WEIGHTED NORM INEQUALITIES FOR AVERAGING OPERATORS OF MONOTONE FUNCTIONS

C.J. NEUGEBAUER

Abstract

We prove weighted norm inequalities for the averaging operator $Af(x) = \frac{1}{x} \int_{0}^{x} f$ of monotone functions.

1. Introduction

This paper is concerned with weighted Hardy type inequalities of the form

$$(*) \qquad \int_0^\infty (\frac{1}{x} \int_0^x f)^p w(x) dx \le c \int_0^\infty f(x)^p v(x) dx.$$

Muckenhoupt [6] has given necessary and sufficient conditions for (*) to hold for arbitrary f.

In their paper [1] Ariño and Muckenhoupt studied the problem when the Hardy-Littlewood maximal operator is bounded on Lorentz spaces and observed that this leads to the study of (*) for non-increasing f. There are more weights in this case than for general f [1]. They solved the problem for w=v by the condition B_p , i.e., $w \in B_p$ if and only if $\int_r^\infty \left(\frac{r}{x}\right)^p w(x) dx \le c \int_0^r w(x) dx$, r > 0. The proof is rather lengthy and first establishes that B_p implies $B_{p-\epsilon}$ (Lemma 2.1 of [1]).

The purpose of this paper is

- (i) to give a much shorter proof of a somewhat more general version of (*) without B_p implies $B_{p-\epsilon}$,
- (ii) to prove then B_p implies $B_{p-\epsilon}$ using an iterated version of (*),
- (iii) to investigate the reverse inequalities

$$\int_0^\infty f(x)^p w(x) dx \le c \int_0^\infty (\frac{1}{x} \int_0^x f)^p v(x) dx,$$

- (iv) to study the same questions for non-decreasing functions, and finally
- (v) to present some properties of B_p -weights suggested by the analogous properties of A_p -weights as, e.g. the $A_1 \cdot A_1^{1-p}$ factorization of an A_p -weight [3].

We point out that the double weight inequality (*) has been characterized in a recent paper by E. Sawyer [7] for non-increasing functions with the q-norm of the averaging operator on the left and the p-norm on the right. It is also possible to prove some of our results by the methods developed in the paper by D.W. Boyd [2].

Throughout the paper we shall use the following notation. The symbol f
otag (f
otag) means $f: \mathbb{R}_+ \to \mathbb{R}_+$ non-decreasing (non-increasing). For f
otag we define $f^{-1}(t) = \inf\{\tau: f(\tau) \le t\}$ with an analogous statement for f
otag. In proving (*) for monotone functions we may restrict ourselves to homeomorphisms since a general monotone function can be approximated by homeomorphisms. For $0 < \tau < \infty$, let $\chi_{\tau}(x) = \chi_{[0,r]}(x)$ and $\chi^{\tau}(x) = \chi_{[\tau,\infty)}(x)$. By a weight w we mean any measurable $w: \mathbb{R}_+ \to \mathbb{R}_+$.

2. Non-increasing functions

For the norm inequalities for the averaging operator $Af(x) = \frac{1}{x} \int_0^x f$ we need the following lemma.

Lemma 2.1. Let $\varphi \downarrow$ and let W be a weight. Then

(i)
$$\int_0^\infty \int_0^\infty \chi_{\varphi(y)}(x) W(x) dx \, dy = \int_0^\infty \varphi^{-1}(x) W(x) dx$$

(ii)
$$\int_0^\infty \int_0^\infty \chi^{\varphi(y)}(x) \left(\frac{\varphi(y)}{x}\right)^p W(x) dx dy = \int_0^\infty \left\{ \frac{1}{x^p} \int_0^x \varphi^{-1}(u) d(u^p) - \varphi^{-1}(x) \right\} W(x) dx.$$

Proof: (i) We interchange the order of integration and get

$$\int_0^\infty \int_0^{\varphi^{-1}(x)} W(x) dy dx = \int_0^\infty \varphi^{-1}(x) W(x) dx.$$

(ii) The left side is, after interchanging the order of integration,

$$\int_0^\infty \int_{\varphi^{-1}(x)}^\infty \frac{W(x)}{x^p} (\varphi(y))^p dy \, dx$$

and the inner integral in y is

$$\int_{\varphi^{-1}(x)}^{\infty} (\varphi(y))^p dy = \int_0^{x^p} \varphi^{-1}(t^{1/p}) dt - x^p \varphi^{-1}(x)$$
$$= \int_0^x \varphi^{-1}(u) d(u^p) - x^p \varphi^{-1}(x).$$

This can be seen by comparing areas of the regions under the curve $t = (\varphi(y))^p$ or $y = \varphi^{-1}(t^{1/p})$.

Definition. For $1 \le p < \infty$ and n a positive integer we write $(w, v) \in B(p, n)$ if and only if there is $0 < c < \infty$ such that for every choice $0 < r_1, r_2, \dots, r_n < \infty$,

$$\int_0^\infty \left\{ \prod_1^n \left(\chi_{r_j}(x) + \chi^{r_j}(x) \left(\frac{r_j}{x} \right)^p \right) \right\} w(x) dx$$

$$\leq c \int_0^\infty \left\{ \prod_1^n \chi_{r_j}(x) \right\} v(x) dx.$$

Remark. (i) In case w = v, we simply write $w \in B(p, n)$.

(ii) If n = 1, then $(w, v) \in B(p, 1)$ means $\int_0^r w + \int_r^\infty \left(\frac{r}{x}\right)^p w(x) dx \le c \int_0^r v$, r > 0. Hence, if v = w, we get the equivalent condition

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} w(x) dx \le c \int_{0}^{r} w$$

introduced in [1] as B_p .

(iii) The smallest c in the above expressions will be referred to as the $B_p(w)$ -constant of w or the B(p, n)-constant of (w, v).

(iv) If we let $r_n \to \infty$ we see that $B(p,n) \subset B(p,n-1)$.

