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ON BLOCH FUNCTIONS AND GAP SERIES

DANIEL GIRELA

Abstract

Kennedy obtained sharp estimates of the growth of the Nevanlinna char-
acteristic of the derivative of a function f analytic and with bounded
characteristic in the unit disc. Actually, Kennedy's resulis are sharp even
for VMOA functions. It is well known that any BMOA function is a Bloch
function and any VMOA function belongs to the little Bloch space. In
this paper we study the possibility of extending Kennedy's results to cer-
tain classes of Bloch functions. Also, we prove some more general results
obtaining sharp comparison results between the integral means M (r, f}
with T(r, f) for certain classes of functions f analytic in the unit disc.

The Nevanlinna class, denoted by N, consists of those functions f analytic
in the unit disc U for which supg.,.; T{r, f} < oo, where T{r, f} denotes the
Nevanlinna characteristic of f. Kennedy proved that if f € N then

1
(1) /0 (1 —r)exp(2T(r, f)} dr < o0 and (2} rli_rr.l1 (log - T{r, f"}) =c0.

l1—7r

Both results are sharp. We note that (2} follows from (1).

Let B denote the space of Bloch functions. Two important subspaces of B
are those denoted by By and By. The space By consists of those f € B such
that (1 — |z|}|f'{z)} — 0, as |z| — 1, and B; consists of those f € B such
that if {z,} C U and |f{z,)| — o0 then (1 — |2,])|f'(2a)] — 0. It is well
known that VMOA C Bp and BMCA C B. Kennedy’s estimates are actually
sharp for VMOA functions. In this paper we study the question of whether or
not (1) and/or {2) rcmain true for a function f in B, By or By.

We prove that (2) need not be true for a Bloch function showing that the
trivial estimate T{r, f') < log l—ir +O{1) is the best that we can say in general.
However (2) is true for any f € By even though it may not satisfy (1}, We do
not know whether or not (2} is true for any f € B; but we can prove that it
satisfies (2) with lim sup instead of lim.

Also, we generalize these results obtaining sharp comparison results between
the integral means Mp(r, f) with T'(r, f} for certain classes of functions f ana-
lytic in U.
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1. Introduction and main results

Let f be a function analytic in the unit disc U = {z € C: |2| < 1}. Then,
the Nevanlinna characteristic T(r, f} is defined by

(L.1) T(r, f) = ﬁ fﬂ log® | Flret)| dt, 0<r<l.

The Nevanlinne class, denoted by N, consists of those f analytic in I for which

(1.2) sup T(r, f} < co.
o<r<i

It is well known that f’ need not belong to IV even if f is bounded. This was
first proved by Frostman [6] who showed the existence of a Blaschke product
whose derivative is not of bounded characteristic. Kennedy determined in [14]
as closely as possible the restriction imposed on the growth of T(r, £/} by (1.2).
He proved the following two theorems.

Theorem A. ([14, Th. I)). Let f € N. Then

1
(1.3) /0 {1-r)exp(2T{r, f)) dr < oo.

Theorem B. ([14, Th. II]}). Let p be a positive increasing function in (0,1)
such that

(i) (1 - r)yexp p(r) is decreasing.

(1) ) = ulp) — o0 a5 T 0.
1

iii —riex dr < co.

(i) | a=nexpaurar <

Then there exists f € N such that
(1.4) T(r, ) > i)
for all v sufficiently close to 1.

Let us notice that, since T'(r, f’) is an increasing function of r, Theorem A
implies that if f € N then

1

(1.5) log T

-T{r, fY — 00, asr — L.
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Also, since the function p of Theorem B is increasing, {iii) shows that {i) is
equivalent to

(iv) log ulryJoo, asr 11

1-r
The author has recently obtained in [9] the analogues of Kennedy’s results for
analytic functions with finite Dirichlet integral in U.

The function f constructed by Kennedy to prove Theorem B is given by a
power series 3 cpz™* with Hadamard gaps such that Y |cx)? < oo0. Such a
function belongs to HP, 0 < p < oo, and, even more, to VMOA, This follows
from Paley’s multiplier theorem [3, p. 104] and the duality of H' and BMOA
[7, p. 270]. Hence (1.3} and (1.5} are sharp (in the sense of Theorem B) for
VMOA functions.

The question as t¢ whether or not there exists a function f analytic and
bounded in U with f/ satisfying the conclusion of Theorerm B remains open.
Kennedy pointed out in [14]) that in dealing with this problem one could exclude
functions f(z) = 3 axz™ having Hadamard gaps. This is because if such a
function is bounded in I then ¥ |ag| < 00 [20, vol. I p. 148 and 247] and so

1
{1.6) / expT{(r, fldr < 0o
0

a stronger inequality than (1.5). Clunie proved in [2] that there exists a function
f analytic and bounded in I/ not satisfying {1.6).
A function f analytie in U is said to be a Bloch function if

(1.7) Iflle = |S‘il{pl(1 — 2 (2)] + IF(0}] < oo.

