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Abstract

ON BLOCH FUNCTIONS AND GAP SERIES

DANIEL GIRELA

Kennedy obtained sharp estimates of the growth of the Nevanlinna char-
acteristic of the derivative of a function f analytic and with bounded
characteristic in the unit disc . Actually, Kennedy's results are sharp even
for VMOA functions . It is well known that any BMOA function is a Bloch
function and any VIVIOA function belongs to the little Bloch space . In
this paper we study the possibility of extending Kennedy's results to cer-
tain classes of Bloch functions . Also, we prove some more general results
obtaining sharp comparison results between the integral means Mp (r, f)
with T(r, f) for certain classes of functions f analytic in the unit disc .

The Nevanlinna class, denoted by N, consists of those functions f analytic
in the unit disc U for which supo<,« T(r, f) < oc, where T(r, f) denotes the
Nevanlinna characteristic of f . Kennedy proved that if f E N then

f
i

	

1
(1)

	

(1- r) exp(2T(r, f'» dr < oo and (2)

	

liml Clog 1 - ro

	

r - T(r,f')) =00.

Both results are sharp . We note that (2) follows from (1) .
Let B denote the space of Bloch functions . Two important subspaces of B

are those denoted by BO and Bl . The space BO consists of those f E B such
that (1 - Iz1) j'(z)j -> 0, as Iz1 - 1, and Bl consists of those f E B such
that if {z�,} C U and 1f(z,,)1 -oo then (1 - 1z�,1)1 f'(zn)1 - 0 . It is well
known that VMOA C Bo and BMOA C B. Kennedy's estimates are actually
sharp for VMOA functions . In this paper we study the question of whether or
not (1) and/or (2) remain true for a function f in B, Bl or BO .

We prove that (2) need not be true for a Bloch function showing that the
trivial estímate T(r, f) _< log i1r +0(1) is the best that we can say in general .
However (2) is true for any f E BO even though it may not satis£y (1) . We do
not know whether or not (2) is true for any f E Bl but we can prove that it
satisfies (2) with lim sup instead of lim .

Also, we generalize these results obtaining sharp comparison results between
the integral means Mp (r, f) with T(r, f) for certain classes of functions f ana-
lytic in U .
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Let f be a function analytic in the unit disc U = {z E C : Iz1 < 1} . Then,
the Nevanlinna characteristic T(r, f) is defined by

(1 .1)

	

T(r, f) = 27r
l°g+ 1 f (re'% dt,

	

0<r< 1.

The Nevanlinna .class, denoted by N, consists of those f analytic in U for which

(1 .2)

	

sup

	

T(r, f) < oo .
o<T<I

It is well known that f' need not belong to N even if f is bounded . This was
first proved by Rostman [6] who showed the existente of a Blaschke product
whose derivative is not of bounded characteristic. Kennedy determined in [14]
as closely as possible the restriction imposed on the growth of T(r, f') by (1.2) .
He proved the following two theorems .

(1 .3)

	

J I(1 - r) exp(2T(r, f')) dr < oo .
0

Theorem A. ([14, Th . I]) . Let f E N. Then

Theorem B. ([14, Th . II]) . Let p be a positive increasing function in (0,1)
such that

l

I
(üi)

	

(1 - r) exp(2p(r)) dr < oc .
0

Then there exists f E N such that

for all r sufficiently close to 1 .

1 . Introduction and main results

(1 - r) exp p(r) is decreasing.

1-
h(r) - p(p) - oo as

	

r
1 -

T(r,f') > M(r)

Let us notice that, since T(r, f) is an increasing function of r, Theorem A
implies that if f E N then

1(1.5)

	

log 1

	

r -T(r, f') - oo, as r --> 1 .
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Also, since the function tt of Theorem B is increasing, (iii) shows that (i) is
equivalent to

(iv)

	

log 1 1
r
- p(r) T oo, as r T 1 .

The author has recently obtained in [9] the analogues of Kennedy's results for
analytic functions with finite Dirichlet integral in U .
The function f constructed by Kennedy to prove Theorem B is given by a

power series ECkz' k with Hadamard gaps such that F- ICk 12 < oo . Such a
function belongs to HP, 0 < p < oo, and, even more, to VMOA. This follows
from Paley's multiplier theorem [3, p . 104] and the duality of Hl and BMOA
[7, p . 270] . Hence (1.3) and (1.5) are sharp (in the sense of Theorem B) for
VMOA functions .
The question as to whether or not there exists a function f analytic and

bounded in U with f satisfying the conclusion of Theorem B remains open .
Kennedy pointed out in [14] that in dealing with this problem one could exclude
functions f(z) = 1:akznk having Hadamard gaps . This is because if such a
function is bounded in U then EIakl < oo [20, vol . I p . 149 and 247] and so

1
(1 .6)

	

expT(r, f')dr < oo
0

a stronger inequality than (1 .5) . Clunie proved in [2] that there exists a function
f analytic and bounded in U not satisfying (1.6) .
A function f analytic in U is said to be a Bloch function if

IIf IIB = SUP (1 - IZI2)Ifl(z)I + If(0)j < oo .
I=I<1

The space of all Bloch functions will be denoted byB. Two important subspaces
ofB are those denoted by BO and B I . The space BO consists of thosef E B such
that (1- IZI 2 ) I f'(z)I , 0, as Iz1 -> 1 . Alternatively, Bo can be characterized
as the closure of the polynomials in the Bloch norm [1, Th. 2.1] .
The space Bl consists ofthosef E B such that if {zn } C U and If(z)( - o0

then (1 - Izn1 2 )If'(zn)I

	

> 0 . Clearly, BO C BI.