Theorem 2.2. Let $1 \le p < \infty$ and let $f_j \downarrow$, $j = 1, \dots, n$. Then

$$\int_0^\infty \left\{ \prod_1^n \left(\frac{1}{x} \int_0^x f_j \right)^p \right\} w(x) dx \le c \int_0^\infty \left\{ \prod_{j=1}^n f_j \left(\frac{1}{x} \int_0^x f_j \right)^{p-1} \right\} v(x) dx$$

if and only if $(w, v) \in B(p, n)$ with c equal to the B(p, n)-constant of (w, v).

Proof: If $f_j = \chi_{r_j}$, $j = 1, \dots, n$, then the norm inequality easily gives $(w, v) \in B(p, n)$. We do the converse for n = 2; the general case is obtained by repeating the argument.

Let $\varphi_j \downarrow$, j = 1, 2, and let $r_j = \varphi_j(y_j)$, where $0 < y_1, y_2 < \infty$. We next integrate the condition B(p, n) over $\{(y_1, y_2) : y_1, y_2 > 0\}$ and obtain

$$egin{aligned} L &\equiv \int_0^\infty \int_0^\infty \int_0^\infty \psi_1(x,y_1) \psi_2(x,y_2) w(x) dx \, dy_1 \, dy_2 \ &\leq c \int_0^\infty \int_0^\infty \int_0^\infty \chi_{oldsymbol{arphi}_1(y_1)}(x) \chi_{oldsymbol{arphi}_2(y_2)}(x) v(x) dx \, dy_1 \, dy_2 \equiv R, \end{aligned}$$

where
$$\psi_j(x,y_j) = \chi_{\varphi_j(y_j)}(x) + \chi^{\varphi_j(y_j)}(x) \left(\frac{\varphi_j(y_j)}{x}\right)^p$$
. By Lemma 2.1,
$$R = \int_0^\infty \int_0^\infty \varphi_1^{-1}(x) \chi_{\varphi_2(y_2)}(x) v(x) dx \, dy_2$$
$$= \int_0^\infty \varphi_1^{-1}(x) \varphi_2^{-1}(x) v(x) dx.$$

The inner 2 integrals of L can be written as

$$\int_{0}^{\infty} \int_{0}^{\varphi_{1}(y_{1})} \psi_{2}(x, y_{2}) w(x) dx dy_{1}$$

$$+ \int_{0}^{\infty} \int_{\varphi_{1}(y_{1})}^{\infty} \psi_{2}(x, y_{2}) \left(\frac{\varphi_{1}(y_{1})}{x}\right)^{p} w(x) dx dy_{1} = I_{1} + I_{2}.$$

By (i) of Lemma 2.1 with $W=\psi_2 w$, $I_1=\int_0^\infty \varphi_1^{-1}(x)\psi_2(x,y_2)w(x)dx$. Similarly, by (ii) of Lemma 2.1,

$$I_2 = \int_0^\infty \left\{ \frac{1}{x^p} \int_0^x \varphi_1^{-1}(u) d(u^p) - \varphi_1^{-1}(x) \right\} \psi_2(x, y_2) w(x) dx.$$

Hence $I_1 + I_2 = \int_0^\infty \left\{ \frac{1}{x^p} \int_0^x \varphi_1^{-1}(u) d(u^p) \right\} \psi_2(x, y_2) w(x) dx$. We integrate this expression in y_2 and repeat the argument to get

$$L = \int_0^{\infty} \left\{ \frac{1}{x^p} \int_0^x \varphi_1^{-1}(u) d(u^p) \right\} \left\{ \frac{1}{x^p} \int_0^x \varphi_2^{-1}(u) d(u^p) \right\} w(x) dx.$$

We thus obtain

$$\int_{0}^{\infty} \left\{ \frac{1}{x^{p}} \int_{0}^{x} \varphi_{1}^{-1}(u) d(u^{p}) \right\} \left\{ \frac{1}{x^{p}} \int_{0}^{x} \varphi_{2}^{-1}(u) d(u^{p}) \right\} w(x) dx$$

$$\leq c \int_{0}^{\infty} \varphi_{1}^{-1}(x) \varphi_{2}^{-1}(x) v(x) dx.$$

We remark here that the constant c is the same as the c in B(p, 2).

We now let $\varphi_j^{-1}(u) = f_j(u) \left(\frac{1}{u} \int_0^u f_j\right)^{p-1}$, j = 1, 2, and observe that

$$\begin{split} \frac{1}{x^p} \int_0^x \varphi_j^{-1}(u) d(u^p) &= p \frac{1}{x^p} \int_0^x f_j(u) \left(\int_0^u f_j \right)^{p-1} du \\ &= \frac{1}{x^p} \left(\int_0^x f_j \right)^p. \end{split}$$

This completes the proof of Theorem 2.2. ■

Remark. It may be of interest to point out that there is an easy condition for equality in Theorem 2.2. Let

(i)
$$\int_0^\infty Af^p w = \int_0^\infty f Af^{p-1} v,$$

(ii)
$$v(t) = pt^{p-1} \int_{1}^{\infty} \frac{w(x)}{x^p} dx$$
.

If (i) holds for $f\downarrow$, then (ii) follows. Simply let $f=\chi_t$ and differentiate the resulting equation $\int_0^t v = \int_0^t w + \int_t^\infty \left(\frac{t}{x}\right)^p w(x) dx$. Conversely, if (ii) holds, then (i) is valid for any $f: \mathbb{R}_+ \to \mathbb{R}_+$. This can be seen by replacing v in (i) by (ii) and then integrating by parts.

We state the special case p = 1 of Theorem 2.2 as

Corollary 2.3. If $f_j \downarrow$, $j = 1, \dots, n$, then

$$\int_0^\infty \left\{ \prod_1^n \left(\frac{1}{x} \int_0^x f_j \right) \right\} w(x) dx \le c \int_0^\infty \left\{ \prod_{j=1}^n f_j(x) \right\} v(x) dx$$

if and only if $(w, v) \in B(1, n)$.

The case w = v of Theorem 2.2 yields as a special case the Ariño-Muckenhoupt weighted norm inequality for non-increasing functions [1].

Corollary 2.4. Let $1 \le p < \infty$ and $f_j \downarrow$, $j = 1, \dots, n$. Then

$$\int_0^\infty \left\{ \prod_{j=1}^n \left(\frac{1}{x} \int_0^x f_j \right)^p \right\} w(x) dx \le c \int_0^\infty \left\{ \prod_{j=1}^n f_j(x)^p \right\} w(x) dx$$

if and only if $w \in B(p, n)$.

