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INTERPOLATING SEQUENCES AND THE
NEVANLINNA PICK PROBLEM

ARNE STRAY

Abstract

The cxtremal solutions to the Nevanlinna Pick problem are studied. H
there i more than one solution, Nevanlinna showed that all extremal
solutions are inner functions. With some extra information on the inter-
polation data we find that the exiremal solutions are Blaschke products
whose zerces form a finite union of interpeolating sequences,

1. Introduction

Let U/ denote the analytic functions bounded by one in the open unit disc
D. Consider the Nevanlinna Pick interpelation problem

(NP}: flzn)=wp,n=12,... ,felU

In his work on this problem, R. Nevanlinna {6], demonstrated the importance
of the so called vertevorrat corresponding to (NP):

Alz) = {f(z) : f € E}, 2€ D\{z.}

where E is the set of solutions to {NP).

If E contains more than one function, Nevanlinna proved that A(z) is a disc,
Moreover, he showed that each boundary value of A(z} is attained by a unique
function from E, and that the class of solutions [ satisfying

(1) I(z) € 8A(2)

is independent of z. Any solution of {IV P) satisfying (1), will be called extremal.
An important discovery by Nevanlinna is that every extremal solution is an
inner function if F is not & singleton. {[6, Satz 7] or [2, page 172]).

Let p{z) denote the radius of A{z). It is not hard to see that each extremal
solution being inner is equivalent fo

(2) lim plre®®y =1
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for almost alt 8 € [0, 27} with respect to linear measure.

More information about the extremal solution to (IVP) may be obtained if
one can improve on {2). Let II denote the Blaschke product corresponding to

{2:}:

{2n]| 20 — 2
il =II,— .
(@) Zn 1 — 2,2

The main results of this work can be described as follows: For a large class
of problems {N P) it is shown that p{z) — 1if |[I{z}| — 1.

Using this information about p, we assume that I factors inte II=11,, ..., Iy
where the zcroes of I, 1 < k < N is an interpolating sequence {see definition
below). Under various conditions on {u, } we prove that any extremal solution
to (N P) is a Blaschke product admitting a similar factorization.

This work is a continuation of [9] and [10]. We use the book [2] by J. Garnett
as a reference for the theory of the classical Hardyspaces H?, 0 < p< oo in D.
In particular H* denotes the Banach space of all bounded analytic functions
in D with norm

Ifllec = sup{lf{z}|: z € D}.
We also have || f]jco = ess sup |[f(e**)| where f(*) = lim,_,; f(re'®) exists
0<h<2m

allmost everywhere df in light of Fatous theorem ([2, page 29]).

The sequence {#,} C D is called interpolating for H° if the problem f{2,) =
wn, n =1, 2, .. issolvable with f € H*, for any bounded sequence {wy,}. In
[1], L. Carleson proved that {z,} is interpolating if and only if

)

(C2): The measure 3 (1 — |2,])6,, is a Carleson measure, where §,, denotes
the point mass at z,.

Condition (C3) implies that if f belongs to the Hardy space H!, tfien

(3) Y 1F(za)l(1 = |zal) < oo

See (2, page 63 and 287 for details.

A Blaschke product whose zeros form an interpolating sequence, will be called
an interpolating Blaschke product.

a—v

(C)) iof glzn,zn) 262> 0 (o(a, b) = -
nEm 1—-7a

and

2. Some theorems

The problem (NP} will be called semiscaled if there is f € H® such that
[fllo < 1and f{2.) = wn, n = N, for some N. If one can choose N = 1, we
say that (NP} is a scaled problem. As in 1, IT denotes the Blaschke product
corresponding to {z,}. With this notation we have
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Theorem 1. Suppose the Nevanlinna Pick problem (N P) is semiscaled and
has more than one solution. Then p(z) — 1 if [II(z})| — 1, where p(z) is the
radius of the dise A(z) = {f(2): f solves (NP}}.

Remark. The hypothesis that (N P) is semiscaled, can not be dropped. A.
Nicolau recently found an example 7, p. 93], where {z,} C (0,1} is inter-
polating and {NP) has more than one solution, such that |II{(£x)| — 1 while
p{€x) — 0, for some sequence {&} C (0,1).

Suppose 2, — 1 within some cone included in D. Then we say that {za}
converges nontangentiolly to 1.

