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Abstract

BLOW UP OF MECHANICAL SYSTEMS
WITH A HOMOGENEOUS ENERGY

ERNESTO A. LACOMBA1 , JOHN BRYANT AND LUIS A. IBORT2

By using the ideas introduced by McGehee in the study of thesingularities
in some problems of Celestial Mechanics, we study the singularities at
the origin and at the infinity for some classical mechanical systems with
homogeneous kinetic and potential energy functions. For these systems
the origin and the infinity of the configuration coordinates is usually a
singularity or a nullity of the Hamiltonian function and the vector field .
This work generalizes a previous one by the first and the third authors,
where the kinetic energy did not depend on the configuration coordinates .

In this paper we study the blow up at the origin or at the infinity of con-
figuration space in classical mechanical systems with homogeneous kinetic and
potential energy functions . This means that usually the origin and the infinity
of the configuration coordinates is a singularity or a nullity of the Hamiltonian
function and the vector field . This is why a blow up of the function at infinity
or at the origin has to be applied, which describes in some sense the asymptotic
behavior of escape orbits or of orbits going to the origin .

This approach was first applied to total collapse motion in celestial mechan-
ics by McGehee [8] . It was then applied by several authors to total collapse
of special 3 and 4-body problems (see the research notes [3], and referentes
therein) . Then the first author and Simó [7] generalized this procedure to the
escape motion in celestial mechanics . An important feature of this generaliza-
tion was that we had to consider 3 cases according to the energy sign, and the
case h < 0 had to be treated differently, according to the specific problem . See
the survey [4] and referentes therein .
The generalizations considered here for the case when the mass matrix is

constant, were introduced in Lacomba and Ibort [5] . In a forthcoming paper
the case of a non constant mass matrix A will be treated in more detail .

1 CIFMA member (Mexico) .
2 0n leave of absence of Dept . of Fisica Teorica, Universidad Complutense de Madrid (Spain) .
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An insight is made here into the nature of the blow up employed . We see
that rather than projective we have a spherical blow up, where the radial coor-
dinate is taken as non negative. This produces a fictitious boundary where the
flow extends and is invariant . Under some conditions, the flow can be made
projective but no boundary appears . All of this is discussed in Section 2 .
In section 3 we give some important properties of the flow on the boundary

manifolds . The presentation is given in a novel way with simpler proofs, al-
though some results generalize [3] and others appear in [5] . Finally, the last
two examples in Section 4 are analyzed here in this context for the first time .

1 . Statement of the problem and some examples

The kind of homogeneous Hamiltonian functions considered here, are those
of the form

H(q,p) = 1pA-1(q)pt - U(q),

where q belongs to the open cone D C Rn representing positions ; p E R' are
the momenta, roughly the duals of velocities ; and U : D- R is a homogeneous
C°° function of degree k and A : D -+ M~pd

(R) is homogeneous C°° of degree a,
where Mña (R) is the space of positive definite n x n real matrices . This means
that the first term in (1), known as the kinetic energy, is not only homogeneous
(quadratic) in p, but also in q.
The corresponding Hamiltonian vector field is given by

áH
9' =

áp
= pA(q)-1

p = -
~p

= grad U(q) - 2 aq(pA-1(q)pt)

If A is constant, the second term in the equation for P does not appear, and
the system is simpler .
As simple examples of this situation, we can mention the following ones.
(A) Total collision in n-body problems . In this case k = -1, U is the grav-

itational potential among the n bodies, and A is a constant (the mass
matrix) . The origin q = 0 correspond to total collapse of all the bodies,
which is a singularity of U, and hence of the Hamiltonian vector field .
The blow up approach, valid for any energy was started by Mc Gehee
for the collinear 3-body problem .

(B) Escape behavior in n-body problems . In the above problem we study a
blow up at q = oo, to describe escape motions . We have to distinguish
the 3 cases h > 0, h = 0 or h < 0, since the behavior and required
transformations are quite different .
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(C) Conformal metrics of the form ds 2 = R'(dxi +

	

+ dxn) where R2 =
x2 + x2 + . . . + x,22, . In this case R = 0 is a singularity or a degeneracy of
the metric, according to the siga of a .

