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CONTINUITY OF THE VISIBILITY FUNCTION

Abstract

ANA FORTE CUNTO

G. Beer defined the visibility function of a set S and proved its continuity
in the interior of S. It is proved here that the visibility function of a
planar Jordan domain S is continuous precisely at the cone points of the
boundary of S.

1 . Notations and basic definitions

Unless otherwise stated, all the points considered here are included in the
Euclidean plane E2 . The complement, interior, closure, boundary and convex
hull of a set S are denoted by C S, int S, cl S, bd S and conv S, respectively.
The open segment joining x and y is denoted (x y) . The substitution of one or
both parentheses by square ones indicates the adjunction of the corresponding
endpoints . The ray issuing from x and going through y is denoted R(x --> y),
while R(yx -) is the ray issuing from x and going in the opposite direction
to that of R(x --~ y) . Rays are always closed . We say that x sees y via S if
[x y] C S. The star of x in S is the set st(x, S) of all the points of S that
see x via S . A star-center of S is a point x E S such that st(x, S) = S. The
convex kernel of S is the set ker S of all the star-centers of S . S is starshaped if
ker S ~ 0 . A Jordan domain is a compact connected set of E2 whose boundary
is homeomorphic to the unit circle . The open and closed disks of center x and
radius b will be denoted U(x ; S) and B(x; 6), respectively.

If y E bd S and x E st(y, S) we say that the ray R(x -> y) is inward through
y if there exists t E R(xy -~) such that (y t) C int S . Otherwise we say that
R(x , y) is outward through y. The inner stem of y with respect to S is the
set ins(y, S) formed by y and all the points of st(y, S) that issue outward rays
through y .
A point x E S is a point of local convexity if there exists E > 0 such that

S nB(x, E) is convex . Otherwise, x is a point of local nonconvexity. We remark
that the distinction is significant only for boundary points, since every interior
point is trivially of local convexity. The set of all points of local convexity
of S and that of all points of local nonconvexity are denoted le S and lnc S,
respectively. It is easy to see that le S is open and lnc S is closed in the relative
topology of bd S . An obstruction xone is la connected component of lnc S .
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A point x E bd S is a flat point if x E le S n le CS . The set of all such points
is denoted fip S . x E bd S is an inflection point (and the set of all inflection
points is denoted ifp S) if eíther x E lnc S n lnc CS or x E lnc S n le CS n
cl(flp S) . An are I' C bd S keeps the sense of curvature if either I' C le S or
I' C lnc S .

If S is a closed set with nonempty interior and x E S, then the set of critical
visibility of x in S is the set

cv(x, S) = int S n bd st(x, S) .

Each point of this set is a point of critical visibility of x in S.

	

The
point x E S is clearly visible from y via S if there exists e > 0 such that
B (x, E) n S C st(y, S) .

2 . Statement of the problem

In [1] G . Beer defines the visibility function as the one that assigns to each
point x of a fixed measurable set S in the Euclidean space E., the Lebesgue
outer measure of st(x, S) . We shall denote it v (x) .

In [1], [2]' and [3] several theorems about the continuity of v(x) in open sets,
or in the interior of the sets considered, are demonstrated . The purpose of the
present paper is to study the behavior of the visibility function in the boundary
of a Jordan domain S . The study is restricted to this case in order to avoid
difficulties as those presented in the examples of [2] and [3] . In this case, the
theorems shown in [1] assure the continuity of v(x) in int S .
Furthermore, the boundary curve must have finitely many inflection points

in the smooth case, and finitely many angular points in the nonsmooth case .
This will prevent the existente of singular points (Le . points of accumulation
of inflection points or angular points). The study of the star of a singular point
seems almost unmanageable to this author . A Jordan domain without singular
points will be a regular Jordan domain.
We make a local study of the star's measure in a point x E bd S using the

domain of good behavior N, that is a neighborhood of x having the following
characteristics :

i) its center will be x,
ii) N includes neither inflection points nor angular points of bd S except

possibly x itself.
Clearly ii) assures that each of the two subarcs I'1 and I'2 of N n bd S, having
x as one endpoint, keeps the sense of curvature . We generalize this local results
using the fact that the stars are fans spanned by S . The definition of this
concept is given below.



