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CONVERGENCE OF THE AVERAGES AND
FINITENESS OF ERGODIC POWER FUNCTIONS

Abstract

IN WEIGHTED L' SPACES

PEDRO ORTEGA SALVADOR

Let (X, F,u) be a finite measure space. Let T: X — X be 2 measure
preserving transformation and let Anf denote the average of THf, k =
0,...,n. Given a real positive function v on X, we prove that { A, f} con-
verges in the a.e. sense for every f in L1(v dy) if and only if inf;3 p v(THz) >
{1 a.e., and that the same condition is eguivaleni to Lhe fAniteness of a re-
lated ergodic power function P f for every f in El{vdi). We apply this
result to characterize, being T null-preserving, the finite measures v for
which the sequence {Anf} converges a.e. for every f € L'(dv) and to
prove that uniform boundedness of the averages in L! is sufficient for
finitenoss ae. of Fr.

1. Introduction

Let {X,F,u) be a finite measure space and let T : X — X be a measure
preserving transformation. For every measurable function f on X we consider

the averages

k1

Anf=(n+ 1)1 Tf

3=0

where 77 f(z) = f(T7x), the maximal operator

M f = sup A.|f}
20

and the power function

o 1/r
Prf: - (Z |An+1f - Anflr) (T = 1)'

n=0
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In [7], Martin Reyes and A. de la Torre characterized the positive measurable
functions v such that {A.f} converges a.e. for all f in L (udu) as those
functions that verify

(1.1} :g{f} v(Iz) > Dae

{(see also [15] for a ratic theorem).

Section 3 of this note is devoted to give a simpler proof for this result and to
prove a similar thecrem for Pr. It is seen that condition (1.1} is also valid for
P.. The main tools we use are Nikishin’s theorem and conditional expectations
which solve the problems derived from the non-invertibility of the transfor-
mation. These technics have been recently used to solve the problem of the
convergence of the averages for p > 1 (see [8]).

As a previcus result, we have to state the weak type (1, 1} for P.. This ques-
tion was solved in [17] by Yoshimoto. Our approach is different, but suitable
for our purposes. It was also treated in [B] and [11), but under more restrictive
conditions.

Finally, in section 4 we work with a null-preserving iransformation 7' and
characterize the finite measures v for which the sequence of the ergodic averages
{ A, f} converges a.e. forevery f € L'(dv) as those measures with the property:
there exists a measure -y equivalent to v such that

Y({x € X/Mf(z) > A}) <A™ [X Il dv

for every f € LY{dv).

In [13], Ryll-Nardzewski characterized the finite measures v for which the
ergodic averages {A.f} converge a.e. to a L*-function for every f € L'(dv)
as those measures that verify Hartman’s condition: there exists a constant K
such that

n—1
limsupn~* ZV(T_iE) < Kv(E)
i =0

for every set E.

Qur result is different fromn the Ryll-Nardzevsky's one, because we allow the
limit function not to be in L!(dwv). This situation is possible as Dowker’s exam-
ple shows (sec [1] and, for a two-dimensional version, see [12]) and, therefore,
our condition is strictly weaker than Hartman's condition.

As a corollary, we prove that uniform boundedness of the averages is a suffi-
cient condition for finiteness of P, for every f € L. This result is a L! version
of theorem 3.1 in [10]. Other references about P, are [14] and {18].
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2. Previous results

We will need two lemmas and scveral resulés about the operators Py, ¢- and
Q,, where ¢, is defined on functions on N, the set of the natural numbers, by

aa 1r
grafi) = (Z lafi + )" (k + 1)"") (e
k=0

and &, on functions on X by

oo 1/r
Q. flx) = (Zu(’f’“z)rm 1)—“") :

k=D

Lemma 1. Let k be a natural number. Then, there ezists a countable family
{B; : i € N} of measurable sets such that
i) X = UB;

@) BB =¢ ifi ]

{{i) For every i, there exisis a natural number s(3) with 0 < s(i) < k such
that the sets {T—7B; : 0 < j < s(3)} are pairwise disjoint end such that
if 3(8) < k then T-1=s(3 4 = A for every subset A of B,. Consequenily,
for every subset A of B;

s(1) k

k
ZXT'J'A < C@)ZXT—JA <2 xria
i=0 =0 §=0

where C(i) is the least integer bigger than or equal to {(k+1)(1+ s(i)) L
For the proof see lemma (2.10) in [9] changing T% by T7".