Theorem 2. Suppose z, — 1 nontangentially and that the Nevanlinng Pick
problem {NP) with data {2}, {wn} is semiscaled. Let I be any extremal solu-
tion to (NP), If 11 faciors into finitely many interpolating Blaschke products,
then I is a Blaschke product admitting o similar fectorization. Moreover, the
zeroes of T converge to 1 nontangencially.

Qur final result is only a slight extension of Theorem 1 in [9]. We include it
here because of its relevance to recent work by T. Nazaki in [5).

Theorem 3. Let {2,} be a finite union of interpolating sequences. Thereisa
number r > 0 depending only on {z,} with the following property: Let I be any
eztremal solution to a Nevanlinna Pick problem (NP} with date {z.}, {wn}.
Suppose that there is § € H® such that ||flleo < 7 and flz,) = wn if n
is sufficiently large. Then I factors into finitely many interpolating Blaschke
products.

3. Proofs

The method of proof has two main ingredients originating in the interpolation
theory for H®. We combine the classical work of R. Nevanlinna [5] by more
recent ideas largely due to L. Carleson ([1], [2, ch. VII]}.

If (N P) has more than one solution, R. Nevanlinna found analytic functions
P, ), R and S in D, such that all solutions to (N P) are given by

() E={§:§$;weu}.

The functions P, @, R and § are normalized such that PS—RQ = I[I. Fixing
z in D\{z,} we see that A(2) = {f(z) : f € E} is the image of the closed unit
disc under the Mobius transformation

Plz) — Qx)w

a7 g
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The extremal solutions to { N P} are precisely the functions I, corresponding
to w = €**, 0 < & < 27. The radius p(z} of A(2) is easily computed to be

)
) = REDP = SR

We start by collecting some more or less well known results related to Nevan-
linnas formula.

Lemma 1. Suppose the Nevanlinna Pick problem (N P) has more than one
solution. Then P, Q, R, § and p have the following properties:

(i R-leU

(1) max{|P(z}], |Q(z}], [S(2)I} < |R(2}|, z € D

(i) p(z) < [1I(2)], € D

(iv} If (N P) involves anly finitely many data, then p(2) > 1-C(1 - |2}, z €
D, for some constant C > 0.

(v} If (NP) is scaled, then R € H2(D) and {1 - M|I{2)| € p{z), z € D, for
some constant A € (0, 1).

In the concluding remarks following the proofs, we shall indicate how Lemma
1 follows from Nevanlinna’s original paper [6] and more recent results.

Proof of Theorem 1: We first use a deep result due to P. Jones to prove
Theorem 1 if (NP) is scaled. So we assume (N P} is solved by some f € H*®
such that |[fllee < A < 1. Given ¢ € (0,1}, let » =1 — € and choose t-€ (r,1)
such that o(r,t) > 1 —¢. Fix q, b € D such that |[I{a}| < r, [TI(b)] > ¢t. By
Schwarz lemma ([2, page 2]).

ala,b) 2 o{ll{a), II{(B)) > ¢{r, t) > 1 — ¢
Hence if we define @ € H™ by ¢(z) = 3%, we have

max{le(z)], II{z}]} > 1 —«

for any z € D. By Theorem 1 in P. Jones paper [4], there are functions
¢, g2 € H™ such that
gy + g2 =1

and
l91(2)] + |g2{z)| € 1 + Afe), 2€ D

where A{e) » 0if ¢ — 0. If € is so smeall that (1 + A(e})) < 1, it follows that
Fw = f{P92+WH91

solves (N P} whenever |w| < {1+ A{e}}~!. This means that p(b) > (1 — &){1 +
A{e)) 7V if |TI{B)| > 1 — ¢, where t = ¢(¢) depends only on «.
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To prove Theorem 1 in general, let us consider an expanded problem (NP},
obtained by adding finitely many constraints to (N P). If a typical solutions to
{NP) is given by Nevanlinnas formula {4}, we require in addition

P(fe) — Qée)wlle)
Rl&) — SEnwley) M 1sksN

Then {5} defines a finite Nevanlinna Pick problem (N P); for the unknown
function w € U. By assumption, it has more than one solution.

Corrresponding to (¥ P) we have defined A(z2), p(2) and the Mobius transfor-
mation ©,. For ¢ = 1,2 we denote the same objects for (N P); by A;(z), pil2)
and @ respectively. If ¢{z) denotes the center of A(z), it is well known ([9,
page 473]) that.

