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CONTINUITY OF THE VISIBILITY FUNCTION

Ana ForTe CUNTO

Abstract

(3. Beer defined the visibility function of a set § and proved its continuity
in the interior of §. It is proved here that the visibility function of a
planar Jordan domain § is continuous precisely at Lthe cone points of the
boundary of 5. '

i1, Notations and basic definitions

Unless otherwise stated, all the points considered here are included in the
Euclidean plane E;. The complement, interior, closure, boundary and convex
hull of a set § are denoted by C§, int S, clS, bd .S and conv §, respectively.
The open segment joining z and y is denoted (z y). The substitution of one or
both parentheses by square ones indicates the adjunction of the corresponding
endpoints. The ray issuing from z and going through y is denoted R{x - y),
while R(yz —) is the ray issuing from = and going in the opposite direction
to that of R{z — y). Rays are always closed. We say that = sees y via § if
[z ¥) € S. The star of z in S is the set st{x,S) of all the points of 5 that
see 7 via S. A star-center of § is a point z € § such that st(z,S) = 5. The
convez kernel of S is the set ker S of all the star-centers of 5. 5 is starshaped if
ker 8 +# ¢. A Jordan domain is a compact connected set of Ey whose boundary
is homeormorphic to the unit circle. The open and closed disks of center z and
radius 6 will be denoted U{x; 8} and B{x;§), respectively.

If y € bd S and z € st(y, S) we say that the ray R(z — y} is inward through
y if there exists ¢ € R{zy —) such that (y t) C int §. Otherwise we say that
R{z — y) is outward through y. The inner stem of y with respect to § is the
set ins(y, S) formed by y and all the points of st(y, S) that issue outward rays
through .

A point £ € S is a peint of local converity if there exists £ > 0 such that
SN B(z,e) is convex. Otherwise, z is a point of locel nonconvezity. We remark
that the distinction is significant only for boundary points, since every interior
point is trivially of local convexity. The set of all points of local convexity
of § and that of all points of local nonconvexity are denoted lc S and Inc S,
respectively. Tt is casy to see that lc S is open and Inc S is closed in the relative
topology of bd 5. An obstruction zone is a connected component of Inc S
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A point z € bd S is a flat pointif £ € lc §N1lc CS. The set of all such points
is denoted flp 5. = € bd S is an inflection point (and the set of all inflection
points is denoted ifp §) if either 2 € Inc M Inc CS or z € Inc §M Ic €SN
cl{fip §). AnareT C bd & keeps the sense af curvature if either T C le § or
I'Cinc 5.

If §'is a closed set with nonempty interior and z € 5, then the set of critical
visihility of x in § is the set

cv(z,S) = int S Nbd st{z, 5).

Each point of this set is a point of critical visibility of x in 5. The
point x € S is clearly visible from v via § if there exists ¢ > 0 such that
B(z,e} N S C sty 5).

2. Statement of the problem

In [1] G. Beer defines the wisibility function as the onc that assigns to each
point & of a fixed measurable set S in the Euclidean space E,., the Lebesgue
outer measure of st(«, S}. We shall denote it v(x).

In [1}, [2] and [3] several theorems about the continuity of v(z) in open sets,
or in the interior of the sets considered, are demonstrated. The purpose of the
present paper is to study the behavior of the visibility function in the boundary
of a Jordan domain §. The study is restricted to this case in order to aveid
difficulties as those presented in the examples of [2] and [3). In this case, the
theorems shown in [1] assurc the continuity of v(z) in int S,

Furthermore, the boundary curve must have finitely many inflection points
in the smooth case, and finitely many angular points in the nonsmooth case.
This will prevent the existence of singular points (i.e. points of accumulation
of inflection points or angular points). The study of the star of a singular point
scems almost unmanageable to this author. A Jordan domain without singular
points will be a regular Jordan domain.

We make a local study of the star’s measure in a point z € bd § using the
domain of good behavior N, that is a neighborhood of x having the following
characteristics:

i) its center will be z;
{i} N includes neither inflection points nor angular points of bd S except
possibly z itself.