Lemma 2. Let {X,F,u) be o finite measure space and let {Fn} be a de-
creasing sequence of sub-c-algebras. Let Foo = NaFn and denote by E, the
conditional ezpectation with respect to Fn. If {fn} s an a.e. convergent se-
quence of functions such that |fa] < C a.e. and f is the ae timit of f then
Ef is the a.e. limit of By, f,,.

This lemma follows from theorem 7.6 in [6] and the decreasing martingale
theorem.

Theorem 1. g, is of weak type (1,1) with respect to the counting measure
on N.

Proof: The proof is the same as the one of theorem (3.8) in [10] with obvious
changes derived from the facts that we are working in N and that lemma (3.2)
(in {10}) is not necessary. B
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Theorem 2. @, is of weok iype {1,1).
Proof: 1t follows from theorem 1 and transference arguments (see [11]). B

Theorem 3. F; is of weak type (1,1) and, as a consequence, the series
o
> Ak f — Arfl”
k=0

is a.e. convergent for every f in L'{(dy).

Proof: 1t follows inmediately by theorem 2, the ergodic theorem and the
well-known inequality
FfsCMf+Q.f =

Remark. Note that theorems 2 and 3 do not need finiteness of the measure
space.

3. Main result

Theorem 4. Let (X, F,u} be a finite measure space. Let T: X — X be g
measure preserving trensformation. Let v be o positive measurable function on
X. The following are equivalent:

a} The sequence {A,f} converges a.e. for all f in LMvdy).

b) FreolAki1f ~ ArfI” < co in the a.e. sense for all f in Ll(vdp).

&) Saeolk+ 1) |T*f)” < oo tn the a.e. sense for all f in Li{vdy).

d) Mf < oo ae forall fin LY(vdy).

e} There exists a positive measurable function u such that f{z:Mf(:))A} udy
<A™ [y lflvdy for all A > 0 and all f in L (vdp).

f) There exists o positive measureble function u such that SUDg >0
f{IiAkf(I)>A} wdp <A | fledu fer.all A> 0 and ol f in LY {udy).

g} There ezists a positive measurable function u such that f (2P fa)> 2} udy
<A fx [Fludu for et A > 0 and oll f in L v dy).

h) There exists a positive measurable function u such that / (z:Q. fle)oa) B di
<A1 flvdy for all A > 0 and all f in LY{vdy).

1) infizov(Tiz) > 0 a.e.

Proof: Implications a) = d) and €) = f) are clear. d} implies e}, b} implies
g) and c) implies h) by Nikishin’s theorem (see [2] pages 536-537 and 3).
Nikishin’s theorem needs the continuity in measure of the operators M, P, and
Qv from L'(vdy) to L%(dy). This condition follows by theorem 1.1.1 in [4],
page 10,



ERGODIC AVERAGES AND POWER FUNCTIONS 469

£) = i) We may assume u < 1. Let k be a nonnegative integer. Let {B;}
be the sequence of sets associated to k by lemma 1. Fix i and let A be a
measurable subset of B;. Let R = Upcj<kT 7 A = UpgicenT 7 A Tt is clear
that R is contained in {z : Ag(xa){z) > C(E)}{k-+1)~'}. Then f), lemma 1 and
the fact that T is m.p.t. give

k k sf1)
w(T?zydp = / uwdp < C(i f wdp = C(i)/ u dpt
[r—*a =0 j;) T-iA )_,__ZD T—i4 R

< {k+ 1)/ vdp = (k+1) v(T*z) dp.
A A

T-k

The above inequality has been proved for a measurable subset A of B;. Since
X = U;B;, it is clear that the inequality is true for every measurable subset
A of X and therefore if Fy is the conditional expectation with respect to the
sub-g-algebra T~*F we have

k
E. | {(k+ 1)1 ZTju (z) < T*v(z) ae. z€ X.

=0
Taking lim inf when k tends to infinity, Birkhoff’s theorem and lemma 2 give

Eufz) < limk inf T*u(z) ae. z € X,

where Eu is the conditional expectation of u with respect to the sub-o-algebra
of the invariant sets.

Since Eu is positive a.e., we obtain infy>o v(T*z) > 0 ae. .

g) = i) We may assume # < 1. Let k be a natural number and {B:} be the
sequence of sets given by lemma 1. Fix 4 with s(i) > 0 and let A be contained in
B;. Let R= UOSjSkT‘jA = UDSjS,(,-)T“J'A. Let's see that R — A is contained
in {z: P(xa){x) = 1+ s())7*}.