The space of all Bloch functions will be denoted by B. Two important subspaces
of B are those denoted by By and B;. The space Bp consists of those f € B such
that (1 — |2|)[f'(2)] — 0, as |z| — 1. Alternatively, By can be characterized
as the closure of the polynomials in the Bloch norm |1, Th. 2.1].

The space B) consists of those f € B suchthat if {z.} C U and |f{zn}| ~— o0
then {1 — |z, |?)| f/{zn}] — 0. Clearly, By C Bi.

If f{z) = 302 sa.2" € B then supie,| < oo [1] while if f € Bp then
ar, —— 0. Actually, the weaker condition

(1.8) Iir fy=ol(1—-7)"), est — 1,

is enough to conclude that a, — 0 [16, p. 693). Here, for g analytic in U

1 i .
(19) blr,5) = 5 ] otre)Pdl,  O<r<l.
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The space B; was introduced in [0, p. 30} and |1, p. 36] where it was
conjectured that if f(z} = 3o 1 a.2" € Bj then a, — 0. This was disproved
" by Ferndndez [4), [5]. Fernindez gave in [4] examples of functions f € B; not
satisfying (1.8). If D is a By-domain, i.e. if every function g analytic in U/ with
g(t/} € D is in By, and f is the universal covering map of D then Hayman,
Patterson and Pommerenke proved in [12] that f satisfies (1.8) but Fernindez
proved in [5} that there exists a function f analytic in I/ whose range lies in a
Bj-domain for which (1.8) is not true. The integral means and radial growth
of Bj-functions were studied by the author in [8].

Important examples of Bloch functions are given by power series with Hada-
mard gaps, L.e. power series f{z) = 3.7, arz™ anelytic in U with ngy1 > Ang
for some constant A > 1. For such an f we have [1, p. 19] f € B if and only if
suplag| < oo and [4), [18) f € By & f € B; & g — 0.

It is well known that VMOA C By and BMOA C B. The main object of this
paper is studying whether or not {1.3} and (1.5), which are sharp for VMOA
functions, remain true for functions in the spaces B, By, or By.

If f € B then

{1.10) T(r, ) <log T i -+ O(1).

The first result in this paper asserts that this is essentially the best that we can
say, showing that (1.5) and, hence, (1.3} need not be true for a Bloch function.
However, we will prove that (1.5} holds for any f € By even though it may not
satisfy {1.3).

Theorem 1. For each tnieger ¢ > § let
sl &
L=, |d<t
k=0

Then f, 15 a Bloch function and there exists a constant C; such that

1
{1.11) T(r,f’)Zlogl_r+Cq, D<r<l.

Theorem 2. {i} Let §f be a Bloch function satisfying
LirfY=o{{1-7)"%), asr —> 1.
Then

log —T(r, fY — o, asr7 — L

1-—-

{ir} This result is best possible, even in By, in the followrng sense. Let & be
a positive function in [1,00) satisfying

(1.12) : lim ®(z) = 0.

E—00
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{113} ®(2z) ~ ®(z), as x — o0

II’T —¢ — 4 0<T 1

Then there exists f € B such that

(1.14) T(r, '} 2 log

log ¥
T, Flog¥(r)

for all r sufficiently close to 1.

Let us notice that the function ¥ of Theorem 2 can be taken to be

-1/2
) ) 0<r<l1,

T{r) = (log =

and, hence, we obtain.

Corollary 1. There exists f € By such that

1 1 €
T(r, f') > log ] - Elog log T

-r

for all v sufficiently close to 1 and, hence, satisfying
1
] (1 — r)exp(2T(r, F)} dr = co.
0

If D is a By-domain and f is the universal covering map of D then (12] f
satisfies (1.8} and, hence, {1.5). It is known that {1.8) may not be true for a
function in By [4], [5]. We do not know whether or not {1.5} remains true for
any function f € B;. We can prove the following result.

Theorem 3. Let f € By. Then

{1.15) liminf(1 — P L, f'y =0
and
, 1 y
(1.18} limsup | log 1+ T{r,f} ) =co

The carly stages of this work benefited from conversations with A. Baernstein.
He even told me that the conclusion of Theorem 1 should be true at least for
sufficiently large values of q. It is a pleasure to express my gratitude.
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2. Proof of the main results
Even though the motivation of this work was studying the possibility of
extending Kennedy’s results to Bloch functions, some of our results are more

general than stated and, in fact, could be stated without making any reference
to Bloch functions.