Clearly ii) assures that each of the two subarcs I') and ['; of NN bd 8, having
z as one endpoint, keeps the sense of curvature. We generalize this local results
using the fact that the stars are fans spanned by §. The definition of this
concept is given below.
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3. Auxiliary results

Lemma 3.1. Let S be a closed set of the plane, {z; y; 2} C 5 such that
[zylUly 2] € S. Let T = conv{z; y; z} have at most one point w € Inc § such
that we{z z). ThenT CS.

Proof: A slight variation in the proof of Corollary 2 of [6] yields this lemma
that is, in the same spirit of Valentine’s result, an useful consequence of Tietze's
theorem on local convexity. ®

Lemma 3.2. Let § be o regulor Jordan domain and z¢ € bd S. There exisis
a domain of good behavior N = B(zo,8). Furthermore, A={B(xo,8} ~ {zo}I[
bd & consists of two connected arcs ending at zo, such that each of them keeps
the sense of curvalure,

Proof: Define

K = {7z € bd S|z is an inflection point or an angular point}
§ = d{zg, K ~ {za})

From the inexistence of singular points it follows that § > 0. Let I' be the
connected component of [bd S N B(xg, §/2)] that includes xg. Then ' =T Ul
where each of these subarcs ends at xg and keeps the sense of curvature. Define
B,, = B(zo,8/2n) and T'1,, T'2,, as the connected components of Ty N B, and
To N B, respectively, that include g, Let Ap = I'p ~ [Din U 2]

Owing to the simplicity of bd S, there exists a positive integer m such that
B, NA, = ¢ The ball N = B, satisfies the thesis. B

In the sequel, the domain of good behavior with respect to zp will be denoted
by N. Let zp € bd S and L, be a linc through 2p. The mazimal segment
determined by Ly in S is the connected component I, of L, NS that includes
Zo. The union of all those maximal segments is the fan in zo spenned by §. The
angular egmplitude of a fan S(ae S) will be the normalized Lebesgue measure
(in bd N of the radial projection of § from xg over bd N. § will be an angular
connected fan if that projection is connected in the relative topology of bd N.

Lemma 3.3, ins{zg, S) and st{zg, S) are fans in zo.
Proof: Both sets are starshaped and zg is & star-center for each of them. B
Lemma 3.4. [ = NNins(zg,S) is an anguler connected fan.

Proof- We consider two alternatives:

(iY Let » € T, v € I and zo be not collinear with these points. There exist
@ € Rluze —)N N and v € R{vzo —) N N such that {zo v |Nint S = ¢
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and {zg ¥ Nint § = $. Assume that {xg9 ¢) and (xg v') are both included in
NNCS. Define

£ = min {d{xﬁsu)i d(IU:”); d{zﬁ:u,); d(Ig,UI)}

Br:B(IOsJ@/z) ' B{=der)
us € [rgulNB] , vy €lzpv]NBY,
v elzew|N B} , v} €z v]Nn Bl

Clearly {zo ui] € CS, and (zp vj] C €S. Furthermore, condition (i) implies
that v; ¢ L{xo w}), hence jv; wj)NbdS # ¢ An analogous argument shows
that [u; vi] NbdS # ¢ Let ¢ € [vy wi]NbdS and py € [uy vi]NbdS.
Hence py # zo and ¢; # zp by condition (i), and bd S cannot cross neither
{zo u}) nor {zp v}) since these segments are entirely included in CS. A similar
argument shows that bd S cannot cross neither {zg 11} nor (zo ;). Since N
is the domain of good behaviour of zp, only two subarcs of bd S {call them Ty
and I'p), both having zo as one extreme, are included in N, Define two circular
sectors of B":
81 = (v1 7o u}) and Sz = (w1 xo ¥})

such that ¢» € 5; and p; € Sz. It follows that

(1) [CS..T2C S

and

(2} int {conv {u;; vi; 2o} NbdS = ¢
(3) int {conv {u}; v{; 7})Nbd & = ¢

If z € [z 1], it follows from {2) and Lemma 3.1 that [z 20] € § and 2z €
st{zg,S). Define now 2’ € {1} »{} N R{zz¢ —). Using (3) and Lemma 3.1
we obtain that {xp 2’} € €8, and 2z € ins{zp,5). A very similar argument
Lolds when one or both of the segments [zo «}], [zo ¥}] is included in bd 5. We
coclude that 7 is convex, whence its radial projection from zp onto bd N must
be connected in the relative topology of bd N.