Let y € R — A. There exists one and only one k with 0 < 2 < s{i) such that
Thy € A. Then

h h—1
Plxa)®) 2 |(R+ 173 xal@iy) =71 Y " xa(TPy) 2 14 (@)
=0

i=0

Therefore g) gives

A_Audus (1+S('£))A{Jdp.
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Since u € v we have
/ udp < (2+ s(z’))/ vy,
A A

Recall that we have been working with s(¢} > 0. But if 5(¢) = 0 the last
inequality is trivial. Then

k _ '
Joo e u <00 [ wds OGO [ vdu< a4 [ va

Now, the same argument used in the above implication gives i.

h) = 1) Let k, {B;}, A and R as in f) = i). It is easy to see that R is
contained in {z : Q,(xa){z) > (14 s(i))~1}. Then, the argument follows as in
£y = i).

i} = a} The proof of this implication can be seen in [7). We include it for
this section to be selfcontained.

Let By = {z : infizo v{T*z) < 27%}. By and X — By are invariant under T
and since v(z) > 27 on X — By we have that L1(X — By, vdy) is contained
in LY(X — By, dy). Then Birkhoff’s theorem shows that {AnSf} converges a.e.
on X — By for every f € LY(X — By,vdp). Since limg {Bi) = 0 by (i), we
obtain (a). _

Finally, i} = b) and i} = ¢) by the same argument that the above but using
theorems 3 and 2 respectively in place of Birkhoff’s theorem. W

4. Convergence of the averages and finiteness
of P, in the general case

Theorem 5. Let (X, F,v) be a finite measure space and let T: X — X

be o nuil-preserving transformation. The following statements are equivalent:
a) There exists a measure v equivalent to v such that

Yz € X/MF(z) > A}) < A1 fx |l dv

for every f € Li(dv).
b} There exists a measure vy equivalent to v such that

sup 7 ({z € X/AlFI(z) > A}) < A~ / \Fldv
n>0 X

for every f € L(dv). o
) {Anf} converges a.e. for every f € L' {(dv).
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d) Mf(z) < 00 a.e. for every f € LY(dv).
Moreover, if one of the above conditions holds, then G.f and P.f are finite
a.e. for every f € LY{dv).

Proof: Implications a) = b} and ¢} = d) are obvious. On the other hand,
a} follows from d) by Nikishin's theorem. We only have to prove b) = ¢).
Simultaneously, we will see that b) implies finiteness a.e. for @, and P..

From b) and Marcinkiewicz's interpolation theorem we have
(4.1) sup/ |Arf? dv < C/ |f|? dv for every f € L¥(dv).
Ex0Jtx '

Let L be a Banach’s limit (for instance see [6]) and define

;,;(E):L({fx Akxga"y}) (E e F).

i is well defined by (4.1). p is an invariant measure and it is absolutely con-
tinuous with respect to v. Let v be the Radon-Nikodym derivative du/dv, D =
{z:v{x) #0} and ¥ = Ny>gT™D. It is clear that u(X —Y) = 0 and Ty
applies Y in Y. Therefore we have that v|y is equivalent to the invariant mea-
sure ply. Then it follows by theorem 4 that the averages {Agf} converge and
MF, Q,f and P, f are finite a.c. () inY for every f € L'(dv).

To prove the a.e. (v) convergence of {Agf} and the finiteness of M f, Q. f
and P.f on X — Y we shall first statc that for almost all z (») in X there exists
n such that Tz € Y. If this property is not true, then there exists B with
¥(B) > 0 such that for every i, B is contained in 774X — Y). Then for every
k

k
1B) < (ke 7A@ -V = [ Axxov dy
=0 X
and the properties of Banach’s limits give -

HWB)<L ({/x Anxx-v d?}) = plX -Y) =g,

which goes against »{B) > 0 since v and v are equivalent.

Let £ be in X — ¥ and let n be an integer verifying 77z € Y. Let k > n;
Then

n—1 k
Apfl) = (k+1)7 (Z f(Tix)) +Hk—nt 1) (k+1) " k—nt 1)L Y F(T)

i=0 i=n

k n—1
and > (j+ DA <Y G+ DTIHTI)
5=0 =0

k
+ 3 G -nt+ DT
)
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Since T™x € Y and T applies ¥ in YV, when k tends to infinity we obtain
finite limits. Therefore, we have proved that {Agf(z}} converges a.e. and
that M f{z) and Q,f(z) are finite a.e. for every f in L(dv). Then, since
P.f < CM§f + Q, f we obtain the finiteness of F,.. B

Corollary. Let {X,F,v) be a finite measure space and let T : X — X be
a null-preserving transformation. If supgsg [|Akllt < oo then {Axf} converges
a.e. and M, Q. f and P, f are finite a.e. for every f € LY{dv).
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