Lemma 3.1 . Let S be a closed set of the plane, {x ; y; z} C S such that
[x y] U [y z] C S . Let T = conv{x ; y ; z} have at most one point w E lnc S such
that w E (x z) . Then T C S .

Proof: A slight variation in the proof of Corollary 2 of [6] yields this lemma
that is, in the same spirit of Valentine's result, an useful consequence of Tietze's
theorem on local convexity.

Lemma 3.2 . Let S be a regular Jordan domain andxo E bd S. There exists
a domain of good behavior N= B(xo, S) . Furthermore, A= [B(xo, b)- {xo}] n
bd S consists of two connected arcs ending at xo, such that each of them keeps
the sense of curvature.

Proof. Define
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3. Auxiliary results

K = {z E bdSIz is an inflection point or an angular point}
5 = d(xo,K - {xo})

Rom the inexistente of singular points it follows that 5 > 0 . Let F be the
connected component of [bd S f1 B(xo, S/2)] that includes xo . Then F = F 1 Ur2
where each of these subarcs ends at xo and keeps the sense of curvature . Define
B, = B(xo, 5/2n) and I'1,, F2n as the connected components of F1 n B, and
F2 n B� respectively, that include xo . Let A, = Fn - [F1n U F2n ] .
Owing to the simplicity of bd S, there exists a positive integer m such that

B�, f10�, = 0. The ball N=B�,, satisfies the thesis .

In the sequel, the domain of good behavior with respect to xo will be denoted
by N. Let xo E bd S and La be a line through xo . The maximal segment
determined by L,, in S is the connected component la of L. f1 S that includes
xo . The union of all those maximal segments is the fan in xo spanned by S. The
angular amplitude of a fan S(aaS) will be the normalizad Lebesgue measure
(in bd N of the radial projection of S from xo ovar bd N. S will be an angular
connected fan if that projection is connected in the relativa topology of bd N.

Lemma 3 .3 . ins(xo, S) and st(xo, S) are fans in xo .

Proof. Both sets are starshaped and xo is a star-center for each of them .

Lemma 3 .4 . I = N n ins(xo, S) is an angular connected fan.

Proof. We consider two alternativas :
(i) Let u E I, v E I and xo be not collinear with these points . There exist

u' E R(uxo ->) n N and v' E R(vxo -) f1 N such that (xo u'] n int S = 0
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and (xo v'] n int S = ~. Assume that (xo u') and (xo v') are both included in
N n C S . Define

/0 = min {d(xo, u) ; d(xo, v) ; d(xp, u') ; d(xp, v')}

B' = B(xo, P/2)

	

,

	

Bi = bd B',
ui E [xp u] n Bi

	

,

	

vi E [xo v] n Bi,
u1 E [xo u'] n B'

	

,

	

v1 E [xo v'] n Bi .
Clearly (xo ui] C C S, and (xo vi] C C S. Fúrthermore, condition (i) implies
that vi 1 L(xo ui), hence [vi ui] n bdS =,A 0 . An analogous argument shows
that [ui vi] n bd S 0 . Let qi E [vi ui] n bd S and pi E [ui vi] n bd S.
Hence pi =A xo and qi ~ xp by condition (i), and bd S cannot cross neither
(xo ui) nor (xo vi) since these segments are entirely included in CS. A similar
argument shows that bd S cannot cross neither (xo ui) nor (xo vi) . Since N
is the domain of good behaviour of xp, only two subarcs of bd S (call them ri
and r2), both having xo as one extreme, are included in N. Define two circular
sectors of B' :

such that qi E Si and pi E S2 . It follows that

(1)

	

ri C Si, I'2 C S2

and

(2)
(3)

Si = (vi xo ui) and S2 = (ui xo vi)

int (conv {ui ; vi ; xo}) n bd S = 0
int (conv {ui ; vi ; xo}) n bd5 = 0

If z E [ui vi], it follows from (2) and Lemma 3.1 that [z xo] C S and z E
st(xp, S) .

	

Define now z' E (ui vi) n R(zxo ->) .

	

Using (3) and Lemma 3.1
we obtain that (xo z') C C S, and z E ins(xo, S) .

	

A very similar argument
h,)lds when one or both of the segments [xo ui], [xo vi] is included in bdS . We
co-lclude that I is convex, whence its radial projection from xo onto bd N must
be connected in the relative topology of bd N.