(i Letwue i, vel and zg € (uw).

Since R{uxg ) is outward, 2o € (v v} and [za ] C S, it follows that
[re v] C bdS. The same argument proves that [zo u] C bd S, and as S is a
Jordan domain, I N B’ must be a halfcircle. Clearly, its projection from zg
onto bd N rmust be connected. B

Lemma 3.5, J = N Nst{zg,S) is an angular connected fan.

Proof: We consider three alternatives:
() Letuwe Jvedandu e NNst{v,S), while 20 ¢ [u . Let 4 ==
conv{{y; v; zo}). Then int AN bdS = ¢ since any crossing of bd S over
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{zo u}, [zo v] or fu v} wounld ruixe the conditions. of visibility.: If z € {u v],
by Lemma 3.1 it follows that z € J. Eence, J results convex; and its radial
projection from g over bd N must be connected.

(2) Let u € J,v € J,u ¢ Nnst{v,S), while zo ¢ [u v]. Define

§ = min {d(u, 20); o, 20)} , B = B(z0,6/2), Bf = bd B,
: uw € (zp ul N By, v € [z v N Bl

Clearly v’ € J,v' € J, and we may assume that ' ¢ N nst(v', 5}, since
otherwise we would be in the situation of part {1}. Let

ze (W vYNCS, pe (¥ 2)NbdSANNst(v',S),
g€ 2NbdSNNNst(w,S).

The visibility conditions assure that p # g, ¢ # %o and p # ¢g. We intend
to prove that p and ¢ belong to different boundary arcs separated by zp in
bd § N N. It may happens that p = v or ¢ = ¢/, but in this case one of the
boundary arcs would be a segment, and since 2o € [p ¢}, these points must
belong to different arcs. Let us assume that p # v’ and ¢ # o/, and suppose
that p and ¢ belong to the same boundary are I';. Without loss of generality
assume

Gy

that g € arc {xg,p) C I'1. By the definition of p, it is not the last point of I'y in
B'. Let A = conv({v'; p; 20}). We observe the position of I'; with respect to
A U nint A= ¢, either a double point or a forbidden change in the sense
of curvature would appear in bdSN N, If Ty NintA # ¢, it would imply a
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double point, a contradiction of the visibility conditions or a forbidden change
of curvature. Hence, p and ¢ must belong to different boundary arcs. Let
- 81 = (v 2o ') the circular sector of B’ that includes z; S; = B’ N C 8;. Then
bd SN B C &§,. Define :
#' € R(zzp —) N By.
Then 2’ € J, and 2’ € int 3. Using part {1) we obtain that
W 2TUlz'v]CJ,
and the radial projection of this union over bd N is connected.
(3) Let ue J, v € J but zg € [u v].
Let B, Bj, v’ and ' be as in (2). Let z € CSN B, and take

pe 2z]Nnst(a’,8)Nbd S
ge v z]Nst(®»,8)Nbd S

Since z, » and v are not collinear, it follows that p # ¢. Using that 2/ =
R(zzo —) N BY, and the same arguments as in (2) we obtain

WUz v]cd m

Lemma 3.6. Let {zn|n € N} be a sequence of poinis in § such that limz, =
zo. Then

ns(an,$) € | U () s(209) | U0} U@ = [ i (e, 9)] U s} U@,

n=] j=n

where Q) is included in the union of a finite number of mazimal segments unth
respect to Tp and has null measure.

Proof: Let p € ins{zq, §), p # zo. We consider two alternatives:

a) If z¢ is clearly visible from p, there exists a neighborhood U(zq) such
that U{zo) NS C st{p,5). Then if 2, — Tg, T. € Ulxe) N EV¥n > ng and
Iy € st(p,9) ¥n > np. Hence

pE ﬂ st{z;, S) C U m st(zy;, ).