(D) Hyperbolic half-plane . A variation of the above example is the hyper-
bolic metric ds 2 = y-2 (dx 2 + dy2 ) in the half-plane y > 0 . This corre-
sponds to a case where a = -2, and the boundary y = 0 is a singularity
of the metric .

In general, the Hamiltonian (1) has a singularity at q = 0 and may go to
zero at infinity if either k < 0 or a > 0, exchanging behaviors at q = 0 and at
q = oo when k > 0 or a < 0 . In the next section we give a unified blow up
treatment of this sort of behaviors .

2 . Blow up equations

We essentially blow up the singularity of the Hamiltonian function, giving a
corresponding resolution of the vector field .

Let r = (gA(q)qt) '

	

for a =~ -2 be a sort of "distante" to the origin, with
a "unit sphere"

S= {QEDcR' :QA(Q)Q'=1},

which may not be convex nor bounded in general . It is a C°° manifold if
a + 2 ~-1 0 .

	

It is actually a unit sphere if A is constant .

	

For example, if
3

Q = (X, Y) and A(Q) =
( 0

	

y_3) in D = {(X,Y) : X > 0, Y > 0}, then

S is defined by X -1 + Y -1 = 1 .
We consider coordinates r, Q = r-1q to describe the behavior Glose to q = 0,

and p = r-1 , Q = pq to describe behavior Glose to g = oo . The corresponding
momenta transformation makes the energy relation H = h already regular .

i) For homogeneity k < 0 of U at q = 0, let Q = r-1 q, P = r-(«+k)/2p.

ii) For homogeneity k > 0 of U at q = oo, let Q = pq, P = p(«+k)/2p.

In the new coordinates (r, Q, P) or (p, Q, P) respectively, the energy relation
H = h becomes

Consider the case k > 0 at q = oo . With a corresponding time rescaling
dt/dr = p-1+(k-a)/2, the equations (2) are defined and non trivial at p = 0 :

P = _pv,

(3)

	

Q'= PA-1(Q) - vQ,

k < 0 : 1PA-1 (Q)P t = U(Q) + r¡k¡h

k > 0 : -PA-I (Q)P' = U(Q) + pi k1 h

P' = grad U(Q) - a 2 k vP - 2~ (PA-1(Q)P'),
q
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where the prime denotes derivative with respect to r,

(1 + a/2)v = PQt + 1Q [1: PAk1(Q)
8q (Q) t

]

and Ak1(Q) denotes the k - th column of A-1 (Q) . In the new coordinates, the
energy level Eh = {H = h} extends to the following manifold with boundary

Eh = {(p, Q, P) : P>- 0, Q ES, 2PA -1 (Q)Pt = U(Q) + pkh} .

Its boundary N, obtained by letting p = 0 is called the infinity manifold . Since
p = 0 in system (3) implies p' = 0, it is clear that the extended vector field is
invariant on N.

Notice that the added boundary is common for any energy level Eh . This
calls for an application of other blow ups to the boundary, in order to separate
the different levels at p = 0 . This is not a simple task, but the first author has
done it for the Kepler problem in a paper with G. 'Sienra [6] .
We remark that if h > 0, the study at q = oo for k < 0 or at q = 0 for

k > 0 can be made through a different blow up, not direct1y related to the
homogeneity. For Example, in the latter case we let Q = r-1 q, P = r-a/2p,

and the energy relation H = h becomes PA-1(Q)P' = 2r'U(Q) + 2h . In this
case we already get different boundaries for each level Eh .
The case a = -2, excluded in the aboye transformations, can also be studied

by means of a slightly different blow up . In this case the quantity gA(q)qt is
homogeneous of degree 0, and is not good for defining r with the formula at
the beginning of this section . However, notice that if A(q) = jq1« Id where jq1
is the euclidean norm and Id is the identity matrix, we simply have for any
a =A -2 that r = (gA(q)qt) .+z = ¡ql . Hence, we find natural to define in this
case r = jq1, even when a = -2 . For any admissible A(q), we extend the
definition r = jq1 for a = -2 . With the same definitions above for Q and P,
we get identical energy relations and time rescalings, only that the system (3)
may be slightly different . However, the flow in the case a = -2 may show some
undesirable behavior inexistent otherwise, as we will illustrate in Example 3,
Section 4 .
We will finish this section with a discussion of the blow up employed, so as

to put it in the general context of blow ups .
We emphasize again that the blow up here is applied to the Hamiltonian

function at q = 0 (or at q = oo), it is spherical and defined for r >_ 0 rather
than projective, hence producing a boundary. In this sense it is a little different
from standard blow ups, which are not related to any function .