For f analytic in I and 0 < v < 1, define

IP(T‘f)=%/_ |[Fre{” dt,  0<p< oo,
Mp("'": f) = er(?", f)l/p: < P < oo,
Meo(r, f) = If;ilgflf(z)l-

For s » 0 and 0 < p € oo, let X*P denote the space of those functions f
analytic in U for which

Myr, [y =0{(1—7)7%), asr — 1,
and let X3'F denote the space of those functions f analytic in U for which
Mp(r,fl=0{{1 —r}"%), asr — L.
Since M,(r, f} is an increasing function of p, we have
(2.1) XP C X% and XJP C X5P,  O<p <p< oo
Ifp2> land f{z) = 307 g0.2" € X7 {respectively X5'7) then an applica-
tion of Cauchy's formula easily gives a, = O{n*) (respectively a,, = o(n®}). On

the other hand, an argument similar to that used in [16, Example 1, p. 694
proves that if f{z) ) pe,axz™ is analytic in U and has Hadamard gaps then

(2.2 Fe X%%® oo = 0nl), as k — oo,
and
(2.3) FEXS® & ar=on)), as k — oo.

Let us notice that, clearly
feBe feX"™ and fe By & f e X3

Hence theorems 1 and 2 will be corollaries of the more general results that we
will prove for the spaces X7 and X3'*.
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If p < p and f € X°P {respectively X3} then a result of Hardy and
Littlewood (see [3, Th. 5.9]) shows that f € X*7 (respectively xg"?’ ) where

; 1
5§ =5+ 5’-

h-N N

The exponent s is best possible.

Using this result and arguing as in [3, Th. 6.4] we can deducethat if0 < p < 1
and f(2) =) o0 g 8n2" € XP then

Gy = 0(ns—1+1/p)l

The function f(z} = (1 — 2)~(+/?} for which a, ~ T’ (s + %) n*~ /P shows
that this estimate is sharp.

Now, %f p < pand f € X*P then it is easy to sec that the trivial result
f e X% is the best that we can say in general. In fact, there ezists f € X
such that for every p € {0, 00| there exists a constant By s > 0 such that

(24)  Mpr,fy > Bp.(1—r)"%, <r<l, 0<p<oo.

Bl

Indeed, let ¢ > 2 be an integer and
i k
foy =3 a ", ld<l
k=0

Then, since f has Hadamard gaps, {2.2} shows that f € X*°. Now, it isa
simple exercise to show that there exists a constant 8, = 8, , > 0 such that

<r <l

w

(25) MQ{T! f) = ,85(1 - ?,,)-s‘
This implies (2.4) for 2 € p < oo with B, = f,. Using Theorem 8.20 of
(20, vol. I, p. 215] we deduce that for each p € (0,2} there exists a constant
Ap = Apq > 0such that

(2.6) My(r, f) = AMa(r, f), 0<r<l, 0<p<2

which, with (2.5} implies (2.4} for § < p < 2 with

{2.7) Bys = . Ap.

Since

(2.8) log M, (r, £} | % /_ Lok flre)l e, 2510,
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(2.4) shows that, for § <7 < I,

™

(2.9) T(rf) 2 5 | loglftre®)|ds > slog —

2 f_, -7

+ s

where
vs = liminflog By ,.
p—0

An examination of the proof of Theorem 8.20 in [20, vol. I, p. 215] shows that
the constant A, given there is of the form

A, = 5((“?—2)/?

for some 6, > 1. This and {2.7) shows that v, = —oo and hence (2.9} gives no
information at all.

However, we will prove in Theorem 4 that there exists f € X satisfying
(2.9) with a constant C, in the place of v, and, also, satisfying (2.4) with a
constant B, > { independent of p in the place of By ,.

Theorem 4. (i) Let s > 0,0< p< oo and f € X7, then

(2,10} fexs®, 0<p <p
and
(2.11) T(r,f}sﬂoglir—%—O(I),

(it) This result is best possible in the following sense. There exists f € X
and twe constants C, € R and B, > 0 such that

(213) My(r,f) 2 B{l-7)", 0<r<1, 0<p<oo,

and

(2.18) T(r,f}zél"/ log|f(re)|ds 2 slog === +C,,  0<r<1
T f -

For s =1, the conclusion of (%} holds with f = f; for any integer ¢ > 5.

Theorem b gives the analogous results for the spaces X3'F.
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Theorem 5. (i) Let s > 0,0 < p< oo and f € Xg*. Then

(2.15) Fexy?, o<p<p,
and
(2.16) slog ~T{(r,f} — o0, as7 — 1.

1—7r

(11} This result is best possible in the following sense. Let & be a positive
function in [1,00) satisfying (1.12) end (1.15) and let

\I'(r)=¢1>(11j), 0<r<l.