Proof: The necessity follows from $f_j = \chi_{r_j}$, and for the sufficiency we apply Theorem 2.2 and use Hölder's inequality to obtain

$$\int_0^\infty \left\{ \prod_{j=1}^n f_j \right\} \cdot \prod_{j=1}^n \left(\frac{1}{x} \int_0^x f_j \right)^{p-1} w(x) dx$$

$$\leq \left\{ \int_0^\infty \left\{ \prod f_j \right\}^p w \right\}^{1/p} \left\{ \int_0^\infty \left\{ \prod_{j=1}^n \left(\frac{1}{x} \int_0^x f_j \right)^p \right\} w \right\}^{1/p'}.$$

Divide by the last factor to obtain the norm inequality.

Remark. (i) For a single weight the conditions B(p,n) and B_p are equivalent, i.e., $w \in B(p,n)$ iff $w \in B_p$. Since the implication $B(p,n) \subset B_p$ was

already observed in (iv) of the previous remark, we only need to show that $B_p \subset B(p,n)$. It is clear that if $u \downarrow$ and $w \in B_p$, then $uw \in B_p$. Let now $f_j \downarrow$, j = 1, 2, and let $w \in B_p$. Then $Af_2(x)^p w(x) \in B_p$, and hence

$$\int_0^\infty Af_1^p Af_2^p w \le c \int_0^\infty f_1^p Af_2^p w.$$

Since $f_1^p w \in B_p$, we can continue this inequality $\leq c \int_0^\infty f_1^p f_2^p w$, i.e., $w \in B(p,2)$.

(ii) Results related to the above Corollaries can also be found in [2].

We will now show that an iterated version of Corollary 2.4 provides a short proof of B_p implies $B_{p-\epsilon}$, the basic Lemma in [1]. Similar ideas for the Hardy-Littlewood maximal operator and the " A_p implies $A_{p-\epsilon}$ " case can be found in [4],[5].

Theorem 2.5. Let $1 \le p < \infty$ and let $w \in B(p,1)$. Then there is $\epsilon > 0$ such that $w \in B(p-\epsilon,1)$.

Proof: Fix r>0 and let $f=\chi_r$. If $A_nf(x)$ is the *n*-times iterated averaging operator, i.e., $A_0f(x)=f(x)$, $A_1f(x)=\frac{1}{x}\int_0^x f,\cdots$, then for $n\geq 1$,

$$A_n f(x) = \begin{cases} 1, & 0 < x \le r \\ \frac{r}{x} \sum_{i=0}^{n-1} \frac{1}{j!} \log^j \left(\frac{x}{r}\right), & x > r. \end{cases}$$

Since $w \in B(p, 1)$ we have from Corollary 2.4,

$$\int_0^\infty A_n f(x)^p w(x) dx \le c^n \int_0^\infty f(x)^p w(x) dx$$
$$= c^n \int_0^r w(x) dx.$$

For x > r,

$$A_n f(x)^p = \left(\frac{r}{x}\right)^p \left(\sum_{j=0}^{n-1} \frac{1}{j!} \log^j \left(\frac{x}{r}\right)\right)^p$$

$$\geq \left(\frac{r}{x}\right)^p \left(\sum_{j=0}^{n-1} \frac{1}{j!} \log^j \left(\frac{x}{r}\right)\right) \geq \left(\frac{r}{x}\right)^p \frac{1}{(n-1)!} \log^{n-1} \left(\frac{x}{r}\right),$$

where the next to the last inequality follows since $\sum_{j=0}^{n-1} \ge 1$. We substitute this in our norm inequality and get

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} \frac{1}{(n-1)!} \log^{n-1} \left(\frac{x}{r}\right) w(x) dx \le c^{n} \int_{0}^{r} w(x) dx.$$

Let s > c. Then

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(\frac{\log \frac{x}{r}}{s}\right)^{n-1} w(x) dx \le C \int_{0}^{r} w(x) dx$$

QΓ

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p-1/s} w(x) dx \le C \int_{0}^{r} w(x) dx,$$

i.e.
$$w \in B\left(p - \frac{1}{s}, 1\right)$$
.

3. The case n = 1 and reverse inequalities

We begin by asking for which averaging operator is $(w,v) \in B(p,1)$ a necessary and sufficient condition for a weighted norm inequality. The case p=1 is handled by Corollary 2.3 with $Af(x)=\frac{1}{x}\int_0^x f$. For $1 \le p < \infty$ we define

$$A_p f(x) = \left\{ \frac{1}{x^p} \int_0^x f(u)^p d(u^p) \right\}^{1/p}.$$

Theorem 3.1. If $f \downarrow and 1 \leq p < \infty$, then

$$\int_0^\infty A_p f(x)^p w(x) dx \le c \int_0^\infty f(x)^p v(x) dx$$

if and only if $(w, v) \in B(p, 1)$.

Proof: The necessity follows by taking $f = \chi_r$.

For the sufficiency simply let $\varphi^{-1}(u) = f(u)^p$ in the proof of Theorem 2.2. We will now characterize the weights (w, v) for which the reverse inequality

$$\int_0^\infty f(x)^p w(x) dx \le c \int_0^\infty \left(\frac{1}{x} \int_0^x f\right)^p v(x) dx$$

holds for $f \downarrow$.

Theorem 3.2. Let $f \downarrow$ and $1 \leq p < \infty$. Then

$$\int_0^\infty f(x)^p w(x) dx \le c \int_0^\infty \left(\frac{1}{x} \int_0^x f\right)^p v(x) dx$$

if and only if $\int_0^r w \le c \left(\int_0^r v + \int_r^\infty \left(\frac{r}{x} \right)^p v(x) dx \right)$, r > 0, with the same c.