(6}

oz} = ©.(a(2))
where a{z) = %%% Let S denote the image of the unit circle under the
transformation ©.. Then since Ay{z) C A(z), we have
(6) pi{z) > inf{le(2) — w| : w € 51}
Applying Schwarz lemma to ©,, we have

o { 21 0:(6)

o Ee 52} = inf{o(a(2)), £} : £ € Su}.

{(7)
But S; = ©,(5;), and since p{z) — 1 if |HI{z}] — I, Theorem 1 follows from
(6) and (7} if we show that
inf{o(@(2)),£) : € € Sa} — 1

if [II{z)] — 1.

Suppose to the contrary that there is a sequence {uwx} C D such that
[T{ve}| — 1 and
(8) inf{o{a{ve),8) : £ € S} <t <l

fork=1,2,... . Replacing {v;} by a subsequence if necessary, we may assume
that {v;} is interpolating. .
By Lemma 1, the radius p» of 5; satisfies

(g} ,02(01{:)2 1_C(1_!Uk|)1'k=1:2:"'

By well knows properties of the metric o ([2, page 3]) it follows from {8) and
(%) that

S(u)
R{we)

(10) la(u)] = | > 1= Cy(1 - Jugl)
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with € depending only on ¢ and €. Since p = ¥ ?ISI , Lemma 1iii gives that
1> {|R|? — |S|*)~1. If this is combined with (10}, we get

Ch
M

|R(v)* 2

with C? independent of k. This means that > (1 — |vg|?}|R{vk)|? = oo contra-
&

dicting that {u} is interpolating by Lemma 1{v} v and the final remarks in
1. =

To prove Theorem 2, we need a lemma on Blaschke products that certainly
must be well known. If ¢ < o < 7, we define the cone

To = {2 : [arg{l - 7)[ < a}

Lemma 2. Let B be an inner function. The following stutements are equiv-
alent

(i) B is Blaschke product whose zerces is a finite union of interpolating
sequences contained 10 SOME CONE T
(ii) inf{|B{z}|, z € D\n} > O for some t.
(i) Given ¢ > 0, there is v such that |B{(z}| > 1 — € if z € D\r...

Proof of Lemma 2: To prove (i) — (i}, we may assume that the zeroes {a,}
of B form an interpolating sequence. We fix t € (o, 7) and then choose § > 0
so small that

Do ={z:0{z,a,) <8} Cm,n=1,2,...

Let Fs = D\UJD,. If follows from Carlesons condition (C:) in 1 that D, N

bt
Dy = ¢ if n £ m provided § is small enough. Condition {C1) also give
inf{|6(z)| : z € Fs} > 0 and since D\7, C F}, {ii) follows.

To see that {ii) — (iii}, let W be one of the two components of D\r,. Let
w{z) denote the harmonic measure of 8W N D with respect to W, evaluated
at z € W. If e > 0, it is evident that w(z} > 1 — ¢ in W\~ if r is sufficiently
close to 7. Since log|B]| is a bounded harmonic function in W, (iii} follows.

To prove {iil} — {1}, we first observe that any singular inner function fails to
satisfy (iii). It follows that B is a Blaschke product with zeroes {an} contained
in DN 1,, for some ¢.

Let N denote the number of points from {a,} contained in Ry = 7, N {z :
I —27F <)z| < 1 - 27%"1}. Elementary properties of the metric ¢ ([2, page
2]} shows that

inf sup oz, w)<d<1
26N weR,

with d independent of k. By (iil} we have
|B(z)] 2 d™ > |B(2)| 2 1 e



THE NEVANLINNA PICK PROBLEM 513

if 7 € D\7,. This means that {N;} is a bounded sequence. Hence we can split
{a.} into finitely many sequences {bs} such that either {b.} C 7a N (LURak) or
k

{ba} C 7o N J(Rok—1). But then {b,} is an interpolating sequence. For details
%

see [3, ch. 10]. Alternatively, it is not hard to check that (C}) and {Co) in 1
holds for such a sequence {a,}. B

Proof of Theorem 2: We use the notation from the proof of Theorem 1 and
consider a scaled problem (N P) together with an expanded problem (N Pj;.

Suppose first that (NP); has more than one solution. By Theorem 1
[Ia{2)] — 1 if [[I{z)] — 1 uniformly in o € [0,27). Assuming II satisfies
Lemma 2, we see that all I, also satisfy Lemma 2.