Since blow up is performed on H, we have to consider its effect on each energy
level Eh. Now Eh in a neighborhood of 0 E D excluding 0 itself, is just a trivial
fibration with fiber S'-1 . But excluding the origin is topologically equivalent
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to excluding a small closed ball B about it . The effect of the blow up is to
add áB n D, topologically equivalent to S . Since we are already in the non
singular region, this boundary is assigned fibers S'-1 . This gives topologically
S x Sn-1 as the added boundary, which is in fact the divisor of the blow up .
In some cases we can take a double covering of the extended energy level Eh,

in such a way that U extends naturally in a C°° way. The divisor is the same
as above, still an invariant submanifold but no longer a boundary. This is true
in celestial mechanics where k = -1, a = 0: taking r < 0 can be interpreted
as changing sign to U, getting a repulsive problem . However, this procedure is
not valid whenever r" is not defined for r < 0.
On the other hand, a projective blow up can be defined under more restrictive

assumptions, since we would need S to be symmetrical with respect to the
origin, and again rk has to be defined for r < 0 . Then we require to choose a
way of identifying S'-i fibers at antipodal points of S .

3 . Behavior of extended flow

In this section we study some important properties of the extended flow
obtained after the blow up is applied . We assume that the blow up is as
described in Section 2 . An infinity manifold N is defined through blow up at
q = oo when k > 0, while an origin manifold, denoted by C, is defined by
blowing up at q = 0 when k < 0 . This is understood in all the propositions,
but the proofs and constructions are given in the former case, since the other
case is similar . Proposition 4 asserts that with slight redefinition of variables,
the blow up system (3) can be written in Hamiltonian form. The formula turns
out to be different for k = -2, due to the fact that we have to integrate a
power function . Let us remark that k = -2 gives in general the same sort of
obstruction as a = -2, discussed in the previous section .
The following result is a generalization of [3], for our case when the matrix

A is not constant .

Proposition 1 . The infinity manifold N (or the origin manifold C) is a
C°° manifold oven the subset of S where Uls > 0 whenever 0 is a regular value
of UIS .

Proof.: Notice that for a q¿ -2, N is diffeomorphic to G-1 (0, 0), where G
D x Hn -> R2 is defined by G(Q, P) = (QA(Q)Q1 - 1, PA-1 (Q)P1 - 2U(Q)) .
Then we have to check that the Jacobian matrix

grad QA(Q)Q'

	

)0
(gradQPA-1 (Q)Pt - 2grad U(Q) , 2A-1(Q)P')

of G has rank 2 on G-1 (0,0) . Indeed, if U(Q) > 0 then P :71= 0 and the
diagonal vectors in the above partition matrix are 7~ 0, giving rank 2 . If on the
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other hand U(Q) = 0, we necessarily have P = 0, so that gradQPA- '(Q)P' =
A'(Q)P' = 0. The only way for the rank to be 2 is that the vectors grad
QA(Q)Q1 and grad U(Q) are non collinear on S, which means that 0 is a
regular value of Uls.

For the remaining part of this section, we will assume that the mass matrix
A is constant . The following result, valid for any h =~ -2 is due to Devaney [3]
when k < 0 . The forbidden value for k will appear again in Proposition 4 .

Recall that a vector field X on a manifoldMis almost gradient with respect to
a function f : M -> R, if f always increases (or decreases) along non equilibrium
solutions of X .

Proposition 2. Let the mass matrix A be constant . Then the extended
vector fceld on N (or on C) is almost gradient with respect to v (v increases
along solutions if k > -2, and decreases if k < -2) .

Let us just remark that the sharp change of behavior at k = -2 is due to
the fact that v' = (1 + k/2)Q'AQ` when p = 0 (or r = 0) . In particular, if
k = -2 solutions on the added boundary manifold are contained in the v-levels .
If k > 0, v is always increasing along solutions on the infinity manifold N.

Next, we extend the concepts of homothetic solutions and central configura-
tions, which are standard in celestial mechanics . Recall that if A is constant,
then system (2) is equivalent to the second order equation.