(ii) Let u E I, v E I, and xo E (u v) .
Since R(uxo ->) is outward, xo E (u v) and [xo v] C S, it follows that

[xo v] C bd S. The same argument proves that [xo u] C bd S, and as S is a
Jordan domain, I n B' must be a half-circle . Clearly, its projection from xo
onto bd N must be connected .

Lemma 3 .5 . J = N n st(xo, S) is an angular connected fan .

Proof. We consider three alternatives:
(1) Let u E J, v E J and u E N n st(v, S), while xo ~ [u v] .

	

Let A_
conv({u ; v ; xo}) .

	

Then int A n bd S = 0 since any crossing of bd S over
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[xo u],. [xo, v] or [u v] would�ruin ther conditiona of visibilit .- If z E [u u];, .
by Lemma 3.1 t follows that z E J. Hence, J results convexa and its radial
projection from xo over bdN must be connected .

(2) Let u E J, v E J, u 0 N n st(v, S), while xo 1 [u v] . Define

b = min {d(u, xo) ; d(v, xo)} , B' = B(xo , 8/2), Bi = bd B',

Clearly u' E J, v' E J, and we may asume that u' 1 N n st(v', S), since
otherwise we would be in the situation of part (1) . Let

z E (u v') fl C S, p E (v' z) fl bd S fl N fl st(v', S),

u E [xo u] fl Bi, v' E [xo v] fl Bi.

gE(u'z)nbdS(1Nflst(ú,S) .

The visibility conditions assure that p =~ xo, q =~ xo and p =,,= q . We intend
to prove that p and q belong to different boundary ares separated by xo in
bd S n N. It may happens that p = v' or q = u', but in this case one of the
boundary ares would be a segment, and since xo 1 [p q], these points must
belong to different ares . Let us assume that p :pÉ v' and q :~ u', and suppose
that p and q belong to the same boundary are Fl . Without loss of generality
assume

6,

that q E are (xo, p) C f1 . By the definition of p, it is not the last point of t1 in
B' . Let A = conv({v' ; p ; xo}) . We observe the position of I'1 with respect to
A. If Pl fl int A = ¢, either a double point or a forbidden change in the sense
of curvature would appear in bd S n N. If f 1 n int A :~ 0, it would imply a
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double point, a contradiction of the visibility conditions or a forbidden changa
of curvatura . Hence, p and q must belong to different boundary arcs . Let
Sl = (v' xo u') the circular sector of B' that includes z ; S2 = B' n C S1 . Then
bd S n B' C S i . Define

z' E R(zxo -~) nBi.
Then z' E J, and z' E int S2 . Using parí (1) we obtain that

[u' z'] U [z' v'] C J,

and the radial projection of this union over bd N is connected .
(3)LetuEJ,VEJbutxoE[uv] .
Let B', Bi, u' and v' be as in (2) . Let z E C S n B', and take

p E [u z] n st (u', S) n bd S
q E [v' z] n st(v', S) n bd S

Since z, u and v are not collinear, it follows that p 7~ q . Using that z' _
R(zxo -) n Bi, and the same arguments as in (2) we obtain

[u' z'] U [z' v'] C J.

Lemma 3.6 . Let {xn I n E NI } be a sequence of points in S such that lim x�, _
xo . Then

ins(xo, S) C

	

u n st(xj, S)

	

U {xo} U Q = ~~ lim

	

st(x, S)
J
U {xo} U Q,

=1j=

	

n ',

where Q is included in the union of a fanite number of maximal segments with
respect to xo and has null measure .

Proof. Let p E ins(xo, S), p

	

xo . We consider two alternativas :
a) If xo is clearly visible from p, there exists a neighborhood U(xo) such

that u(xo) n S C st(p, S) . Then if x,, -> xo, x,,, E u(xo) n Sdn > no and
xn E st(p, S) b'n > no . Hence

00

	

00 00

p E

	

n st(xj , S ) C u n st(xj, s) .
j=no . .