Proof: The necessity follows with $f = \chi_r$. For the sufficiency, let $\varphi \downarrow$ and let $r = \varphi(y)$. Then as in the proof of Theorem 2.2,

$$\int_0^\infty \int_0^{\varphi(y)} w(x) dx \, dy = \int_0^\infty \varphi^{-1}(x) w(x) dx$$

and

$$\int_{0}^{\infty} \int_{0}^{\varphi(y)} v(x) dx \, dy + \int_{0}^{\infty} \int_{\varphi(y)}^{\infty} \frac{w(x)}{x^{p}} (\varphi(y))^{p} dx \, dy$$

$$= \int_{0}^{\infty} \varphi^{-1}(x) v(x) dx + \int_{0}^{\infty} \frac{1}{x^{p}} \int_{0}^{x} \varphi^{-1}(u) d(u^{p}) v(x) dx$$

$$- \int_{0}^{\infty} \varphi^{-1}(x) v(x) dx = \int_{0}^{\infty} \frac{1}{x^{p}} \int_{0}^{x} \varphi^{-1}(u) d(u^{p}) v(x) dx.$$

We let now $\varphi^{-1}(u) = f(u) \left(\frac{1}{u} \int_0^u f\right)^{p-1}$ and obtain

$$\int_0^\infty f(x) \left(\frac{1}{x} \int_0^x f\right)^{p-1} w(x) dx \le c \int_0^\infty \left(\frac{1}{x} \int_0^x f\right)^p v(x) dx.$$

We complete the proof by noting that $\frac{1}{x} \int_0^x f \ge f(x)$ since $f \downarrow . \blacksquare$

We will now characterize the single weights, i.e., w = v, for which the above reverse inequality holds for a given 0 < c < 1.

Theorem 3.3. The following statements are equivalent for $f \downarrow$, 0 < c < 1, $1 , and <math>w \in L^1_{loc}(\mathbb{R}_+)$.

$$(1) \int_0^\infty f^p w \le c \int_0^\infty A f^p w$$

(2)
$$B_{p'}(w(y^{1-p'})) \leq \frac{c}{1-c}$$

Proof: (1) \rightarrow (2). If $f = \chi_r$ we get

$$\int_0^r w \le c \left(\int_0^r w + \int_r^\infty \left(\frac{r}{x} \right)^p w(x) dx \right).$$

We let $x = y^{1-p'}$ and get

$$\int_0^r w(x)dx = (p'-1) \int_{r^{1-p}}^\infty w(y^{1-p'}) \frac{dy}{y^{p'}},$$

$$r^p \int_0^\infty \frac{w(x)}{x^p} dx = (p'-1)r^p \int_0^{r^{1-p}} w(y^{1-p'}) dy.$$

Hence

$$(1-c)(p'-1)\int_{r^{1-p}}^{\infty}w(y^{1-p'})\frac{dy}{y^{p'}}\leq c(p'-1)r^p\int_0^{r^{1-p}}w(y^{1-p'})dy.$$

If we set $\rho = r^{1-p}$, then $r^p = \frac{1}{\rho^{p'}}$ and (2) follows.

(2) \rightarrow (1). We have

$$\int_{r}^{\infty} \left(\frac{r}{y}\right)^{p'} w(y^{1-p'}) dy \le \frac{c}{1-c} \int_{0}^{r} w(y^{1-p'}) dy.$$

Let $y = x^{1-p}$. Then, again

$$\int_{\tau}^{\infty} \left(\frac{\tau}{y}\right)^{p'} w(y^{1-p'}) dy = \tau^{p'}(p-1) \int_{0}^{\tau^{1-p'}} w(x) dx$$
$$\int_{0}^{\tau} w(y^{1-p'}) dy = (p-1) \int_{\tau^{1-p'}}^{\infty} \frac{w(x)}{x^{p}} dx.$$

Thus, with $\rho = r^{1-p'}$ we get

$$\int_0^\rho w(x)dx \le \frac{c}{1-c} \int_0^\infty \left(\frac{\rho}{x}\right)^p w(x)dx.$$

We add $\frac{c}{1-c}\int_{0}^{\rho}w$ to both sides and get

$$\int_0^\rho w \le c \left(\int_0^\rho w + \int_\rho^\infty \left(\frac{\rho}{x} \right)^\rho w(x) dx \right).$$

Apply now Theorem 3.2. ■

Remark. (2) of Theorem 3.3 reminds one of the duality $w \in A_p$ iff $w^{1-p'} \in A_{p'}$.

4. Non-decreasing functions

We will not dwell on the straightforward results of $f \uparrow$ that one gets from our previous results via the change of variables $x \to \frac{1}{x}$. In particular we have

Theorem 4.1. If $f \uparrow and 1 \leq p < \infty$, then

$$\int_0^\infty \left(x \int_x^\infty f(u) \frac{du}{u^2}\right)^p w(x) dx \le c \int_0^\infty f(x)^p w(x) dx$$

if and only if $\int_0^r \left(\frac{x}{r}\right)^p w(x)dx \le c \int_r^\infty w(x)dx$, r > 0.

In order to see what type of results one has for the averaging operator $\frac{1}{x} \int_0^x f$ for $f \uparrow$ we need a lemma similar to Lemma 2.1.

Lemma 4.2. Let $\varphi \uparrow$ with $\varphi(0) = 0$, and let W be a weight. Then

(i)
$$\int_0^\infty \int_0^\infty \chi^{\varphi(y)}(x)W(x)dx\,dy = \int_0^\infty \varphi^{-1}(x)W(x)dx$$

(ii)
$$\int_0^\infty \int_0^\infty \chi^{\varphi(y)}(x) \left(\frac{x - \varphi(y)}{x}\right)^p W(x) dx dy \\ = \int_0^\infty \left\{\frac{1}{x^p} \int_0^x \varphi^{-1}(x - u) d(u^p)\right\} W(x) dx.$$

Proof: For (i) we simply interchange the order of integration. The left side of (ii) is $\int_0^\infty \int_0^{\varphi^{-1}(x)} \frac{W(x)}{x^p} (x - \varphi(y))^p dy dx$ and the inner integral is the same as

$$\int_0^{x^p} \varphi^{-1}(x-t^{1/p})dt = \int_0^x \varphi^{-1}(x-u)d(u^p),$$

as can be seen by interpreting the integral as area under $t=(x-\varphi(y))^p$.