(4)

	

qA = grad U(q) .

A solution of (4) is called a homothetic solution if it is of the form q(t) = A(t)Qo,
with Qo E S a fixed vector . This leads us to the central configurations, since
Qo must satisfy some conditions . Computing d(t) and substituting into (4), we
get

ÁQoA = ad- 'grad U(Qo) .

Multiplying now on the right by Qó and using the Euler formula for the homo-
geneity of U, we obtain the scalar second order equation

Á = dad-'U(Q0)

At the same time, we conclude that QOA and grad U(Qo) are not only
collinear vectors, but we have precisely

grad U(Qo) = U(Qo)dQOA .

From Lagrange multipliers theory, this is equivalent to say that Qo is a critica'
point of Uls . We say that Qo E S is a central configuration of the system if (5)
is satisfied .
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Proposition 3 . Let the mass matrix A be constant . Then the homothetic
solutions and possible equilibrium points of the flow onN (or on C), are located

by the critical points of U¡ s .

ProoL The assertion about homothetic solutions is clear from the above dis-
cussion . FYom the blow up equations (3), we see that the extended vector field
has critical points when p = 0, P = ± 2U(Q)QA and (5) holds . This means
that they are on the infinity manifold N, the position vector Q E S is a central
configuration, and P has exactly two collinear values depending on Q . This
requires of course U(Q) > 0.

Conditions for the existente of homothetic solutions are less stringent than
conditions for existente of critical points on the infinity manifold . For a thor-
ough discussion of this point, see [5] .

Now, because of the homogeneity, it is possible to show that with a slight
redefinition of variables, the blow up vector field can be put in Hamiltonian
form . This requires an insight on the structure given by the canonical simplectic
form w = dp n dq of the phase space T*D =D x IFB', by applying techniques of
contactization and symplectization . See [5] for details, but the conclusion can
be formulated as follows, if we define a new momentum and radial coordinate
for k 7L -2 by

(6)

	

P= p-1-k/ 2Q'A,

	

.\ =p-1-k/2/(1 + k/2) .

Proposition 4. Let the mass matriz A be constant and k 7L -2. Then the

change of coordinates from (p, q) to (Q, A, P, v) is canonical. The same thing
for k = -2 if we redefine A = - In p .

Proof. We just have to verify that the symplectic form w = dp n dq be-
comes dP n dQ + dv n dA in the new coordinates . Indeed, we _have pdq =
p-k/2pd(p-IQ) = p-2-k/2(-(v

+ Q'AQ)dp + pQ'AdQ) = vdA + PdQ, where
we used P = vQA+ Q'A and the fact Q'AQ = 0 since Q E S with A constant .
Applying exterior differentials, we are done .

The procedure for going from Equations (2) to the blow up equations (3),
will be to transform the Hamiltonian H by the above canonical transformation,
writing then the corresponding Hamilton . equations . We make the change of
time scale dt/d-r = p-I+(k-a)/2, converting finally to (p, Q, P) coordinates
where P = (Q' + vQ) A, with the help-of (6) .
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4. Detailed examples

In this section we analyze the result of applying blow up transformations to
4 examples .

In any case, we see from (1) that Eh = {H = h} is a pinched S-bundle over
the Hill region {q E D : U(q) + h > 0}, in Smale's terminology. This means
that the fiber is pinched to a point on the boundary U + h = 0 .

1) Anisotropic Kepler problem (see [3)) . This is a generalization of the
Kepler problem in celestial mechanics . Its Hamiltonian can be written as

H(g1,q2,pi,p2) = (pi +p2)/2- (1'2 gi +q2) -1/2 ,

where y >_ 1, and y2g1 + q2 =,A 0 . If y = 1 we have the standard Kepler
problem, but whenever y > 1, it becomes a no longer integrable problem . A
further thorough study of the possible motions using symbolic dynamics has
been made in [2] .
In this case the metric is the euclidean one in the plane . The set {U+ h >_ 0}

is topologically a punctured closed disk if h < 0 or the punctured plane (no
restriction) otherwise . This means that there is no infinity manifold in the
former case .
We show Eh in figure 1, with its infinity manifold N and the corresponding

boundary obtained by blow up at the origin (denoted by C) . All the figures
have to be identified at the right and left ends, since the horizontal coordinate
is the polar angle in configuration plane .