Then there exists f € Xg'™ such that

(2.17) (llpz:))s My(r, f) — o0, as r — 1, for every p € {0, o],

and

(2.18) T(r, f) > 1 fw log | f{re'*)| dt > slog + log T{r)
27 J_ . l-17r

for all v sufficiently close to 1.

Proof of Theorems 4(i) and 5(i): We have alrcady proved (2.10) and (2.15).
Also, (2.11) and (218} are obvious for p = oo.

Now, let f be a function analytic in 7 and 0 < p < oo. Using the arithmetic-
geometric inequality, we obtain

1 {7 : 11 f7 ;
T6,6) = 5 [ loglFrelde < oo [ log(Streyr + 1)

— —

1 1 /" - 1
<2 og (E [ tseen +1) it = L 10g(0,r. ) + 1)
Hence 1
IS e A S

Then it is clear that (2.11) (respectively (2.16)} holds if f € X*P (rcspectively
if £ € X3P). m

Proof of Theorem 4(ii): Let 3 > 0. Let ¢ > 2 be an integer to be determined
later and

1
-r

1
slog ~T(r, f) > = log
1 p

o0
fy =3 d="" 2l <L
k=0
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Then, since f is given by a power series with Hadamard gaps, (2.2) shows that
Je X5 Let
rn=1-qg° %, n=123%3,...

Then, for |2| =,
(2.17)

oo n—1 o0
IF @ > 2f(2)] = [ d*2| 2 rd =S g~ ¥ et = 111111,
k=0 k=0 k=n-+1

Let 77 € (0,1) to be determined later. Using the elementary fact

1 7
(2.18) (1—3) — e}, as j — oo,

we deduce that there exists N such that

(2.19) I=g™(1-¢ ™ > (1-ne g™, a>N
Nowr,

S W
(2.20) H_kgq =51 <qs—1'

In order to obtain an upper bound for 11T we will use the following lemma
which will be needed several times in this paper.

Lemma 1. Let ¢ > 2 be an integer and let s > 0. Let {0k} be a non-
ncreasing sequence of positive numbers. Then, for any integer m > s, we
have

- 1
Z aqu,‘z(l_q—n)q* < (me—l)manm_lqns‘ n= 1}2)3)-"
k=41 q -

Proof of lemma 1: We will use the following elementary inequality
{2.21)
(I-2)* <{me Y™nz) "™, (0<z<1,n=1,23,. . ,m=123,...).

Let m > 5 be an integer; then, since {a;} is non-increasing, (2.21) implies

o —nyg® — > - T
Z aqus(l —q )q < (me I)maﬂ Z qksq mkq
k=n+1 k=n-+1
B oo _ —lum qns
= (me l)manqnm Z qk(.‘? m) = {mc 1) anq—m_s—_l.
k=rn+1
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Back to the proof of Theorem 4, take an integer m > s. Then, using Lemma
1 with ax = 1 for all k, we obtain

1 TLE

Then {2.17), {2.18}, (2.20) and (2.22) show that
If(z)l 2 (MS.m,q - ne-—l)qﬂs‘ |2| = rﬂl [ 2 N1

where,
1

qm-s —1

1

Ms,m,q —e ! _ —1)m

qs_l-—(me

Now, take g so large that M, m 4 > 0 and then take n = 5, > 0 so small that

Ty =M g — ne”l > 0.

Then
\f(2)| > T,  l2l=7a, n2Z2N.

Then, forn > N,

+ log 7T5.

1 (7 . 1
oo | loglftrae™)dt > logq™ +log T, = slog 7

27 J_ o — Tn

Now, since _2’1_“] log | f(re**}|dt is an increasing function of r, it follows that,
— .

forn> N and rn, <7 < o,

T(r, f} > i/ log | f{re)|dt > if log | F{rne'")| dt
2 f_, 2n f_,

1
T + log Ty = slogl—_m —slogg+ logT,

> slog

+ log{T,/q°)-

>
Slogl—r

Consequently, we have

w

T(r, ) = %/ log | F(re™)| dt > slog

-1

- + log{T. /¢"), rn <r <],

which clearly implies {2.14) with

l1—r

Cs=min{ inf (i " log |f(ret)l dt — slog ),log{TS/qs)}.

O<rsry o7 -
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Now (2.8} and (2.14) prove (2.13) with
B, =exp(s.