Definition. Let n be a positive integer and $1 \le p < \infty$. We say that $(w, v) \in C(p, n)$ if and only if there is $0 < c < \infty$ such that for every choice $0 < r_1, r_2, \dots, r_n < \infty$,

$$\int_0^\infty \bigg\{ \prod_{j=1}^n \chi^{r_j}(x) \bigg\} w(x) dx \le c \int_0^\infty \bigg\{ \prod_{j=1}^n \chi^{r_j}(x) \bigg(\frac{x-r_j}{x} \bigg)^p v(x) dx.$$

Theorem 4.3. Let $f_i \uparrow$, $j = 1, \dots, n$. Then

$$\int_0^\infty \left\{ \prod_1^n f_j(x) \right\} w(x) dx \le c \int_0^\infty \left\{ \prod_1^n \left(\frac{1}{x} \int_0^x f_j \right) \right\} v(x) dx$$

if and only if $(w, v) \in C(1, n)$.

Proof: The necessity follows by taking $f_j = \chi^{r_j}$. As in Theorem 2.2 we prove the converse for n = 2; the general case is obtained by repeating the argument. We let $\varphi_j \uparrow$, $\varphi_j(0) = 0$, and $r_j = \varphi_j(y_j)$, j = 1, 2, where $0 < y_1, y_2 < \infty$. We next integrate the C(1, n) condition over all such (y_1, y_2) and obtain

$$L \equiv \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \chi^{\varphi_1(y_1)}(x) \chi^{\varphi_2(y_2)}(x) w(x) dx \, dy_1 \, dy_2$$

$$\leq c \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \psi_1(x, y_1) \psi_2(x, y_2) v(x) dx \, dy_1 \, dy_2 \equiv R,$$

where $\psi_j(x,y_j) = \chi^{\varphi_j(y_j)}(x) \left(\frac{x-\varphi_j(y_j)}{x}\right)$. By (i) of Lemma 4.2,

$$L = \int_0^\infty \varphi_2^{-1}(x)\varphi_1^{-1}(x)w(x)dx,$$

and by (ii) with p = 1,

$$R = \int_0^\infty \left(\frac{1}{x} \int_0^x \varphi_1^{-1}\right) \left(\frac{1}{x} \int_0^x \varphi_2^{-1}\right) v(x) dx.$$

From this we get the theorem by letting $\varphi_j^{-1}(t) = f_j(t)$ if $f_j(0) = 0$. Otherwise, let $\epsilon_n(x) = nx$, if $0 \le x \le \frac{1}{n}$, and $\epsilon_n(x) = 1$, $x > \frac{1}{n}$. If $\varphi_{j,n}^{-1}(t) = \epsilon_n(t)f_j(t)$, then we get the weighted norm inequality for $\epsilon_n f_j$, and the final result by letting $n \to \infty$.

Corollary 4.4. Let $f \uparrow$ and n a positive integer. Then

$$\int_0^\infty f(x)^n w(x) dx \le c \int_0^\infty \left(\frac{1}{x} \int_0^x f\right)^n v(x) dx$$

if and only if $(w, v) \in C(1, n)$.

Proof: If $(w, v) \in C(1, n)$, then the inequality follows from Theorem 4.3 by letting $f_1 = f_2 = \cdots = f_n$. Conversely, let $f = \prod_{i=1}^n \chi^{r_j}$. Then $f = f^n$ and by Hölder's inequality

$$\left(\frac{1}{x}\int_0^x f\right)^n \le \prod_1^n \left(\frac{1}{x}\int_0^x \chi^{r_j}\right) = \prod_1^n \chi^{r_j}(x) \left(\frac{x-r_j}{x}\right). \quad \blacksquare$$

Remark. We were unable to find a characterization of

$$\int_0^\infty f(x)^p w(x) dx \le c \int_0^\infty \left(\frac{1}{x} \int_0^x f\right)^p v(x) dx$$

for $f \uparrow$ and p not a positive integer. However, as we shall see, $(w, v) \in C(p, 1)$ controls the averaging operator

$$A_p f(x) = \frac{1}{x^p} \int_0^x f(x-u) d(u^p).$$

We observe that, when p is a positive integer, then $\int_0^x f(x-u)d(u^p)$ is, apart from a multiplicative constant, the p-times iterated integral of f.

Theorem 4.5. Let $f \uparrow$ and $1 \le p < \infty$. Then

(i)
$$\int_0^\infty A_p f(x) w(x) dx \le c \int_0^\infty f(x) v(x) dx$$
 if and only if $\int_r^\infty \left(\frac{x-r}{x}\right)^p w(x) dx \le c \int_r^\infty v(x) dx$, $r > 0$.

(ii)
$$\int_0^\infty f(x)w(x)dx \le c \int_0^\infty A_p f(x)v(x)dx$$
 if and only if $\int_r^\infty w(x)dx \le c \int_r^\infty \left(\frac{x-r}{x}\right)^p v(x)dx$, $r > 0$, i.e., $(w,v) \in C(p,1)$.

Proof: (i) For the necessity let $f = \chi^r$. To prove the sufficiency, let $\varphi \uparrow$, $\varphi(0) = 0$, and $r = \varphi(y)$, $0 < y < \infty$. Then

$$L \equiv \int_0^\infty \int_{\varphi(y)}^\infty \frac{w(x)}{x^p} (x - \varphi(y))^p dx \, dy \le c \int_0^\infty \int_{\varphi(y)}^\infty v(x) dx \, dy \equiv R.$$

By Lemma 4.2, $R = \int_0^\infty \varphi^{-1}(x)v(x)dx$ and

$$L = \int_0^\infty \left\{ \frac{1}{x^p} \int_0^x \varphi^{-1}(x-u) d(u^p) \right\} w(x) dx.$$

The proof can be completed by letting $\varphi^{-1}(x) = f(x)$ if f(0) = 0; otherwise let $\varphi^{-1}(x) = \epsilon_n(x)f(x)$ as in the proof of Theorem 4.3.

The proof of (ii) is the same as the one for (i).

5. More properties of weights

We begin with a "change of variables" result for B_p -weights.