If f(z) =
E°°

oa,,zn E B then sup Ia�,I < oo [1] while if f E BO then
an --> 0 . Actually, the weaker condition

(1.8)

	

12(r, f') = o((1 - r) -2 ),

	

as r ---> 1,

is enough to conclude that an

	

> 0 [16, p . 693] . Here, for g analytic in U

(1.9)

	

12 (r, g) = 27r ,~
Ig(re") 12 dt,

	

0<r< 1.
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The space Bl was introduced in [10, p . 30] and [1, p . 36] where it was
conjectured that if f(z) = Eñ=o a�,zn E BI then a �, ~ 0. This was disproved
by Fernández [4], [5] . Fernández gave in [4] examples of functions f E Bl not
satisfying (1 .8) . If D is a B1 -domain, Le . if every function g analytic in U with
g(U) C D is in B,, and f is the universal covering map of D then Hayman,
Patterson and Pommerenke proved in [12] that f satisfies (1 .8) but Fernández
proved in [5] that there exists a function f analytic in U whose range lies in a
B1-domain for which (1.8) is not true . The integral means and radial growth
ofB1-functions were studied by the author in [8] .

Important examples of Bloch functions are given by power series with Hada-
mard gaps, Le . power series f(z) = Eñ=o akznk analytic in U with nk+1 > "1nk
for some constant A > 1 . For such an fwe have [1, p. 19] f E B if and only if
sup jakI < oo and [4], [16] f E Bo e-* f EBI e* ak -+ 0 .

It is well known that VMOA C Bo and BMOA C B. The main object of this
paper is studying whether or not (1.3) and (1.5), which are sharp for VMOA
functions, remain true for functions in the spaces B, BI, or Bo .

If f EB then

(1.10)

	

T(r, f') < log 1 1 r +O(1) .

The first result in this paper asserts that this is essentially the best that we can
say, showing that (1.5) and, hence, (1.3) need not be true for a Bloch function .
However, we will prove that (1.5) holds for any f E Bo even though it may not
satisfy (1.3) .

Theorem 1. For each integer q > 5 let

Then

00fq(z) = Ezqk ,

	

~ z1 < 1 .
k-o

Then fq is a Bloch function and there exists a constant Cq such that

(1 .11)

	

T(r,f')>log 1 +Cq , 0<r<1.- 1-r

Theorem 2 . (i) Let f be a Bloch function satisfying

12 (r,f~) = o((1 - r)as r

log

	

1

	

-T(r, f') ---> oo,

	

as r1-r
(ii) This result is best possible, even in BO, in the following sense . Let <D be

a positive function in [T, oo) satisfying

(1.12)

	

-

	

lim -¿(x) = 0 .x-oo



(1.13)

	

<D(2x) - ~D(x),

	

as x ---> oo .

Let
0<r<1 .

1-r

Then there exists f E BO such that

(1.14)

	

T(r, f') > log 1 1 r + log T (r)

for all r sufíciently close to 1.

Let us notice . that the function T of Theorem 2 can be taken to be

and, hence, we obtain .
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Corollary 1 . There exists f E Bo such that

for all r suiciently close to 1 and, hence, satisfying

If D is a B1-domain and f is the universal covering map of D then [12] f
satisfies (1.8) and, hence, (1.5) . It is known that (1.8) may not be true for a
function in B1 [4], [5] . We do not know whether or not (1 .5) remains true for
any function f E Bl . We can prove the following result .

Theorem 3 . Let f E Bl . Then

1/2
T(r) = (log 1 e r )

	

0 < r < 1,
-

T(r, f') > log

	

1

	

- 1 loglog

	

e
1-r 2 1-r

f
1
(1 - r) exp(2T(r, f')) dr = oo .

0

(1.15)

	

liminf(1 - r) 2I2(r, f') = 0
r-1

and

(1.16)

	

limsup Clog

	

1

	

- T(r,f')
/
= oo .

r-+1

	

1 - T

The early stages of this work benefited from conversations with A. Baernstein.
He even told me that the conclusion of Theorem 1 should be true at least for
sufficiently large values of q . It is a pleasure to express my gratitude .
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Even though the motivation of this work was studying the possibility of
extending Kennedy's results to Bloch functions, some of our results are more
general than stated and, in fact, could be stated without making any reference
to Bloch functions .

For f analytic in U and 0 < r < 1, define

and

Let us notice that, clearly

2 . Proof of the main results

Ip (r, f) = 27r ,~

	

f(re")¡' dt,

	

0<p< oo,

MP(r, f) = Ip(r, f) 1/p

	

0 < p < oo,
M.(r,f) = maxIf(z)j .

Ixl=r

For s > 0 and 0 < p < oo, let X9 >p denote the space of those functions f
analytic in U for which

Mp (r, f) = O((1 - r) - S), as r ---> 1,

and let Xó'p denote the space of those functions f analytic in U for which

MP (r, f) = o((1 - r) -S), as r --> 1.