There are 4 central configurations corresponding to the positive and negative
directions of the two axes . Hence, there are exact1y 8 equilibriums points on
C for any h and on N for h = 0 . An exception is the infinity manifold N for
h > 0, which has two circles of equilibrium points shown at the top and the
bottom of Fig . 1, c . Homothetical solutions inside the figures are shown with
upward vertical arrows .

a)h<0

	

b)h=0

	

c)h>0
Figure 1

The shape of the toral surfaces is due to the variation of Ul s . In particular
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if ,y = 1, then Uls is constant and we get standard tori .

2) System with a Henon-Heiles potential . We consider here a mechan-
¡cal system with a homogeneous Henon-Heiles potential [1] . In this case k = 3,
since

H(4i,42,pl,p2) _ (pi +P2)/2-F a(9ig2 - 9i/2) .

There is an equilibrium point in phase space : the origin located in the energy
level h = 0 . To see that, we write explicity Hamilton equations :

4i = pi, 4'2 = p2, Pi = (34i/2 - 922)a, p2 = -2agi42 .

Hill regions for the 3 possible cases are shown in Fig . 2 . We have again
the euclidean metric in R2 . By applying Lagrange multipliers, it is easy to
check that there are six central configurations corresponding to the vertices
of the hyperbolas . This is intuitively clear from the figures, by recalling the
interpretation of central configurations as critical points of U restricted to the
unit sphere .

q

a)h<0

	

b)h=0

	

c)h>0
Figure 2

In Fig . 3 wee depict topologically Eh with origin and infinity manifolds for
h =,A 0 . We remark that there are three components and no origin manifold for
h < 0, as can be verified from Fig . 2 . If h > 0 the figure has to be identified
as in Example 1 . The origin manifold C has one component but 2 circles of
equilibria, as manifold N in Fig . 1, c .

Homothetical solutions are shown as in the other example. We see that
the number of critical points on N does not double the number of central
configurations as in Example 1, since escape to infinity is forbidden in many
directions .
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Figure 3

3) Central potential with conformal metric. We consider here a me-
chanical system in R'a, with a homogeneous central potential and a conformal
metric ds2 = R' (E dq?), where R2 = q2 + + q,2 . This is a generalization of
Example C in Section 1 . The Hamiltonian has the form

H(q,p) = R-aIPI 2/2 - Rk

and we will assume that k <_ 0 . In this case, A = R"(Id) while r = R is the
euclidean norm . Let us consider the blow up equations at q = 0, where the
potential becomes singular (if k < 0) and the kinetic energy degenerates to zero
if a < 0 . With P = r(a+k)/2p, the blow up equations are

r'=r(P .Q)
Q,= P - (P . Q)Q
P' = (alPI2/2 + k)Q - 1/2(a + k)(P - Q)P,

where the change of time scale is dt/d-r = rl+(« -k)/ 2 and the energy relation
is IPI2/2 - 1 = r-/"h . Setting r = 0, we get the origin manifold as

C = {(Q, P)IQ E Sn-1 ,

	

IPI2 = 2},

topologically equivalent to S''-1 x S''-1 . The equilibrium points of the extended
flow are defined by r = 0, P = f-,í2- Q, representing two disjoint copies of Sn-1
in C .

If k = 0, we compute easily the eigenvalues at any equilibrium point as
uo = Po - Qo with multiplicity 1 in the radial direction, 0 with multiplicity n
including a transversal direction to Eh, and -(1 + a/2)uo with multiplicity
n - 1 . Thus, the flow is normally hyperbolic at the equilibrium submanifold,
provided that a =,A -2 . We recall that a = -2 is in general a problematic case,
as we remarked in Section 2 .
4) Hyperbolic metric in the plane . Recall that this is ds2 = y-2(dx2 +

dy2), so that the Hamiltonian is H(q, p) = y2 Ipj 2/2 where q = (x, y), p =
(p1,p2) and the corresponding Hamilton equations read as

pl = 0, p2 = -YIPI2 , x = y2p1, y =
y2P2-
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This is the special case ce = -2, and in addition we have a singularity at the
whole x-axis and not only at the origin . Hence, we consider a slight variation
(otherwise very natural) of the transformation given for a = -2, to blow up
the whole axis . We check that since k = 0, no change of time scale is needed .