Theorem 5.1. If $1 < q < p < \infty$ and $w \in B_q$, then $w\left(x^{\frac{p-1}{q-1}}\right) \in B_p$.

Proof: We set
$$I_r = \int_r^\infty \left(\frac{r}{x}\right)^p w\left(x^{\frac{p-1}{q-1}}\right) dx$$
 and let $u = x^\alpha$, $\alpha = \frac{p-1}{q-1}$. Then
$$I_r = c \int_{r^\alpha}^\infty \left(\frac{r}{u^{1/\alpha}}\right)^p w(u) u^{\frac{1-\alpha}{\alpha}} du$$
$$= c \int_{-\alpha}^\infty \frac{r^p}{u^{(p+\alpha-1)/\alpha}} w(u) du.$$

We observe that $(p + \alpha - 1)/\alpha = q$ and so

$$I_r = \int_{r^{\alpha}}^{\infty} \left(\frac{r^{\alpha}}{u}\right)^q w(u) du \cdot r^{p - \alpha q}.$$

Since $w \in B_q$ and $p - \alpha q = \frac{q - p}{q - 1} < 0$, we see that

$$\begin{split} I_r & \leq c r^{\frac{q-p}{q-1}} \int_0^{r^{\alpha}} w(u) du = c r^{1-\alpha} \int_0^r w(x^{\alpha}) x^{\alpha-1} dx \\ & \leq c \int_0^r w(x^{\alpha}) dx. \ \blacksquare \end{split}$$

The case q = 1 yields a slightly stronger result which we state as

Theorem 5.2. If $w \in B_1$ and $\alpha \geq 1$, then $w(x^{\alpha}) \in B_1$ with $B_1(w) = B_1(w(x^{\alpha}))$.

Proof: If
$$I_r = \int_r^{\infty} \left(\frac{r}{x}\right) w(x^{\alpha}) dx$$
 and $u = x^{\alpha}$, then
$$I_r = \frac{1}{\alpha} \int_{r^{\alpha}}^{\infty} \left(\frac{r}{u^{1/\alpha}}\right) w(u) u^{1/\alpha^{-1}} du = \frac{r^{1-\alpha}}{\alpha} \int_{r^{\alpha}}^{\infty} \left(\frac{r^{\alpha}}{u}\right) w(u) du$$

$$\leq c r^{1-\alpha} \int_0^r w(x^{\alpha}) x^{\alpha-1} dx \leq c \int_0^r w(x^{\alpha}) dx,$$

since $\alpha \ge 1$.

The next result reminds one of the important A_p -property, i.e., $w \in A_p \to w^{\tau} \in A_p$ for some $\tau > 1$.

Theorem 5.3. If $w \in B_p$, then there is $\epsilon > 0$ such that $x^{\epsilon}w(x^{1+\epsilon}) \in B_p$.

Proof: Choose $\epsilon > 0$ so that $w \in B_{p/1+\epsilon}$ (Theorem 2.5), and note that

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} x^{\epsilon} w(x^{1+\epsilon}) dx = \frac{1}{1+\epsilon} \int_{r^{1+\epsilon}}^{\infty} \frac{r^{p}}{u^{p/1+\epsilon}} w(u) du$$

$$= \frac{1}{1+\epsilon} \int_{r^{1+\epsilon}}^{\infty} \left(\frac{r^{1+\epsilon}}{u}\right)^{p/1+\epsilon} w(u) du \le \frac{c}{1+\epsilon} \int_{0}^{r^{1+\epsilon}} w(u) du$$

$$= c \int_{0}^{r} x^{\epsilon} w(x^{1+\epsilon}) dx. \blacksquare$$

Corollary 5.4. If $w \in B_p$, then there is $\epsilon > 0$ such that $w(x^{1+\epsilon}) \in B_p$.

We are now ready to present a factorization theorem for B_p -weights similar to the factorization of $w \in A_p$ as $w = uv^{1-p}$, $u, v \in A_1$.

Theorem 5.5. The following statements are equivalent for 1 .

(1) $w \in B_p$

(2)
$$w(x) = u(x) \cdot x^{p-1}$$
 with $u(x^{1/p}) \in B_1$.

Proof: (1) \rightarrow (2). All we need to show is that $\frac{w(x^{1/p})}{x^{1/p'}} \equiv u(x^{1/p})$ is in B_1 , and this follows from

$$\int_{r}^{\infty} \left(\frac{r}{x}\right) \frac{w(x^{1/p})}{x^{1/p'}} = c \int_{r^{1/p}}^{\infty} \left(\frac{r}{t^{p}}\right) \frac{w(t)}{t^{p/p'}} t^{p-1} dt$$

$$= c \int_{r^{1/p}}^{\infty} \left(\frac{r^{1/p}}{t}\right)^{p} w(t) dt \le c \int_{0}^{r^{1/p}} w(t) dt = c \int_{0}^{r} w(t^{1/p}) / t^{1/p'} dt.$$

 $(2) \rightarrow (1)$. This is simply

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} u(x) x^{p-1} dx = \frac{1}{p} \int_{r^{p}}^{\infty} \left(\frac{r}{t^{1/p}}\right)^{p} u(t^{1/p}) dt$$
$$= \frac{1}{p} \int_{r^{p}}^{\infty} \left(\frac{r^{p}}{t}\right) u(t^{1/p}) dt \le \frac{c}{p} \int_{0}^{r^{p}} u(t^{1/p}) dt =$$
$$c \int_{0}^{r} u(x) x^{p-1} dx. \blacksquare$$

Remark. By Theorem 5.2, if $u(x^{1/p}) \in B_1$, then $u(x) \in B_1$. Thus (2) can be written as $w = u \cdot \left(\frac{1}{x}\right)^{1-p}$, with $u \in B_1$. It is also clear that $\frac{1}{x} \in B_1$.

6. Weak type weights

We say that $w \in R_p$ iff $w\{A\chi_r > y\} \le \frac{c}{y^p} \int_0^r w$, r > 0, and we say that $w \in W_p$ iff for $f \downarrow$, $w\{Af > y\} \le \frac{c}{y^p} \int_0^\infty f^p w$. The "R" in R_p stands for "restricted".