	

n=1j=n

b) If xo is not clearly visible from p, it follows from Theorem 2.1 of [5] that
(p xo) n lnc S :,A 0. Let z E (p xo) n lnc S. If z is a smooth point of bd S, there
exists an obstruction zone I C lnc S that includes z . Then conv I' is supported
by, at most, two rays issuing from xo . Since there are finitely many obstruction
zones, and for cach of them there are at most two maximal segments of critical
visibility, the family of such segments is finita . If z is not á smooth point of
bd S, a similar argument, based in the definition of regular Jordan domain,
assures that the family of segments of critical visibility is finita .
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Lemma 3.7. Let F be an angular connected fan in xo and m(F) its planar
Lebesgue measure . Then m(F) > 0 if and only if aa(F) > 0 .

Proof: Taking xo as the origin, the area of F can be easily computed by
a positive radial function r(0) that depends on the argument 0, whose range
of variation is the projection of F from xo over bdN. Let m and n be the
endpoints of this projection. If m, n, and xo are not collinear, then let A =
conv({m ; xo ; n}), and a be the angle formed by R(xo -> n) and R(xo -> m)
exterior to A. Then, it is clear that aa(F) = 27r - a . Hence,

27r r(B)
in(F) _

	

l

	

r drdB
« o

Both implications of the thesis follow readily . Otherwise, if m, n and xo are in
the same line L, take t E F - L, and A = conv({m, xo, n, t}) . A very similar
argument holds and (1) is valid with a = 7r .

Lemma 3.8 . Let M and L be two connected fans with vertex xo, M C L .
Then m(M) < m(L) if and only if aa(M) < aa(L) .

Proof. The set F = (L - M) U {xo} is a fan in xo whose projection from
xo over bdN is not necessarily connected, but has at most two connected
components . Hence F = Fl U F2 and L = MU Fl U F2 . Both implications of
the thesis can be obtained from equality (1) of Lemma 3.7 and the additivity
of Lebesgue measure .

Lemma 3.9 . m(ins(x, S)fl N) < m(st(x, S)nN) implies that m(ins(x, S)) <
M(st(x, S)) .

Proof.. Let us assume the existente of a system of polar coordinates centered
at x and similar to the one described in Lemma 3.7 . If a and /l are the angular
coordinates of the endpoints of the radial projection of ins(x, S) over bd N,
and a', /« are the corresponding coordinates for st(x, S), then aa(ins(x, S)) =
/p - a, aa(st(x, S)) = /3' - a' . Let e be the radius of N. From Lemma 3.8 it
follows that a' < a < 3 < /j' . Using the notation of Lemma 3.7 it results that

and

ar r(0)
m(st(x, S)) = m(st(x, S) f1 N) +

	

rdr dB
«~ E

0 r(0)
m(ins(x, S)) = m(ins(x, S) n N) + 1.

	

rdrdB
« E

and the strict inequality of the thesis follows readily.
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4. The main theorem and its corollaries

Theorem 4.1 . Let S be a regular Jordan domain and xo E bd S . Then, the
following statements are equivalent :

(i) m(st(xo, S)) = m(ins(xo, S))
(ii) v is continuous in xo .

Proof. (i) => (ii) . Assume that v is discontinuous in xo . Owing to the upper
semicontinuity of v (Beer, [1], there must exist a sequence {xn} in S such that
xn -+ xo but lim v(xn ) < v(xo) . Hence,

lim m(St(xn, S)) < m(st(xo, S))

00 00

ins(xo, S) C

	

U n st(xj, S)

	

U{xo}UQ
n-1j-n

where Q has null measure . From (2) it follows that

00 00

m(ins(xo, S)) < m

	

U I

	

I st(xj, S)

	

+ m({xo}) + m(Q) _
n=1j=n

00

hmoo m I I

	

I st(xj, S) I <

	

hmoo M(St(xn , S)) .
n

	

n-i=n

From this inequality and (1) we obtain a contradiction of (i) .
(ii) => (i) .

	

Assume that m(st(xo, S)) =~ m(ins(xo, S)) .