J=ng n=1j=n

b} If zq is not clearly visible from p, it follows from Theorem 2.1 of [5] that
{pzo)DlncS # ¢ Let z € (pxg) Minc S. If z is a smooth point of bd S, there
exists an obstruction zone I' C Inc S that includes z. Then conv [ is supported
by, at most, two rays issuing from zg. Since there are finitely many obstruction
zones, and for cach of them there are at most two maximal segments of critical
visibility, the family of such segments is finite. If z is not a smooth point of
bd .S, a similar argument, based in the definition of regular Jordan domain,
assures that the family of segments of critical visibility is finitc. B
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Lemma 3.7. Let F' be an angulor connected fan in g and m{F) its planar
Lebesgue measure. Then m(F) > 0 if and only if aa(F) > 0.

Proof: Taking zg as the origin, the area of F' can be easily computed by
a positive radial function r(#) that depends on the argument &, whose range
of variation is the projection of F from xy over bd N. Let m and n be the
endpoints of this projection. If m, n, and zy are not collinear, then let A =
conv{{m; xo; n}), and & be the angle formed by R{zy — n) and R{zp — m)
exterior to A, Then, it is clear that aa{F) = 27 — . Hence,

{1) m(F) = /:W for(ﬂ}rd?‘dg

Both implications of the thesis follow readily. Otherwise, if m, n and zo are in
the same line L, take t € F ~ L, and A = conv{({m, x¢, n, t}). A very similar
argument holds and (1) is valid witho =#. W

Lemma 3.8. Let M and L be two connected fans with vertex xg, M C L.
Then m{M) < m(L)} if and only f aa(M) < aa(L).

Proof: The set F = (L ~ M) U {xq} is a fan in 2p whose projection from
zo over bd N is not necessarily connected, but has at most two connected
components. Hence FF = Fj UF,; and L = MU Fy U F,. Both implications of
the thesis can be obtained from equality (1) of Lemma 3.7 and the additivity
of Lebesgue measure. @

Lemma 3.9. m{ins(z, SYNN) < mist(z, S)N Nj implies that m(ins(z, §)) <
mist{z,S)).

Proof: Let us assume the existence of a system of polar coordinates centered
at z and similar to the one described in Lemma 3.7. If & and § are the angular
coordinates of the endpoints of the radial projection of ins{z, &} over bd NV,
and o, B are the corresponding coordinates for st(z,S), then aa(ins(z, S)) =
8 — a, aa(st(z,8)) = B’ — . Let € be the radius of N. From Lemma 3.8 it
follows that o € o < 8 < . Using the notation of Lemma 3.7 it results that

8 pr(8)
mist{z, §)) = m(st(z, S} N N) —i—f / r dr dff

and
8 or(8)
m(ins{z, 5}) = m{ins(z, ) ﬂN)+/ ] rdrdf

o

and the strict incquality of the thesis follows readily. W
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4. The main theorem and its corollaries

Theorem 4.1, Let S be a regular Jordan domain and x9 € bd 5. Then, the
following stotements are eguivalent:
(i) m(st{zo, S}) = m(ins(zo, 5))
(ii) v is continuous in xo.

Proof: (i} = (ii). Assume that v is discontinuous in xp. Owing to the upper
semicontinuity of v {Beer, [1], there must exist a sequence {x,} in S such that
T, — Tp but lim v(z,) < v(xg). Hence,

T OO0

(1) nlin; mist{z,, S)) < mst(zo, 5))

From Lemma 3.6 it follows that

(2) ins(zg, S) C U ﬂ st{z;, 5) U{:.-:D}UQ

n=1j=n

where @ has null measure. From (2) it follows that

m(ins(zp, §)) € m G ﬁ st{z;, 8) | + m({zo}) + m(Q) =

n=1j=n

N—O0

I=r

lim m |:ﬁ st(xj,S)] < 7}1{& mist{za, SY).