Since M,(r, f) is an increasing function of p, we have

(2.1)

	

X',P C X'g ,P and Xó , p C X''P,

	

0 < p < p < oo .

If p > 1 and f(z) = E°°
o an z' E X' ,P (respectively X¿,p) then an applica-

tion of Cauchy's formula easily gives an = O(ns) (respectively a, = o(ns)) . On
the other hand, an argument similar to that used in [16, Example 1, p . 694]
proves that if f(z) r_k o akznk is analytic in U and has Hadamard gaps then

(2.2)

	

f E XS,' <~:> ak = O(n'), as k

(2.3)

	

f E
Xó`

<--¿ ak = o(nk), as k --> oo .

f EBg f' E X 1'' and f EBp ~¿f , EXó', .

Hence theorems 1 and 2 will be corollaries of the more general results that we
will prove for the spaces X' ,P and Xos,p .
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If p < p' and f E Xs ,P (respectively X`) then a result of Hardy and
Littlewood (see [3, Th . 5.9]) shows that f E X",P (respectively Xo~'P) where

1 1
s'=s+-- ; .

p p

The exponent s' is best possible .
Using this result and arguing as in . [3, Th . 6 .4] we can deduce that if 0 < p < 1

and f (z) = rñ=o a�,z- E Xs , P then

The function f(z) = (1 - z) -(s+1/P) for which a,,, - r (s + P l
ns-1+1/P shows

that this estimate is sharp .
Now, if p' < p and f E Xs ,P then it is easy to see that the trivial result

f E XS,P is the best that we can say in general . In fact, there exists f E X','

such that for every p E (0, oo] there exists a constant BP, s > 0 such that

(2 .4)

	

MP(T, f) > BP.s (1 - T)-s ,

	

1 <r<1,

	

0 <p< oo._

	

2-

Indeed, let q > 2 be an integer and

00f(z) =
Egkszqk,

	

Iz1 < 1 .
k=0

Then, since f has Hadamard gaps, (2.2) shows that f E Xs ,w. Now, it is a
simple exercise to show that there exists a constant ,0s = ,6.,,q > 0 such that

(2.5)

	

M2(r, f) >_ fi. (1 - r)-3, 1 < r < 1.
2 _

This implies (2 .4) for 2 <_ p < oo with BP, s = J6s . Using Theorem 8.20 of
[20, vol. I, p . 215] we deduce that for each p E (0, 2) there exists a constant
AP = AP , q > 0 such that

(2.6)

	

M,(r,f)>APM2(r,f),

	

0<r<1,

	

0<p<2,

which, with (2.5) implies (2.4) for 0 < p < 2 with

(2 .7)

	

BP, s = QsAP .

Since

(2.8)

	

logMP (r, f) 1
2~

	

log f(re")¡ dt, as p 10,
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(2.4) shows that, for 2 < r < 1,

(2 .9)

	

T(r, f) > 27r J-

	

log If(re2% dt > s log 1 1
r
+ ys

where

An examination of the proof of Theorem 8.20 in [20, vol . I, p . 215] shows that
the constant AP given there is of the form

for some 5q > 1 . This and (2.7) shows that 7s = -oo and hence (2.9) gives no
information at all .

However, we will prove in Theorem 4 that there exists f E X',1 satisfying
(2.9) with a constant C3 in the place of -ys and, also, satisfying (2.4) with a
constant B3 > 0 independent of p in the place ofBP,3.

Theorem 4. (i) Let s > 0, 0 < p < oo and f E X3,P, then

(2.10)

	

f EX s,P' ,

	

0<p'<p,

and

(2.11)

	

T(r, f) < slog 1 1
r
+0(1) .

(ii) This result is best possible in the following sense. There exists f E X -,'
and two constants Cs E R and B9 > 0 such that

(2 .13)

	

M,(r, f) > B3(1 - r)-s,

	

0<r< 1,

	

0<P :5 oo,

and

-ys = lim inf logBP,9.
P-0

A = 6(P-2)/pp q

(2.14)

	

T(r, f) >
2

	

log 1f(re") ¡ dt > s log 1 1
r
+ Q,

	

0< r < 1.

For s = 1, the conclusion of (ii) holds with f = fé for any integer q > 5 .

Theorem 5 gives the analogous results for the spaces XOS, .



Theorem 5 . (i) Let s > 0, 0 < p < oo and f E Xoq'P . Then

(2.15)

	

f E Xó'P ,

	

0 < p' < p,

and
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(2.16)

	

s log

	

11

	

r
- T(r, f) ----+ oo,

	

as r
-

(ii) This result is best possible in the following sense. Let D be a positive
function in [1, oo) satisfying (1.12) and (1.13) and let

Then there exists f E Xó` such that

(2.17)

and

~Y(r)=~~ i ~, 0<r<1.
1-r

(r)) M.(r, f) --, oo, as r ---> 1, for every p E (0, o0],

(2.18)

	

T(r, f) >
-

	

log 1f(rezt
)1 dt > s log 1 1

r
+ log T (r)

27r f,

	

-

for all r suiciently Glose to 1.

