consequence of Propositions 1.1 . and 1 .2 .

The next theorems give sufficient conditions for the existente of bifurcation
points of the operator F for more general class maps than the class Ess (n, k) .

Theorem 2.2 . If f E Hom (n, k) and deg (dri, DÉ, 0) ~ (-1)k for i = 1, 2,
then for any el G e Bif (F) f1 SÉ-, 1 0. In particular, 0 E Bif (F) . Moreover
the topological dimension of the set Bif (F) n SÉ;l is equal to k - 2 .

This theorem is a consequence of Proposition 1.4 . A proof of this theorem is
similar to the proof of Theorem 2.1 .

Theorem 2 .3 . Let f E Even (n, k) .

	

Then for sufficiently small E if
deg (d Es, DÉ+1, 0)

	

(-1)k+1 for i = 1, 2, then Bif (F) n DEk	0 .

	

More-¡
over the topological dimension of the set Bif (F) n DÉ is equal to k - 1; in
particular, 0 E Bif (f) .

This theorem is a consequence of Proposition 1 .5 . A proof of this theorem is
similar to the proof of Theorem 2.1 .

3. Examples

We shall remind well known results from singularity theory (see [E .L .]) .
Let 0,, be the ring of germs of real analytic functions at 0 E R'. If g1, . . . . gn

E Bn , let us denote by (gl, . . . . g�,) the ideal in 9�, generated by the elements
91, . . . . gn .

For g = (91, . . . . gn ) : (Rn, 0) --, (Rn, 0) we put

Q(g) = e.M1, - . . , gn)-

If g is finite, in the sense that Q(g) is finite dimensional real vector space, then
0 E Rn is isolated in g-1 (0) .

Consider the following boundary value problem

:t (t) = g(t, x(t),

x(0) = x(1)
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and assume that the map g satisfies all the assumptions of the previous para-
graph . So we can express g in the form g(t, x, A) = A(A)x+W(t, x, A) . Theorems
2.1 ., 2.2 ., 2 .3 . show that it is enough to examine only the matrix A(A) .
Example 3 .1 . Assume that n = k = 3 and that the matrix A(A) is of the

form
A1 + A2,

	

A2 + A3,

	

A 1 + A3
A(A) =

	

A1 + A2 + A3,

	

Al - A2,

	

2 -A l - 3 - A3
A3,

	

A1,

	

0

Using a computer program we show that deg (dri, D3,0) = 1 for i = 1, 2 .
From this it follows that deg (dri, DÉ, 0) A ( - 1)3 , so the assumption of The-
orem 2.2 . is fulfilled . Applying Theorem 2.2 we claim that there exists e > 0
such that for any el < e the intersection of the set of bifurcation points of the
problem (**) with SÉ, is not empty, in particular 0 E Bif (F) . Moreover the
topological dimension of this intersection is equal to 1 .
Example 3 .2 . Assume that n = k = 2 and that the matrix A(A) is of the

form
_

	

A1 - A2,

	

Ai - A2
A(A) - [ -A1 + 2 - A2 ,

	

A 1 1 A2 - A2 ] .

Define a map f : R2 x R 2 -> R2 by f(x, A) = A(A)x .
We will show that f E Ess (2,2) . Using a computer program we show that

dim Q(YP) = 16, so from the results from singularity theory it follows that
T -1 (0) = {0}, that is why f E Reg (2,2) .
Computing the Brouwer topological degree (by computer) we obtain deg d<D

_ -2 and consequently

X(D -1 (0) fl SÉ) = (1 + (-1)k) - (1 - degd<D) = (1 + (-1)2) . (1 - (-2)) = 6

M-om this it follows that 4)-1 (0) =~ {0}, so f E Ess (2,2) .
So from Theorem 2.1 it follows that Bif (F) (1D2 consist of exactly six inter-

vals, which emanate from the origin .
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