Let us notice that in the above argument given s > 0 we can take m to be
" any inteper greater than s and that different values of m would lead to different
values of g for which M, . ; > 0. It turns out that for s = 1 the choice of m
which minimizes ¢ is m = 3. If we set

Ag=Mi3,
we have Ay > 0 for ¢ > 5. In fact, we have
Ag 2 As ~ 0.061, g 25

Consequently, we obtain that for each integer g > 5 there exists a constant C,
such that

T(r, f,) > log

This finishes the proof of theorems 4 and 1. ®

< .
1_T+Cq‘ 0<r«l

Proof of Theorem 5(ii): First let us notice that we may assume without loss
of generality that & satisfies also the following twe conditions.

(2.23) & is decreasing,

{2.24) 2*'®{z) — 00, a8 T — 00,

Indeed let & satisfy the conditions of Theorem 5. Let
&1{z) = max(®{z), (log2z)™1)

and let P, denote the least decreasing majorant of @,

P2(z} = sup @1 {f).
trx

Then it is clear that ®2 > & and it is easy to see that (1,12}, (1.13), {2.23) and
(2.24) hold with ®5 in the place of ®.

Hence we will assume that & satishes {2.23) and (2.24) in addition to the
conditions of Theorem 5.

Let ¢ > 2 be an integer with ¢° > 2 to be determined later and set

[a 4]
¥
g(z)=>_ ¥(g")g™2", | <L
k=1 :
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Then, since g is given by a power series with Hadamard gaps, (1.12) and (2.3)
show that g € X3'™.

Let
m=1—-¢", n=1,23,...
Then, for |2] = rn,
=%} . o
(225) |g(2)] =D ®(d")g™ 2" | = B(g™)g™ (1 - ¢ ™)
k=1
n—1 o0 R
—Y e - Y e - =T - 11— I
k=1 k=n+1 :

Using {2.18), we see that there exists N such that

e '®(¢")¢™, n>=N.

]

(226)  IT=®(¢")g(1-¢ )7 >
Now, {1.13) and (2.23) imply
(2.27) B{gz} ~ Bz}, as z — oo,
and hence there exists Ny > N such that
(2.28) ®(g%) < 28(¢**Y), k= Ny
Set

Ny

C=>"o(¢")q".
k=1

Then (2.28) shows that, for n > Ny + 1,

n—1 n—1
=32 =C+ > g™ <
k=1 k=N;+1
n—1 n—1 D)
C+ Y 27Fe(gMg < C+ (g ) 2R < C e AU
k=N;+1 k=1

Then (2.24) shows that there exists Np > Nj such that

(2.29) Ir< &{g")g"°, n > Ny.

¢ -2

Finally, fix an integer m > s. Then Lemma 1 shows that

i
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Then if we take g so large that

3 1 Cyem 1 1
qs_2<88and(me } qm—5-1<88'
(2.25}, {2.26), (2.29) and (2.30) show that
(2.31) lg(2}| 2 (de)" @(g")¢™,  l2l=7m, nZ N,

Notice that {2.27) and the definition of ¥ imply that
log(¥{ra)/U(ras1)) — 0, as n — o0,

which, together with {2.23) shows that there exists N3 > Ny and a constant 4
such that

{2.32) log Olry) > log ¥ (r) + 4, Te 7 < ¥hq, n > Ni.

Let & = deg’e™* and f(z) = ag(2). Then f € X§*° Since - / log | f(re')| dt

is an increasing function of r, (2.31), (2.32) and the definitions of T, v, Na, Ny
and o show that, for n > Ny and v, <7 < 1y,

1§ ; 1 f7 ;
= 13 > it
Tt f) 2 5 [ toalstreNaz o [ loglsaetat

> loga+ slogg™ + log®{g™) + log 4_1e
o

= slog g™t + log ®(¢™) + log
degs

o
4eqs
[#4

1
= slog + log ¥{r,} + log
+1

l1-rn

1
> 5log 1. +logU{r)+ A+ log 1cg
1 A
+ log ¥ {r) + log "{}':3:I

= sl
slog py

= slog + log ¥(r).

I—r 1—17r

This proves (2.18) for ry, <r < 1.
Now, {2.18) and (2.8) easily imply
My f)20(r)(1~7)7"  0<p<oo,

for all r sufficiently close to 1.

In order to show that there exists f € X3 satisfying (2.17), let us notice
that if ® is the function given in Theorem 5 then $1/2 satisfies also the condi-
tions (1.12) and (1.13). Hence, if we apply the above argument with ®1/2 in
the place of @, we deduce that there exists f € XJ'™ such that

Myr, f) > ¥ 1-1r)"°, 0<pLoo,
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for all r sufficiently to 1. Since ¥(r} — 0, as » — 1, this implies {2.17). &

For the proof of Theorem 3 we need to introduce the Ahlfers-Shimizu char-
acteristic. For f analytic in U, define

'l 2
(2.33) S(r, f) = f/m i -Lflﬁal)l"‘)"‘ dzdy, O<r<Ll

Then, the Ahifors-Shimizu characteristic To{r, f) is defined by
(2.34) Tolr, ) =f @ dt, O0<r<l

0
Then [11, p. 13]

(2.35) IT(r, £) — Tolr, £) — log™ 1O < 5 iog'z 0<r<l.