Proof of Theoorms 4(i) and 5(i) : We have already proved (2.10) and (2.15) .
Also, (2.11) and (2.16) are obvious for p = oo .
Now, let f be a function analytic in U and 0 < p < oo . Using the arithmetic-

geometric inequality, we obtain

T(r,f) = -,f
log+ 1f(re")1 dt < p-J_, log(If(re")¡P+ 1) dt

Hence

<
p
log

C2~
~~(If(reit )IP+ 1~ dt =

p
log(IP(r, f) + 1) .

1

	

1

	

1
slog 1- r-T(r,f)>

plog(1-r)sP(IP(r,f)+1) .

Then it is clear that (2.11) (respectively (2.16)) holds if f E X" (respectively
if f E Xó'P) .

Proof of Theorem 4(ií) : Let s > 0 . Let q > 2 be an integer to be determined
later and

f(z) =
k=0

kksze -i

	

lz l < 1 .
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Then, since f is given by a power series with Hadamard gaps, (2.2) shows that
f E X8,00 . Let

rn =1- q-n , n=1,2,3, . . .

n-1 00

lf(z)1 > Izf(z)I =
~ gkszgk > gnsry^_E qks -	gksryk=I_II_III.
k=0

	

k=0 k=n+1

Let 17 E (0,1) to be determined later . Using the elementary fact

i e-1

	

as j -> oo,
7

we deduce that there exists N such that

(2.19)

	

I =gns(1 -
q-n)9n

> (1 - 77)e-'qns,

	

n>N.

Now,

(2.20)

	

n-1
qks =

qns - 1
<

	

qns
II = E

k-o

	

qs - 1

	

qs _ 1
.

In order to obtain an upper bound for III we will use the following lemma
which will be needed several times in this paper .

Lemma 1 . Let q > 2 be an integer and let s > 0. Let {ak} be a non-
increasing sequence of positive numbers. Then, for any integer m > s, we
Nave

akgks (1 - q-n)," < (me-1)7nan

	

1
qnz-s - 1 qns '

	

n = 1 2,3, . . .
k=n+1

Proof of lemma 1 : We will use the following elementary inequality
(2 .21)

(1 - x)n < (me-1)''(nx)-', (0 < x < 1, n = 1, 2,3, . . ., m = 1, 2,3, . . .) .

Let m > s be an integer ; then, since {ak} is non-increasing, (2.21) implies
00

akgks(1 - q-n)qk < (me 1)n`an
k=n+1

gksq-nckgnm
k=n+1

ns
_

00

(me- 1)n`anq nm, E qk(s-m,) = (Me-1)Man

	

g
q,na-s - 1 .

k=n+1



Back to the proof of Theorem 4, take an integer m> s. Then, using Lemma
1 with ak = 1 for all k, we obtain

(2.22)

	

III < (me-1 )m
~_1

-

	

qq
ns .

1

Then (2.17), (2.19), (2.20) and (2 .22) show that

if(z) j ~: (M.,m,q - ?1e-1)g
ns,

	

lzl = rn,

	

n > N,

where,
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M
-1 1

-
(me-1),m, 1

s, ,q = e

	

-
qs - 1

	

qm-s - 1'

Now, take q so large that M,,m,q > 0 and then take 91 = qq > 0 so small that

TS = Ms,..,q - rle-1 > 0 .

Then
1f(z) 1 ? T.g

ns ,

	

lzi = rn ,

	

n > N.

Then, for n > N,

1 log 1 f_

	

(rne") (dt > log qns + log T9 = s log

	

1

	

+ logT,
27r ,~n

	

-

	

1 -rn

7'Now, since a

	

~

	

log (f(re")¡ dt is an increasing function of r, it follows that,

forn>-Nandr�,<r<rn+l,

ir

T(r, f) >_ - ,~

	

log 1 f(re") ¡ dt >_
-

~~ log lf(rneit) I dt

Consequently, we have

> s log

	

1

	

+ logTs = s log

	

1

	

- s log q + log TS
-

	

1 - rn	1 -rn+l

> s log

	

1
1 -

r
+ log(T9/gs) .

1 ir

	

1T(r, f) >
-

	

log lf(reZt ) I dt > s log 1

	

r
+ log(T. /q'),

	

rN < r < 1,
27r f_,

	

-
which clearly implies (2.14) with

C3 = min

	

inf

	

1

	

log lf (re' t)j dt - s log

	

1

	

, log(T,/qs)
{

	

.
o<r<rN ( 27r

	

1 - r
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Now (2.8) and (2.14) prove (2.13) with

B9 = exp C3 .

Let us notíce that in the above argument given s > 0 we can take m to be
any integer greater than s and that different values ofm would lead to different
values of q for which M,,,,,, q > 0 . It turns out that for s = 1 the choice of m
which minimizes q is m = 3. If we set

A q - M1,3,q

we have Aq > 0 for q > 5. In fact, we have

I\ q > A5 - 0.061,

	

q> 5.

Consequently, we obtain that for each integer q > 5 there exists a constant Cq
such that

T(r,fq)>log

	

1 r +Cq,

	

0<r<1.1-
This finishes the proof of theorems 4 and 1 . E

Proof of Theorem 5(ii) : First let us notice that we may assume without loss
of generality that oP satisfies also the following two conditions .