	

It is clear that
m(st(xo, S)) - m(ins(xo, S)) > 0, and that

D = [st(xo, S) - ins(xo, S)]

is a fan at xo having positive measure . From Lemma 3.8 it follows that
aa(st(xo, S)) > m(ins(xo, S)), whereas from Lemmms 3.3 and 3 .4 we know that
both Nn ins(xo, S) andNn st(xo, S) are angularly connected . Then, the projec-
tion ofD from xo over Ni has at most two connected components, and at least
one of them with positive measure . Hence, it is clear that m(st(xo, S) n N) >
m(ins(xo, S) n N), and that there exists a set A C D n N such that int A =,4 0 .
Select t E int A and w E ins(xo, S), and call L(w, xo) the line through w
and xo and H+, H- the two open semiplanes in which this line divides E2 .
Since t V L(w, xo) we can assume that t E H+.

	

There exists e > 0 such
that B(t, E) C A C DnN.

	

Since R(t - xo) is inward, there exist a point
t' E R(txo ->) n H- n S n N with (t'xo) C int S . Clearly t' 1 ins(xo, S) and



that contradicts (ii) .
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t is not Cearly visible form t' . Let t,, =-!t' + n-I1 xo . Hence dn tn, E (t' xo)
and tn --> xo . Farthermore, each of the tn has the same visibility restrictions
as t' with respect to t. Let L(t, xo) be the line through t and xo, and U be
the connected subset of S limited by L(t, xo) and not visible from t' via S .
Furthermore, the points of U are not visible via S from each of the t, Call
S = S - U and let v be the visibility function of S. Clearly it holds

dn v(tn) = v(tn), v(xo) G V(X0)

and from the upper semicontinuity of v we obtain
lim v(tn) = lim v(tn) < D(X0) G V(X0)n-Oo n-oo

We say that x E bd S is a cone point if there exists a line L through x such
that st (x, S) is included in one of the two closed semiplanes determined by L.

Lemma 4.2 . IfS is a Jordan domain and x is a boundary point of S, there
exists a line L through x that leaves ins(x, S) at one side of it .

Proof.. As Lmma 3.4 states, ins(x, S) n N is an angular connected fan . If
such a line does not exist, there must be a line through x that intersects the
radial projection from xo of ins(x, S) on bdN in two points {t, ; t2}, where at
least one of them (say ti) is not an endpoint of that projection . Hence there
should exist to E (xotl) such that (xo to) be included into int S . But this should
contradict the fact that t2 E ins(x, S) .

Theorem 4.3 . The points of continuity of the visibility function of S on the
boundary of S are precisely the cone points of that boundary .

Proof.. Let x be a cone point of bd S, and L a line through x that divides
E2 into two open semiplanes H+ and H- such that st(x, S) C cl(H+) . Take
u E st(x, S) - L, and let u' E R(ux --~) such that (x u'] C H- . Since
u' ~ st(x, S), we have two alternatives :

(a) (x u') n S = 0.
(b) (x u') n S :,I= 0 and (x u') n C S

	

~.
Each of this alternatives produces easily a point t E (x u'] such that (x t) n

int S = 0, whence u E ins(x, S) . We have shown that
st(x, S) - ins(x, S) C L n S

and the last set has null measure . Hence x satisfies hypothesis (i) of Theorem
4.1 and v is continuous at x .

Conversely, assume that v is continuous at x . From Lemma 4.2 there exists
a line L that produces a closed semiplane H+ including ins(x, S) . Repeating
arguments used in the second part of Theorem 4.1 we obtain that the set
D = st(x, S) - ins(x, S) is a fan having one or two connected components and
has null measure. It follows that D C L, whence st (x, S) C H+ and x is a cone
point .



332

	

A. FORTE CUNTO

Theorem 4.4 . A smooth point of bd S is a cone point.

Proof. For fíat points, the theorem is almost trivial . In the case of inflection
and concave points (i .e . points of lnc S n le C S), the thesis follows from Lemma
4.2 and Theorems 2.4 and 2.5, respectively, from [4] . If x is a convex point
(that is x E le S n lnc C S), let I' be an arc of bd S such that x E I' and
F C le S n lnc C S. Let K= conv P and T(x) be the tangent line to K through
x . Call H+ and H- the two open halfplanes determined by T(x), where K C
cl H+ . Hence, w E H- implies [w x] n C S q¿ 0, since T(x) is supporting . Then
st(x, S) C c1 H+ and x is a cone point .

Corollary 4.5 .

	

The visibility function is continuous at smooth points.

Proof.- Inmediate from 4.3 and 4.4 .
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