We have

Lemma 2. Let f be a Bloch function. Then

{2.36) 11m mf(l - 7) log

—Srf) <

Proof: Let f € B. Anderson, Clunie and Pommerenke proved in (1, Th. 3.1)

that :
limsup——~~%— i, f} <=
remi loglog T~ T 2
Then {2.35) shows that
T }.

r—s1 Iogl{)g1 — 2

and hence
Tolr, 1

limin fi__o_{f‘i <=

r—sl loglogl = 2

which is equivalent to (2.36). K
Proof of Theorem 3: Let f € By. Then (2.368) implies

(2.37) lim it}f(l -mS{r, fy=0.
Let » > 0. Since f € B, there exists M > 0 such that

(2.38) (L= @ < i lf(z)] > M.
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Let

Fr={z:)z] <rand |f{2)| £ M},
Gr.={z:|z| < rand |f(z)l > M}

Then (2.38) implies

/flzlﬁif’(z)lzdzdy:f/ if’(z)|2da:dy+// (F(2) dr dy

@R
et [ it ] ol

< (14 M?)? 2’!??? :

Hence, using (2.37), we obtain
liminf(1 — 1) ] / F () de dy < 2n7.
r—1 Jz]<r

Since i > 0 is arbitrary, we have

limix}f(l—r)/ 1F(2)) 2 dedy =0

lz]<r

which implies

g e | ) dzdy

li--—-l i;
dr 1—

and this is equivalent to (1.15).
Now, an argument similar to that used in the proof of Theorem 5(i) shows
that {1.15) implies (1.16). This finishes the proof of Theorem 3. M

3. Some further results and final remarks

a} The results that we have proved are comparison results between Mp(r, f)
with Mp(r, f} and T{r, f) for f in some of the spaces X*? or Xy*. It is
well known (see e.g. [3, Th. 5.10|) that there exist functions f analytic in U
with My, (r, f) growing to infinity arbitrarily slowly which are not of bounded
characteristic. This leads one to ask the following question:

Let ulr) be a positive increasing function on 0 < r < 1 with p{0) =
and p{r) — o0, as r — 1, and let f be a function analytic in U satisfying
My(r, £} = O(u(r)}, as r — 1. What can be said about the growth of My (r, f)
and T'(r, £}7 In particular, it seems natural to ask whether or not the analogue
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of Theorem 4(i1} is true in this setting, i.e. does there exist a function f analytic
in IJ with
MOO{T} f) = G(P"(TD: asr — 1,
and 2 constant C such that
T(r,fy > logp(r)+C, 0<r<1?

We do not know the answer to this guestion. However, we do believe that
the methods of this paper are not enough to construct such an f.

b) First of all let us rexmark that some of the results that we are going to state
below {Theorem 6, Corollary 2, and Theorem 7) could be stated in the general
framework of the spaces X** and X3'*. However, for the sake of simplicity, we
will state them in the setting of Bloch functions.

It seems natural to conjecture that the conclusion of Theorem 1 remains true
for ¢ = 2, 3, and 4. However, our argument does not prove this since, with the
notation used in the proof of Theorem 1, we have Ay < 0.

A more general question would be characterizing those Bloch functions given
by a power series with Hadamard gaps for which (1.5) or at least (1,16} is true.
The following theorem gives a partial answer to this question.

Theorem 6. Let f be o Bloch function given by a power series

o n; + 1
. 2} = a2z’ u — 00, G5 7 — 00,
(3.1) f(2) =) a2™, with =— '
i=1 ’
Then .
lim su}p (log =7 T(r, ff)) = 00.

Furthermore, if lim supla;| > 0 then
F—roo

1
1-—

lim ir%f (log - Tir, f"}) < o0,

Using Theorem 2, we obtain as an easy consequence of Theorem 6 the fol-
lowing result.

Corollary 2. Let f be a Bloch function given by a power series
o0
, LY ES) .
= 2™ th g ' —— 00,
Hz) ;ajz un s 00, 5§ J
Then f € By if and only if

}lim1 (log

rT—

—T(r, f’)) = c0.

i—-7r

The proof of Theorem 6 depends on the following two elementary lemmas
whose proofs will be omitted.
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Lemma 3. [14, p. 339] Let {s:} be a sequence of positive numbers such that
Sk+1/5k — 00 as k — oo. Then, as k — oo,

ZSJ = ofty) and Z 5;° = o{sg )

F=k+1
Lemma 4. Let {s;} and {#x} be two sequences of positive numbers suck that
Skyifte — 00 and tx /sy — o0, as k — co.