(2.23)

	

D is decreasing,

(2.24)

	

xs<D(x) -> oo, as x - oo.

Indeed let <D satisfy the conditions of Theorem 5. Let

ÍD1(x) = max(-D(x), (log 2x)-1)

and let <D2 denote the least decreasing majorant of <D1,

'D2(x) = sup'¿l(t) .
t>x

Then it is clear that <P2 >_ <D and it is easy to see that (1 .12), (1.13), (2.23) and
(2.24) hold with OD2 in the place of <D .
Hence we will assume that -D satisfies (2.23) and (2.24) in addition to the

conditions of Theorem 5.
Let q > 2 be an integer with qs > 2 to be determined later and set

00

9(z) _

	

-P(gk)gkszqk~
k=1

Iz1 < 1 .



Then, for Iz1 = rn,

(2.26)

Now, (1.13) and (2.23) imply
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Then, since g is given by a power series with Hadamard gaps, (1.12) and (2.3)
show that g E Xó'00 .

Let
rn = 1 - q

-n
,

	

n = 1, 2, 3, . . .

(2 .25) Ig(z)I = I1: d>(gk)qksz9k > ~¿(q''')q"(1 - q-')9,.

k-1
n-1

	

00

-
1: <D(gk)qks -

	

1:

	

¿(gk)qks ( 1 - q-n
),k
= I - II - III.

k=1 k=n+1

Using (2.18), we see that there exists N such that

I= ob(gn»ns (1 - q-n) 9n > 2e-1<D(gn)qns,

(2.27)

	

-D(qx) - (D(x), as x

and hence there exists N1 > N such that

(2.28)

	

~D(qk) < 2-,D(qk+1)~

	

k> N1 .

Set

Then (2.28) shows that, for n > N1 + 1,

n-1

k=1

	

k=N1 +1

N1
C =

	

d>(gk)qk,.
k=1

~(gk)qks = C +

	

p('k)gk, <

--r 00,

Then (2.24) shows that there exists N2 > N1 such that

(2.29)

	

II <

	

3

	

D(gn)qns,

	

n >N2 .
qs
- 2

Finally, fix an integer m> s. Then Lemma 1 shows that

(2.30)

	

111< (me-1)' q
m-s - 14>(gn)gns,.

n>N.

n-1

	

n-1
C+

	

2n-kp(gn)qks < C+2nP(gn)

	

2-kgks
<c+ 4$ 2 2 4, (gn)qn3 .

k=Ni+1	k=1
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Then if we take q so . lárge that

q-9
3

2 < 8e and (me-1)m
qm_9 - 1 < ge

(2.25), (2.26), (2.29) and (2.30) show that

(2.31)

	

Ig(z)I ~ (4e) -1 ~¿(gn)qna

	

IZI
= rn,

	

n > N2 .

Notice that (2.27) and the definition of T imply that

log('P(rn)/T(rn+1)) -0, as n --> oo,

which, together with (2.23) shows that there exists N3 > N2 and a constant A
such that

(2.32)

	

log `P (rn) > logT(r) + A,

	

rn < r < rn+1,

	

n > N3 .

Let a = 4egse-A and f(z) = cag(z) . Thenf E X` Since 2

	

J ~log I f(re")¡ dt_
7r

is an increasing function of r, (2 .31), (2.32) and the definitions of ID, rn, N2, N3
and a show that, for n > N3 and rn < r < rn+1,

T(r, f)

	

27r ,f

	

log If(re") I dt >_ 2 f7l log If(rneze) I dt

> log a + s log qn + log oP(gn) + 109 1
4e

= s log qn+1 + log <D(q') + logás
4eq

= s log

	

1

	

+ log

	

(rn) + loga
1 - rn+1

	

4egs

> s log 1
1
r
+ log T(r) + A+ log

4e ssq
A

= s log

	

1

	

+ log T(r) + log e = s log

	

1

	

+ logT(r) .1-r

	

4eg3 1-r

This proves (2.18) for rN3 < r < 1.
Now, (2.18) and (2.8) easily imply

MP(r, f) ? IP(r)(1 - r) `,

	

0< p< oo,

for all r sufficiently close to 1 .
In order to show that there exists f E Xó,m satisfying (2.17), let us notice

that if ~D is the function given in Theorem 5 then <p 1/2 satisfies also the condi-
tions (1.12) and (1.13) . Hence, if we apply the above argument with X1/2 in
the place of 4>, we deduce that there exists f E Xó" such that

MP(r,f) ? q`(r) 1/2 ( 1 - r) -9 ,

	

0 < p < oo,
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for all r sufficiently to 1 . Since T(r) -3 0, as r -> 1, this implies (2.17) .

For the proof of Theorem 3 we need to introduce the Ahlfors-Shimizu char-
acteristic . For f analytic in U, define

(2.33)

	

S(r, f) = 1 lf

	

1 1f,(z)12

	

dxdy,

	

0 < r < 1.
~,1<r ( + If(z)I2)2

	

-

Then, the Ahlfors-Shimizu characteristic T0(r, f) is defined by

(2.34)

	

To(r, f) =
f0,"

S(
f

f) dt,

	

0< r < 1.