Let P = yp, then the equations of motion become

x = YP1
y=yP2
Pl = Pl P2

2P2 = -Pl .

The last 2 equations are uncoupled from the other two, so that the system
can be integrated by quadratures . If Pl = 0, we get x = constant and P2 =
constant, which are the vertical lines . If Pl :~ 0, we rescale the time by dt/d-r =
Pi 1 , getting the circles

P, (T)= Y'2-h-cosT,P2(T)= Y/2-h-sinr,x(T)=BsinT+a,y(T)=BcosT

where B and a are constants :
The blow up produces the following extended energy level, for any energy

h>0:

(10)

Eh={(x,y,Pl,P2) :y?0,xER,P1+P2 =2h}

which topologically is R x (R+ U {0}) x S' . By setting y = 0, we get a boundary
manifold C invariant under the extended flow, which topologically is a cylinder .
It has 2 lines of critical points as in Examples 1 and 2.

We observe that if we define .1 = x/y, an analog of the Q-variable in the
general theory of Section 2, the equations (9) become

y=yP2
.~=Pi-AP2
P = P2P + (0, -IPi 2) .

This system is remarkably similar to (3) . Besides, the equation ¡12 = -P,2 in
(9) implies that the flow on C is almost gradient with respect to P2 .

If we change the variable y by p = y-1 with a change of time scale dt/ds =
p-1, we get

x' = PI

	

Pi =PPIP2
pr = _p

2P2

	

Pz = _ppi .

These new coordinates produce another boundary N on the y - +oo side of
the half-plane when we let p = 0, x E R, P1 + P2 = 2h, which topologically is
another cylinder .
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The projection of the flow in Eh UCUN into a plane where (PI, P2) locates
the direction and the radial distante is (3y+ 1)/(y+ 1), can be described as in
Fig . 4 . The flow on N is by horizontal lines transversal to the figure, except at
the two lines PI = 0 of critical points .

Figure 4

Acknowledgements. One of us (EAL) acknowledges insights into the na-
ture of blow ups from Felipe Cano (Spain) .

Referentes

1 .

	

R. BROUCKE, "Simple non integrable systems with two degrees offreedom,"
Instabilities in Dynamical Systems (V . Szebehely, Ed.), Reidel
Publ., 1979 .

2.

	

J. CASASAYAS AND J . LLIBRE, Qualitative analysis of the anisotropic
Kepler problem, Memoirs Amer. Math . SOc . 312 (1984) .

3 .

	

R. DEVANEY, "Singularities in classical mechanical systems," in Ergodic
Theory and Dynamical Systems I (A . Katok, Ed. .), Birkhauser, Basel, 1981,
p . 211.

4 .

	

E . LACOMBA, Blow up on energy levels in celestial mechanics, Publicacions
Secció de Matemátiques, Univ . Autónoma de Barcelona 28 (1984), 97-117.

5 .

	

E . LACOMBA AND L . IBORT, Origin and infinity manifolds for mechan-
¡cal systems with homogeneous potentials, Acta Appl. Math . 11 (1988),
259-284.



BLOW UP OF MECHANICAL SYSTEMS

	

345

6 .

	

E. LACOMBA AND G. SIENRA, "Blow up techniques in the Kepler prob-
lem," Holomorphic dynamics (Gómez-Mont, Seade, Verjovsky, eds.) Sprin-
ger-Verlag Lect . Notes 1345, 1988, p . 177.

7 .

	

E. LACOMBA AND C. SIMó, Boundary manifolds for energy surfaces, Ce-
lestial Mechanics 28 (1982), 37-48 .

8 .

	

R. MCGEHEE, Triple collision in the collinear three body problem, Inven-
tiones Math . 27 (1984), 191-227 .

Ernesto A. Lacomba: Departamento de Matemáticas
Universidad Autónoma Metropolitana
Unidad Iztapalapa, Apartado Postal 55-534
C.P . 09340 MÉXICO D.F .

John Bryant : 47 Ave. Felix Fauré
75015 Paris
FRANCE

Luis A. Ibort : Department of Mathematics
University of California at Berkeley
Berkeley, Cal. 94720
U.S .A .

Rebut el 21 de Mare, de 1990