Then, as k — 00,

k

D si=olty) end > 57t =o(iih).

=1 j=k+1

Proof of Theorem 6: Let f be a Bloch function given by {3.1}. Since f € B,
there exists K > 0 such that

(3.2) ;| < K, §=1,23,...
Let {m;} be an increasing sequence of positive numbers such that,

™y njp1 ,
(3.3) — L o0and 2E 00, as j — o0.
7 ™m;

For example, we can take m; = (n;n;41)1/2,
Let |2] = 1 — m;'. Then

(34)  [2f'(2)] = an < K3 n 4 K S g1 mpy.

=1 F=k+1
Using (3.3} and Lemma 4, we obtain

k
(3.5) an = o{my), as k — o0.

j:l

Now, {2.21} with m = 3, (3.3) and Lemma 4 imply

(3.6 z n;(1— mp )™ < (3e71)°mi Z nj_z
J=k+1 j=k+1

= (B~ Y¥mio(m;?) = o{ms), as k — co.
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Then (3.4), (3.5) and {3.6) show that

sup _|2f'(2)] = o(my), as k — oo,
Jz]=1—m;"
and hence
logmk—T(l—m JF) — 00, as k — ca.

This implies that

1
lim sup (log .

r—sl

- T(n 1)) = oo

Assume now that f is given by (3.1}, satisfies (3.2) and limsup|ag| > 0. Then
there exists M > 0 such that the set Free
T={k:|ax| > M}
is infinite. Take k € T and let rx =1 — . Then, for {2| = rg

1#(2)] > 12f(2)]

k—1
> Mng(l—-ng )™ - K> n;— K Z ni{1 —ng Yy =1 - IT — III.
i=1 i=k+1

Using (2.18), we see that there exists a constant C' > 0 such that
I Z Cﬂ.k‘

Lemma 3 implies that
IT = ofng), as k — oo.

Finally, {2.21) and Lemma 3 show that
IIT = o(ny), as k — oo,
Consequently, we obtain that
[zi|r=1£Ic |f'(2)| = Cnx — o{nk), as k — oo{k € T),

and, hence
T(re, f1) > log(nk —~ o(ne)) + O(1), as k — oo(k € T).
This easily implies that

hm 1nf (log —Tir, f ))

finishing the proof of Theorem 6. B

¢} So far we have proved in Theorem 2 that if a Bloch functwn f satisfies (1.8)
then it satisfies (1.5). Furthermore, the functions f considered in theorems 3
and 6 satisfy not only {1.16) but also (1.15). These facts might lead one to ask
whether or not the converse of Theorem 2(i) is true. Theorem 7 shows that the
answer to this question is negative in a very strong sense.
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Theorem 7. Let) < H < 1. Then there exists a Bloch function f such that

(3.7) lim inf(1 — 2 L{r, f) >0
and
(38) T(TT f’) —_

r—sl log-ié-;

Proof: We will use the following result due to Specht [18, Th. III] (see also
[13, Lem. 1 and 2]} on the conformal mapping of certain nearly circular regions.

There exists o simply connected domain D in the plane with
(3.9 Dulet nH <|t|<n}C D

and such that if w denotes the conformal mapping from D onto U with w{0) = 0
and w'{0) > 0, then

1
(3.10) k'{2) — 1| < 5 e D,
and
1 .
(3.11) §(1 —r) <1 —|w{ret) < 3{1 -7, O0<r<l, |t} < wH.
Let g > 12 be an integer and define
o0
f(z):Zw{z)q 1 2 €l
n=1

ie. f(z) = fy{w(2}}). Since the Bloch space is preserved under subordination
{see e.g. [17, p. 35]), it follows that f is a Bloch function. Then there exists a
constant C such that, for every ¢,

(3.12) log™ |f/{re™)| < log

+ C| 0<r<l.
1-7r

Now, {3.9} implies that

4+ it
i logt f(re®)

=0, H<lt| <,
Jm }ogﬁ T ftl <=

and hence, by the dominated convergence theorem,

+ ¢t i
e log" 1£/(re)]

dt =10
r—1 2% m i <t S IOg ﬁ
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which, with (3.12), easily implies

T i
(3.13) lim sup-l--M < H.

r—sl

1
g1+

Let . =1 — g~ ™. Then, for z = e’ with |¢| < nH, we have

W(Z) - " g
10 |55 1] =[S ae
> g ()| Z ¢~ - Z ¢l =T - 11 - 11,
k=n+1
Using (3.11). we obtain
lw(re®)| > 3r - 2, [t] < nH,

which implies that
I=q"w(@)|" >q*(1-3¢7)7".
Hence, since (1 — 3571} > €74 (j > 12}, we have