Then [11, p . 13]

(2.35)

	

IT(r,f) -To(rJ) - log+ jf(0)jj < 2 log2,

	

0 < r < 1.

We have

Lemma 2. Let f be a Bloch function . Then

(2.36)

	

lim inf(1 - r) log

	

1

	

S(r, f) < 1 .

Proof: Let f E B. Anderson, Clunie and Pommerenke proved in [1, Th . 3.11
that

Then (2.35) shows that

and hence

lim sup

	

T(r,
f)

	

< 1

r-+1 log log lir

	

2

lim sup

	

To (r' f)

	

< 1

r-1 log log 1_r

	

2

áTo(r, f)

	

1lim inf

	

dr

	

< -
r-.1 á log log

	

2
1-rrT

which is equivalent to (2.36) .
Proof of Theorem 3: Let f E B, . Then (2.36) implies

(2.37)

	

lim inf(1 - r)S(r, f) = 0.

Let 77 > 0. Since f E B,, there exists M > 0 such that

(2.38)

	

(1 - Izl)If'(z)1 < 77 if lf(z)1 > M.
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Let

Then (2.38) implies

ff, Z I <r
Lf,(z) 12 dx dy =

ff, Lfl (z) I 2 dx dy +
F

< + m2)2 ~

	

If,(z)I2(1

	

fJIZI<r (1+ If(z)1 2 ) 2

which implies

D. GIRELA

Fr = {z : I z1 < r and if(z) l < M},

Gr = {z : I z1 < r and lf(z) j > M} .

dr IZI<r z dxd
lim inf

d

ff

	

dIf/1

	

)1

2

	

y = 0r-1 dr 1-r

Lf ,
(z)

12 dx dy

2

dx dy+

	

y

	

2
dx dy

f~IZI<r (1 - IZI)

< (1 + M2 ) 27rS(r, f) +
27r772

1-r

Hence, using (2.37), we obtain

lim inf(1 - r)

	

I f' (z) 12 dx dy < 27rr12 .
fil.l<r

-

Since 17 > 0 is arbitrary, we have

lminf(1-r) Lf1(z)12dxdy=0
ff,ZI<r

and this is equivalent to (1.15) .
Now, an argument similar to that used in the proof of Theorem 5(i) shows

that (1 .15) implies (1 .16) . This finishes the proof of Theorem 3 .

3 . Some further results and final remarks

a) The results that we have proved are comparison results between Mp (r, f)
with Mp , (r, f) and T(r, f) for f in some of the spaces Xs ,p or XO'p . It is
well known (see e.g . [3, Th . 5.10]) that there exist functions f analytic in U
with M,,.(r, f) growing to infinity arbitrarily slowly which are not of bounded
characteristic . This leads one to ask the following question :

Let p(r) be a positive increasing function on 0 <_ r < 1 with y,(0) = 1
and u(r) - oo, as r - 1, and let f be a function analytic in U satisfying
Mp(r, f) = 0(p(r)), as r ~ 1. What can be said about the growth ofMp, (r, f )
and T(r, f)? In particular, it seems natural to ask whether or not the analogue
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of Theorem 4(ii) is true in this setting, Le. does there exist a function f analytic
in U with

and a constant C such that

We do not know the answer to this question . However, we do believe that
the methods of this paper are not enough to construct such an f .

b) First of all let us remark that some of the results that we are going to state
below (Theorem 6, Corollary 2, and Theorem 7) could be stated in the general
framework of the spaces XS,P and XÓ'P . However, for the sake of simplicity, we
will state them in the setting of Bloch functions .

It seems natural to conjecture that the conclusion of Theorem 1 remains true
for q = 2, 3, and 4. However, our argument does not prove this since, with the
notation used in the proof of Theorem 1, we have A4 < 0 .
A more general question would be characterizing those Bloch functions given

by a power series with Hadamard gaps for which (1.5) or at least (1 .16) is true .
The following theorem gives a partial answer to this question .

Theorem 6. Let f be a Bloch function given by a power series

(3 .1)

Then

f(z) =

M.(r, f) = 0(p(r)), as r -- 1,

T(r,f)>logp(r)+C, 0<r<1?

lim Sur) Clog
1

1

	

-T(r, f')
/
= oo .

r-,1 -r
Furthermore, if limsuplajj > 0 then

j_oo

lim inf ~log 1 1 r - T(r, f')~ < oo .

Using Theorem 2, we obtain as an easy consequence of Theorem 6 the fol-
lowing result .

Corollary 2. Let f be a Bloch funetion given by a power series

znj with
wj+1 --> oo, as j - oo .
njf(z) =

j=1
Then f E BO if and only if

1
z"'', with n, +

	

--~ oo, as j - oo.
nj

lim
1
(log

1
1
- rr

	

- T(r, f')
/
= oo .

---~

The proof of Theorem 6 depends on the following two elementary lemmas
whose proofs will be omitted .
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Lemma 3. [14, p . 339] Let {Sk} be a sequence of positive numbers such that
Sk+11Sk -> oo as k - oo. Then, as k ---> oo,

Sk+lltk - oo and tk/Sk -+ oo, as k ---> oo .