We will study relationships among R_p , W_p , and B_p , and give a characterization of B_p .

Theorem 6.1. $w \in R_p$ iff there is $0 < c < \infty$ so that for $0 < r < s < \infty$,

$$\frac{1}{s^p} \int_0^s w \le c \frac{1}{r^p} \int_0^r w.$$

Proof: First assume that $w \in R_p$. The set $\{A\chi_r > y\} = (0, x_0)$, where $\frac{r}{x_0} = y$, 0 < y < 1. Hence $\int_0^{r/y} w \le \frac{c}{y^p} \int_0^r w$ from which

$$\frac{1}{s^p}\int_0^s w \leq \frac{c}{r^p}\int_0^r w, \quad s = \frac{r}{y} > r.$$

Conversely, for 0 < y < 1, with the same notation as above,

$$\begin{split} w\{A\chi_r > y\} &= \int_0^{x_0} w = \frac{1}{y^p} \left(\frac{r}{x_0}\right)^p \int_0^{x_0} w \\ &\leq \frac{c}{y^p} \int_0^r w. \ \blacksquare \end{split}$$

The next result shows how R_p and B_q are related.

Theorem 6.2. If $w \in R_p$, then $w \in B_q$ for q > p.

Proof: From Theorem 6.1, for s > r,

$$\left(\frac{r}{s}\right)^p \int_0^s w \le c \int_0^r w.$$

Let
$$t = \frac{r}{s}$$
. Then $t^p \int_0^{r/t} w \le c \int_0^r w$, or, if $0 < \epsilon < 1$,

$$t^{p-\epsilon} \int_0^{r/t} w \leq c t^{-\epsilon} \int_0^r w, \quad 0 < t \leq 1.$$

Hence

$$L \equiv \int_0^1 t^{p-\epsilon} \int_0^{r/t} w(x) dx dt \le c_\epsilon \int_0^r w.$$

We interchange the order of integration and see that

$$L \ge \int_r^\infty \int_0^{r/x} w(x) t^{p-\epsilon} dt dx = c \int_r^\infty w(x) (\frac{r}{x})^{p+1-\epsilon} dx.$$

Thus $w \in B_q$, $q = p + 1 - \epsilon$.

Example. Let w(x) = x. Then $w \in R_2$ but not in W_2 and thus not in B_2 . For let $f(x) = \frac{1}{x \log \frac{1}{x}} \cdot \chi_{\frac{1}{x}}(x)$. Then $w\{Af > y\} = \infty$, but $\int f^2 w = \int_0^{1/e} \frac{dx}{x \log^2 \frac{1}{x}} < \infty$.

We will now show that the condition of Theorem 6.1 which characterizes R_p will, if slightly modified, characterize B_p . We begin with

Lemma 6.3. Assume there exists $1 < a < \infty$ and $0 < c = c_a < 1$ such that $\frac{1}{(ax)^p} \int_0^{ax} w \le c \frac{1}{x^p} \int_0^x w, \ x > 0$. Then $w \in B_p$.

Proof: For $0 < N < \infty$, let $w_N = w\chi_N$. Then w_N satisfies the same hypothesis as w with a constant $c = \max(c_a, 1/a^p) < 1$.

We have then $\frac{1}{a^p x^{p+1}} \int_0^{ax} w_N \le \frac{c}{x^{p+1}} \int_0^x w_N$. Hence for $0 < r < \infty$ fixed,

$$L \equiv \frac{1}{a^p} \int_r^{\infty} \frac{1}{x^{p+1}} \int_0^{ax} w_N(t) dt dx \le c \int_r^{\infty} \frac{1}{x^{p+1}} \int_0^x w_N(t) dt dx \equiv R.$$

We interchange the order of integration and see that

$$\begin{split} L &\geq \frac{1}{a^{p}} \int_{ar}^{\infty} \int_{t/a}^{\infty} w_{N}(t) \frac{dx}{x^{p+1}} dt = \frac{1}{p} \int_{ar}^{\infty} \frac{w_{N}(t)}{t^{p}} dt, \\ R &= c \{ \int_{0}^{r} \int_{r}^{\infty} w_{N}(t) \frac{dx}{x^{p+1}} dt + \int_{r}^{\infty} \int_{t}^{\infty} w_{N}(t) \frac{dx}{x^{p+1}} dt \} \\ &= c \{ \frac{1}{p} \int_{0}^{r} \frac{w_{N}(t)}{r^{p}} + \frac{1}{p} \int_{r}^{\infty} \frac{w_{N}(t)}{t^{p}} dt \}. \end{split}$$

The last integral $\int_r^\infty \frac{w_N(t)}{t^p} \ dt = \left(\int_r^{ar} + \int_{ar}^\infty\right) \frac{w_N(t)}{t^p} \ dt \leq \frac{1}{r^p} \int_r^{ar} w_N(t) dt + \int_{ar}^\infty \frac{w_N(t)}{t^p} \ dt. \text{ Hence } R \leq c \{ \frac{1}{p} \int_0^{ar} \frac{w_N(t)}{r^p} \ dt + \frac{1}{p} \int_{ar}^\infty \frac{w_N(t)}{t^p} \ dt \}.$

From this we obtain,

$$\frac{1}{p}(1-c)\int_{ar}^{\infty}\frac{w_N(t)}{t^p}\ dt \leq \frac{c}{pr^p}\int_0^{ar}w_N(t)dt$$

or

$$\int_{ar}^{\infty} \left(\frac{ar}{t}\right)^p w_N(t)dt \leq \frac{ca^p \cdot p}{1-c} \int_0^{ar} w_N(t)dt.$$

We complete the proof by letting $N \to \infty$.