From this inequality and (1) we obtain a contradiction of (i).
(ii} = (i). Assume that m(st(zp,S)) # mins(zo,&)). It is clear that
m(st(xg, S} — miins{zq, §)) > 0, and that

D = [st(zp, §) ~ ins(xo, 5))

is a fan at xp having positive measure. From Lemma 3.8 it follows that
aa(st{zo,S)) > aa(ins{zg, §)), whereas from Lemmas 3.3 and 3.4 we know that
botk NNins{zp, 5} and Nrist(zg, ) are angularly connected. Then, the projec-
tion of D from xp over N; has at most two connected components, and at least
one of them with positive measure. Hence, it is clear that m{st(zo, 5) N N) >
m{ins(xo, 5) N N), and that there exists a set A C DN N such that int A #£ ¢.
Select t € int A and w € ins{xo,5), and call L{w,x0) the line through w
and zg and HY, H~ the two open semiplanes in which this line divides Ej.
Since t ¢ L{w,zp) we can assume that ¢ € H¥. There exists ¢ > 0 such
that B{t,e) C A C DN N. Since R{t — zg) Is inward, there exist a point
t' € Rltzg =) H N S5NN with (t'z6) C int §. Clearly ' ¢ ins(zp, S) and
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¢ is not clearly visible form ¢, Let t, = it + 2=lgo. Hence V¥n t, € (' zo)
and ¢, — zp. Furthermore, each of the i, has the same visibility restrictions
as t’ with respect to t. Let L(t,z0) be the line through ¢ and zo, and ¥ be
the connected subset of S limited by L{t,zp) and not visible from ¢ via S.
Furthermore, the points of U are not visible via S from each of the £,. Call

§ =5~ U and let  be the visibility function of 5. Clearly it holds
¥ 5{t,) = vits), ¥#{zo) < v(zo)
and from the upper semicontinuity of v we obtain
lim v(t,) = lim #(ts) < #{zv) < v{zo)
R0 nlioo
that contradicts (ii). ®

We say that z € bd S is a cone point if there exists a line L through x such
that st(z, ) is included in one of the two closed scmiplanes determined by L.

Lemma 4.2. I} S is a Jordan domain and z is a boundary point of S, there
exists a line I through T that leaves ins(z,5) at one side of it.

Proof: As lemma 3.4 states, ins(z,S) N N is an angular connected fan. If
such a line does not exist, there must be a line through z that intersects the
radial projection from z¢ of ins{x, ) on bd N in two points {t; ta}, where at
least one of them (say ¢;) is not an endpoint of that projection. Hence there
should exist tg € (xot1) such that (zg to) be included into int §. But this should
contradict the fact that ¢y € ins(z,5). &

Theorem 4.3. The points of continuity of the wsibility function of S on the
boundory of S8 are precisely the cone poinis of that boundary.

Proof- Let z be a cone point of bd S, and L a line through z that divides
E, into two open semiplanes H* and H~ such that st{z,§) C cl(H*). Take
u € st(z, S} ~ L, and let v’ € R{uxr —) such that (z «/] C H~. Since
u' € st{x, 5), we have two alternatives:

(a) (z e )NE = ¢.
(b (zu'INS£gpand (zu)NCS £ ¢.

Each of this alternatives produces easily a point ¢ € {z u/] such that {z t)N
int § = ¢, whence = € ins(x, S). We have shown that

st{z,9) ~ ins(z, Sy C LNS

and the last set has null measure. Hence z satisfles hypothesis (i} of Theorem
4.1 and v is continuous at x.

Conversely, assume that v is continuous at z. From Lemma 4.2 there exists
a line L that produces a closed semiplane H™ including ins(z, $). Repeating
arguments used in the second part of Theorem 4.1 we obtain that the set
D =st{z, S) ~ ins(z, S) is a fan having one or two connected components and
has null measure. It follows that D C L, whence st{z,S) C H* and z is a cone
point. B
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Theorem 4.4. A smooth point of bd § is a cone point.

Proof: For flat points, the theorem is almost trivial. In the case of inflection
and concave points (l.e. points of Inc.SNleC S}, the thesis follows from Lemma
4.2 and Theorems 2.4 and 2.5, respectively, from [4). If z is a convex point
{that is = € leS NlncCS), let T be an arc of bd § such that z € T and
FCleSNIneCS. Let K = convI' and T(z) be the tangent line to K through
x. Call H* and H~ the two open halfplanes determined by T(x), where K C
¢l H*. Hence, w € H~ implies [w z]NCS # ¢, since T(z) is supporting. Then
st(z,8) C clH' and z is a cone point. B

Corollary 4.5. The visihility function is continuous ot smooth points.

Proof: Inmediate from 4.3 and 4.4 K
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