1
1—7n

(3.15) [>e g =e*

Now take g so big that

Then we have

n—1 n
q 1 1 1 4 1
1 =Y ¢ = o
(3.16) I Q<q—1 q~—11—r.n<4e 1-7,
=1

and, by Schwarz’s lemma and Lemma 1,

o0 (=]
@17) HI= Y @™ < Y Fa-¢m)7
k=n+1 k=nil
1 1 1 1 1
< (3a—13 n _ (a,—133 gt | ‘
< {3e )q'-’—lq {(3e )q2—11—rn<4e T

Hence (3.14), (3.15), {3.16) and (3.17) show that

w(z) 1

L1 )\ i, | <nH

(3.18)

..:rﬂ
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Notice that |w(z)] < 1 and that (3.10} implies that |w'{2}| > 1/2. Then {3.18)
easily implies

1

= z = rpe%, ¢ < =H.

(319 IfE)> et

It is clear that (3.19) shows that there exists a constant C' > 0 such that

C

(e, f') 2 Aoy

Since Ip{r, f') is an increasing function of r, it follows that, for r, <7 < royq,

i ’ ¢ = ¢ ¢ !
Dir, fY = hira, fY 2 (1 —rn)2 = %1 —rpy1)2 > ?{1 )2’

This proves (3.7).
Finally, {3.19) shows that for n big encugh,

1
41— r,)

w

1 .
T(ra, f) 2 ] log™ | f/(rac*)|dt > H log
27 flens

Consequently,
f
minf L2 5 g

r—1 log 117‘ -

which, with (3.13), implies (3.8). &

We should remark that the condition H > 0 is needed in Theorem 7. In fact,
it is a simple exercise to prove that if f € B and T{r, ) = o(log 11.-)! as
r— 1, then Lir, fY=o((1 - r)™%),as r — 1.

Pommerenke proved in [16, Th. 2] that if s Bloch function f has radial limits
almost everywhere on |z| = 1 then it satisfies (1.8). Notice that the function
J constructed to prove Theorem 7 is in fact analytic on the set {e* : 7H <
[t} < 7} and consequently it has radial limits on a set of positive measure. The
next result asserts that if a Bloch function f satisfies this last condition then
it satisfies {1.5).

Theorem 8. Let f be a Bioch function having raedial limits on a set of
positive measure. Then

r'li—rr»l]_ (}Og

— T(r, f’)) = 00.

1—-7r

Proof: Since a Bloch function is normal {186, p. 689], (1, p. 12] the concepts
of radial limits and angular limits are equivalent for f [15] (sce also [17, Th.
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9.3]). By Privalov’s theorem [18, p. 320] these angular limits are finite almost
everywhere. Hence, if we set

E = {t € [, 7} : f has a finite angular limit at €},

then |E| > 0.
Now,
1 |E] 1 1 :
. 1 _ fy— f =1 - + | 5 2t
(320) log —— ~ T(r,f) (%logl_r o [ 1og* 1 (re )|dt)
2 — |B| 1 1 e
- - =71 .
+ ( om log =7 " om {_N'H]_Elog | £ {re™)| di +ir
If |E| = 2%, then IT = 0. Otherwise
2 ~ | B} 1 1 .
— 1 _ + ! it
Ir Py (og T 2= 18] Jnms log™ {| ' {re*"}| dt)
or — |E| 1 1 .
> 1 _ ! it 1 dt
- 2n (og l—r 27 —|E| Ji_naj-E logllf tre™) +1) )

i i
T /[_m]_s e A P T )

Hence, since f € B, there exists a constant C such that

£3.21) Ir>q, O<r<l.

Arguing as in the proof of [16, Th. 2] we obtain that
(1 — ?‘)2] If'f(‘f‘eﬂ)]z dt — 0, asr — 1,
E

and then an argument like that used in the proof of Theorem 5(i} proves that
I — co, as v — 1. This, with {3.21}, shows that

log 1 —T{r,f) — o0, a587 -1 B
1-r

d) There are other questions that we could ask in this context. For instance,
it seems natural to ask whether or not {1.5) is true if f belongs to the closure
of H® in B. The answer to this question is affirmative. Actually, i is easy
to see that (1.8) is preserved under convergence in the Bloch norm and hence
Theorem 2 and [16, Th. 2] show the following:

If f e CLg(BN N) (the closure of BN N in B} then f satisfies {1.5).

Acknowledgments. I wish to thank the referee for his helpful comments,
specially for his remarks abhout the gencrality of our results. Originally we just
stated our results in the setting of Bloch functions ang not in the more general
framework of theorems 4 and 5.
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