Theorem 6.4. Assume that $w \in L^1_{loc}(\mathbb{R}_+)$. Then $w \in B_p$ iff $0 < \epsilon < 1$ implies the existence of $a_{\epsilon} > 1$ such that for x > 0,

$$\frac{1}{a^p x^p} \int_0^{ax} w \le \epsilon \frac{1}{x^p} \int_0^x w, \quad a \ge a_{\epsilon}.$$

Proof: By Lemma 6.3 we only need to prove the necessity. By Theorem 2.5, there is $\eta > 0$ such that $w \in B_{p-\eta}$. Thus for a > 1,

$$\frac{\frac{1}{a^p x^p} \int_0^{ax} w}{\frac{1}{\tau^p} \int_0^{x} w} = \frac{\frac{1}{(ax)^{p-\eta}} \int_0^{ax} w}{\frac{1}{\tau^{p-\eta}} \int_0^{x} w} \cdot \left(\frac{1}{a}\right)^{\eta}.$$

Since $w \in B_{p-\eta} \subset R_{p-\eta}$, by Theorem 6.1 the first factor $\leq c$ and the proof is complete.

As an application of Theorem 6.4 we will prove

Theorem 6.5. Let $w \in B_p$ and $W(x) = \int_0^x w$. Then for $0 < \alpha < \infty$, $W^{\alpha} \in B_{\alpha p+1}$.

Proof: We do $\alpha = 1$ first. Let $0 < \epsilon < \frac{1}{p+1}$. Then for $a \ge a_{\epsilon} > 1$ we have $\frac{x^{p}}{(ar)^{p}} \int_{0}^{ar} w \le \epsilon \int_{0}^{x} w = \epsilon W(x), \ 0 < x \le r. \text{ Thus}$

$$L \equiv \int_0^r rac{x^p}{(ar)^p} \int_0^{ar} w \leq \epsilon \int_0^r W(x) dx,$$

and

$$L = \frac{1}{(p+1)} \frac{r^{p+1}}{(ar)^p} W(ar) = \frac{1}{(p+1)} \frac{1}{a^{p+1}} (ar) W(ar)$$
$$\geq \frac{1}{p+1} \frac{1}{a^{p+1}} \int_0^{ar} W,$$

and so $W \in B_{p+1}$.

For the general case, since

$$W^{\alpha}(x) = \alpha \int_0^x W^{\alpha - 1} w,$$

we only need to verify that $W^{\alpha-1}w \in B_{\alpha p}$. For some 0 < c < 1 and a > 1 we have

$$\frac{1}{a^{p\alpha}} \int_0^{ax} W^{\alpha - 1} w = \frac{1}{\alpha a^{p\alpha}} W^{\alpha}(ax) \le \frac{1}{\alpha} c W^{\alpha}(x)$$
$$= c \int_0^x W^{\alpha - 1} w. \quad \blacksquare$$

7. The equality $W_p = B_p$

In this final section we will prove that $W_p = B_p$ for $1 , a situation quite analogous to the <math>A_p$ -case. I am indebted to Richard Bagby for the original proof of this property. We will present a somewhat simplified version based on some of our previous results. For the definitions of R_p , W_p see the beginning of section 6.

Lemma 7.1. Let $w \in R_p$, $0 < a < \infty$, and $1 < s < \infty$. Then

$$\int_a^{as} \left(\frac{a}{u}\right)^p w(u) du \le c(1 + \log s) \int_0^a w.$$

Proof: We know that by Theorem 6.1,

$$\frac{1}{t^p} \int_0^{ta} w \le c \int_0^a w, \quad t \ge 1.$$

Hence $L\equiv \int_1^s \frac{1}{t^{p+1}} \int_0^{ta} w \le c \log s \int_0^a w$. We interchange the order of integration and get

$$L \geq \int_a^{as} \int_{u/a}^s w(u) \frac{dt}{t^{p+1}} du = \frac{1}{p} \int_a^{as} w(u) \left[\left(\frac{a}{u} \right)^p - \frac{1}{s^p} \right] du.$$

Hence

$$\frac{1}{p} \int_{a}^{as} w(u) \left(\frac{a}{u}\right)^{p} du \le c \log s \int_{0}^{a} w + \frac{1}{p} \frac{1}{s^{p}} \int_{a}^{as} w ds \le c \log s \int_{0}^{a} w + c \int_{0}^{a} w,$$

since $w \in R_p$.

Theorem 7.2. $W_p = B_p$ for 1 .

Proof: The inclusion $B_p \subset W_p$ is obvious, and for the reverse inclusion we consider for s > 1 the function f(x) = 1, $0 \le x \le a$; = a/x, $a \le x \le sa$; and = 0, x > sa. Then $Af(as) = \frac{1 + \log s}{s}$. Since $w \in W_p$ we have that

$$w\{Af(x) > y\} \le \frac{c}{v^p} \int_0^\infty f^p w.$$

If $y = \frac{1 + \log s}{s}$, we get

$$\left(\frac{1+\log s}{s}\right)^p \int_0^{as} w \le c \left(\int_0^a w + \int_a^{as} \left(\frac{a}{u}\right)^p w(u) du\right) \le c(1+\log s) \int_0^a w du$$

by Lemma 7.1. Thus

$$\frac{1}{s^p} \int_0^{s\alpha} w \le c(1 + \log s)^{1-p} \int_0^{\alpha} w.$$

We choose s so large that $c(1 + \log s)^{1-p} < 1$ and apply Theorem 6.4.

References

- M. ARIÑO AND B. MUCKENHOUPT, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735.
- 2. D.W. BOYD, The Hilbert transform on rearrangement-invariant spaces, Can. Journal Math. 19 (1967), 599-616.
- 3. J. Garcia-Cuerva and J.L. Rubio de Francia, "Weighted norm inequalities and related topics," North Holland Math Studies 116, North Holland.
- M.A. LECKBAND AND C.J. NEUGEBAUER, A general maximal operator and the A_p-condition, Trans. Amer. Math. Soc. 275 (1982), 821-831.
- 5. M.A. LECKLAND AND C.J. NEUGEBAUER, Weighted iterates and variants of the Hardy-Littlewood maximal operator, *Trans. Amer. Math. Soc.* 279 (1982), 51-61.
- 6. B. MUCKENHOUPT, Hardy's inequality with weights, Studia Math 44 (1972), 31-38.
- 7. E. SAWYER, Boundedness of Classical Operators on Classical Lorentz spaces, preprint.

Department of Mathematics Purdue University West Lafayette IN 47907 U.S.A.

Primera versió rebuda el 9 d'Octubre de 1989, darrera versió rebuda el 21 de Maig de 1990