If (N P); has a single solution f, we have

_P-QI

f= R-— 51

where I is the unique solution of the problem (N P)s corresponding to {5). By
the classical Pick-Nevanlinna theorem I is a finite Blaschke product and hence

(11) )] 2 1-c(1—|2l}, z€ D

for some ¢ > 0. The function f given above is inner {9, p. 492)) and by
Schwartz lemma applied to ©,, we have again

M@W = pla(z), 1(2)).

Hence if f fail to satisfy Lemma 2, we can pick a sequence {vc} C DArr such
that plvg) — 1, ¢{ur) — 0 and deduce

(12} olau), Hoe)) < d <1
for k=1,2,... . Combining (11) and (12) we get as before
S{ve)

>1-C(1-
Ron)| 2 (1= lvel)
and obtain a contradiction as in the proof of Theorem 1. M

Let us finally explain briefy the proof of Theorem 3. Again we adopt the

notation from the proof of Theorem 1. Hence we consider an extremal solution
_P-Qr
 R-38I

Jo

where P, , R and S correspond to a scaled problem (NP) and I is a finite
Blaschke product.
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Define as before Fs = D\|JD, where D, = {z: ¢(2,2,} < 8}. If {2, } is the

n
union of X interpolating sequences, it follows from Carlesons condition {C})
that no z € D is contained in more than K different discs D, if § is sufficiently
small.
é

We fix such a small § and assume r < %4 in Theorem 3, where & =
inf{|TI(2}} : z € F5s} > 0. If h solves {NP) and ||h]le < 7, then

F,=h+Tw

solves (N P) whenever |w| € 1 — r. If 2 € Fs, we then have
8
(13) {w Jwl £ )} C Az) € {w: [wl < [M(2)1}.

Again we get by Schwartz lemma

folz) — e(2)

(14) o)

= o{a(z), I{z}).

If fo(vk) — 0 for some sequence {vi} C Fs, we get from (13) and (14) that
o(@(ve), I{ve)) €t <1,k =1,2,... and obtain a contradiction as in the proof
of Theorem 1. '

Hence the inner function fo must satisfy inf{|fo(2}|: z € F3, |2| = r} > O for
some 7 € (0,1}. From the way F; was constructed, this implies that fy factors
into finitely many interpolating Blaschke products W

4. Concluding remarks

Consider again the problem (NP} with data {2,.}, {wn}. Let ry denote the
minimal norm for the truncated problem f(z.} = wn, n > N. Evenif ry — 0
as N — oo, it may be the case that there is no Blaschke product among the
extremal solutions to {(NP}. In fact the singular inner function

I{2) =exp [—1 + zJ

1-=2

can be realized as the unique solution to such a problem.
Suppose on the other hand that there are functions hy € H* such that

Q<nd N
wy,n >N

hn(zn) = {

and [Anllooc — 0. In this case we say that (NP) is superscaled Using dual
extremal functions as Oyma did in [11], it is easy to see that any superscaled
problem has a unique minimal solution AJ where A is a constant and I is inner.
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We do not know if T necessarily is a Blaschke product in this case. If {2,} is a
finite union of interpolating sequences, T. Nakazi [5] studied problems of type
[+ 4]
(NP) with data {z.}, {w.}, where ¥» — 0 and &, = [] o2, 2n).
K

It is not hard to see that such problems are superscaled. In [3], Nakazi
showed that the minimal solution to such a problem is a complex muitiple of
an inner function. By Theorem 3 we see that this inner function is indeed a
Blaschke product.

Let us finally mention an apparently difficult open problem: Is Theorem 3
valid with some numerical constant r independent of {z,}? For applications
it would be sufficient to find some extremal solution satisfying the conclusion
under the assumption that {z,} is an interpolating sequence.

Some recent work by A. Nicolau (8] should also be mentioned in this connec-
ticn. :

Let us finally give the necessary references to provide & proof of Lemnma 1.

Lemma 1 {i} and (ii} is in Nevanlinnas original paper. That (iii} holds is ex-
plained in [9, page 494]. If (N P} is a finite problem, it follows from Nevanlinnas
work that p(z) is of class C* near the unit circle. Hence (iv) follows.

The lower bound for p in (v}, is used in (9, Lemma 2]. In [9] we also observed
that (R — €8~ € H? if 0 < a < 2r and {NP) has more than one solution.
If (N P) is scaled, one even has (R — ¢®§) € H?. This is seen from Theorem
4.4 and Theorem 5.5 in Ch. IV in Garnetts book [2], and observing, that the
function F in Lemma 5.6 corresponds to (R—¢**S) 2. But then (v) must hold.
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