Then, as k -> oo,

Proof of Theorem 6: Let f be a Bloch function given by (3.1) . Since f E B,
there exists K > 0 such that

(3.2)

	

laj j < K,

	

j = 1, 2, 3, . . .

Let {mj} be an increasing sequence of positive numbers such that

(3.3)

k-1

	

00

Si = O(tk) and

	

E

	

S.,- 1 = O(Skl) .

j=1

	

j=k+1

= O(tk) and

	

E S~ 1 = O(tkl) .

j=1

	

j=k+1
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Lemma 4. Let {Sk} and {tk} be two sequences of positive numbers such that

m' , oo and nj+l - oo, as j --> oo .
nj mi

For example, we can take mj = (njnj+l)1/2 .

Let Iz1 = 1 - mk1 . Then

0o

	

k
(3.4)

	

Izf'(z)j = E njzn-1 < KE nj + K E nj(1 _ Mkl)n, .
j=1 j=1 j=k+1

Using (3.3) and Lemma 4, we obtain

(3.5) = O(mk), as k , oo.

Now, (2 .21) with m = 3, (3 .3) and Lemma 4 imply

(3.6)

	

nj ( 1 - mk 1)n'

	

(3e-1)3mk

	

n,-2

j=k+1

	

j=k+1

_ (3e-1)3mko(mk2) = O(mk), as k -, oo .



Then (3.4), (3.5) and (3.6) show that

and hence

This implies that

lf'(z)l > Izf'(z)I

Lemma 3 implies that
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sup

	

¡zf'(z)1 = o(mk), as k - oo,
IzI-I-Mk 1

logmk -T(1 - mk

	

oo, as k - oo.

r-~I 1_r

Asume now that f is given by (3.1), satisfies (3.2) and limsuplaki > 0 . Then
k-+oo

there exists M > 0 such that the set

T = {k : laki > M}

is infinite . Take k E T and let rk = 1 - nk I . Then, for Iz 1 = rk

k-I 00

>Mnk(1-7LkI)nk -KEn~-K E nj(1-nk1)--, =I_II_III.
j-I j=k+I

Using (2.18), we see that there exists a constant C > 0 such that

I > Cnk .

Finally, (2.21) and Lemma 3 show that

Consequently, we obtain that

and, hence

Izlnf
k If'(z)j ? Cnk - o(nk), as k -a oo(k E T),

T(rk, f') > log(nk - o(nk)) + O(1), as k -> oo(k E T) .

This easily implies that

r-+1

	

1 - r
finishing the proof of Theorem 6 .

lim inf (log

	

-T(rj» < 00

c) So far we have proved in Theorem 2 that if a Bloch function f satisfies (1 .8)
then it satisfies (1.5) . Furthermore, the functions f considered in theorems 3
and 6 satisfy not only (1 .16) but also (1.15) . These facts might load one to ask
whether or not the converse of Theorem 2(i) is true . Theorem 7 shows that the
answer to this question is negative in a very strong sense.
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Theorem 7 . Let 0 < H < 1 . Then there exists a Bloch function f such that

(3 .7)

	

lrminf(1-r)2I2(r, f') > 0

and

(3.8)

	

lim

	

T(r, f~

r

)

	

=H.
rli 1 log 111

Proof. We will use the following result due to Specht [18, Th . III] (see also
[13, Lem. 1 and 2]) on the conformal mapping of certain nearly circular regions.

There exists a simply connected domain D in the plane with

(3 .9)

	

UU{eit : 7rH < Iti < 7r} C D

and such that ifw denotes the conformal mapping from D onto U with w(0) = 0
and w'(0) > 0, then

(3.10)

	

lw'(z) - 11 <
2,

	

z E D,

and

(3.11)

	

2
(1 - r) < 1 - jw(re' t )j < 3(1 - r),

	

0 < r< 1,

	

¡ti < 7rH.

Let q > 12 be an integer and define

Le . f (z) = fe(w(z)) . Since the Bloch space is preserved under subordination
(see e.g . [17, p . 35]), it follows that f is a Bloch function . Then there exists a
constant C such that, for every t,

(3.12)

	

log+ Jf'(re i% < log 1 + C,

	

0<r< 1.
1-r

Now, (3.9) implies that

00f(Z) = W(Z)q",

n=1

log+ if' (reit ) 1

z E U,

lim

	

1

	

=0,

	

7rH < ¡ti < 7r,
r--~1

	

log 1=r

and hence, by the dominated convergente theorem,

lim 1

	

log+ jf
i
(
i
e

it
)

I
dt = 0r-~1 27r .RH<,t,<7,

	

log 1 1 r



which, with (3.12), easily implies

which implies that

Then we have
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(3.13)

	

lim sup
T(r,

f') <_ H.
r-+1 log 1-T

Let rn = 1 - q
-n. Then, for z = r�,e it with ¡ti < 7rH, we have

00

(3.14)

	

w
(z)

fl(z) I = r gnw(z)en
k=i

n-1 00> gnjw(z)I9�
- 1: qk -

	

1:

	

gklw(z)I9k
= I - II - III.

k=1 k=n+l

Using (3.11) . we obtain

jw(re't)1 > 3r - 2,

	

¡ti < 7rH,

I
= gnp(z)I9�

> qn (1 - 3q-n)9" .

Hence, since (1 - 3j-1)j > e-4 (j >- 12), we have

1
(3.15)

	

I> e-4qn = e_4

	

.
1 - rn

Now take q so big that

q
1 1 < 4e-4 and (3e-1)3 82 1 1 '<

4e_

n_1
(3.16)

	

11=

	

qk <

	

q
n
=

	

1

	

1

	

< 1e-4

	

1

k=1
q-1 g-11-rn 4 1 - rn.

and, by Schwarz's lemma and Lemma 1,

(3.17)

	

III=

	

gklW(Z)I9k
<-

	

E qk(1 _ q-n),"

k=n+1 k=n+1

< (3e-1)3

	

1

	

qn = (3e-1 )3

	

1

	

1

	

< 1e-4

	

1

q2 -1

	

q2 -11 - rn 4 1 - rn

Hence (3.14), (3.15), (3.16) and (3.17) show that

(3.18)

	

Iw()fl(z) I > 2e-41

	

1
rn'

	

z =
rneit

	

Itl < 7rH.
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Notice that Iw(z)I < 1 and that (3.10) implies that Iw'(z)I > 1/2. Then (3.18)
easily implies

(3.19)

	

If'(z)I ? 4e-41
lrn ,

	

z=rneQe

	

¡ti < 7rH.

It is clear that (3.19) shows that there exists a constant C > 0 such that

C

Consequently,

12(r., f' ) ? (1 - rn)2

Since 12 (r, f') is an increasing function of r, it follows that, for rn < r < r,,+ 1,

12 12

	

_ C C 1
(r, f' ) ?

	

(rn, f')

	

(1 -
C
rn)2	q 2( 1 - rn+1)2

.>
q2 (1

- r)2'

This proves (3 .7) .
Finally, (3.19) shows that for n big enough,

T(rn,f~) >
1

	

1
log+ If'(rneZc) I dt > Hlog

21r iel<,rx 4(1 - rn)

lim infT(r, f ) > H
r-1 log I -T

which, with (3.13), implies (3.8) .
We should remark that the condition H> 0 is needed in Theorem 7. In fact,

it is a simple exercise to prove that if f E B and T(r, f') = o (log 11r ), as
r -> 1, then 12 (r, f) = o((1 - r) -2 ), as r

	

. 1.
Pommerenke proved in [16, Th. 2] that if a Bloch function f has radial limits

almost everywhere on Iz1 = 1 then it satisfies (1.8) . Notice that the function
f constructed to prove Theorem 7 is in fact analytic on the set {e" : 7rH <
¡ti < 7r} and consequently it has radial limits on a set of positive measure. The
next result asserts that if a Bloch function f satisfies this last condition then
it satisfies (1.5) .

Theorem 8. Let f be a Bloch function having radial limits on a set of
positive mensure. Then

rlim1 (log 1 1 r - T(r,f~)
/
=oo.

Proof. Since a Bloch function is normal [16, p . 689], [1, p. 12] the concepts
of radial limits and angular limits are equivalent for f [15] (see also [17, Th.
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9.3]) . By Privalov's theorem [19, p . 320] these angular limits are finite almost
everywhere . Hence, if we set

then ¡El > 0.
Now,

E = {t E [-7r, 7r] : f has a finite angular limit at eit} ,

(3.20)

	

log 1 1
r
- T(r, f') =

(LE¡
II log 1 1 r

+ ( 27r 2~JEI log 1 1 r - 27r ,f

	

log+ If'(reit ) 1 dt) = I + II .
[_ir,7r1_E

If ¡El = 27r, then II = 0 . Otherwise

-

	

f log+ If'(re' t) 1 dt27r

	

E
I

II =
27r - ¡El

	

log

	

1

	

-

	

1

	

f

	

log+(If'(re't)I dt27r

	

(

	

1 - r

	

27r - IEI

	

~_,~ ,rj_E

> 27r - ¡El
Clog

	

1

	

-	1

	

log(If'(re' t)I + 1) dt l
-

	

27r

	

1 - r

	

27r - IEI

	

[,,,1_E

27r f_,r ,.1] _E
log

(1 - r)(Lf'(reit )I + 1)
dt

Hence, since f E B, there exists a constant C such that

(3.21)

	

II>C, 0<r<1.

Arguing as in the proof of [16, Th. 2] we obtain that

(1- r)2

	

If'(reit) I2 dt - 0, as r - 1,
E

and then an argument like that used in the proof of Theorem 5(i) proves that
I --> oo, as r -> 1. This, with (3.21), shows that

log

	

1
1

	

r
-T(r, f') -+ oo, as r --~ 1.

-

d) There are other questions that we could ask in this context . For instance,
it seems natural to ask whether or not (1 .5) is true if f belongs to the closure
of H°° in B. The answer to this question is afirmative . Actually, it is easy
to see that (1.8) is preserved under convergence in the Bloch norm and hence
Theorem 2 and [16, Th . 2] show the following :

If f E CLB(B n N) (the closure of B n N in B) then f satisfies (1 .5) .
Acknowledgments. I wish to thank the referee for his helpful comments,

specially for his remarks about the generality of our results . Originally we just
stated our results in the setting of Bloch functions and not in the more general
framework of theoem 4 and 5 .
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