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REMARKS ON KATO’S SQUARE-ROOT PROBLEM

JEAN-LIN JOURNE

0. Introduction

Let T be a maximal accretive operator on a Hilbert space H, with domain
V. There is a well-defined square-root of T, T!/? which satisfies the equation

ke a]
T2y = 1/ AY2(T £ 3 Tud),
T Jo

for all w in V[1]. When T is sectorial, Kato considers the prehilbertian structure
on V defined by

<u,v >y = <Tu,v>+<u, To>+ <u,v >,

where < .,. > denotes the scalar product on H. Kato conjectured that the
domain of T1/? was the completion of ¥ in M for the prehilbertian structure
defined by < .,. >y . This conjecture was disproved by A. McIntosh [2] . He
observed that the fallure of this conjecture was connected with the failure of
the ineguality

|41z - Biall| < ¢ ) aB - BaY,

for general self-adjoint operators, }Al being (A?)!/2, Since the boundedness of
the first commutator of Calderdn (3] is a {true) special case of the above (false)
general inequality, Mclntosh suggested that Kato’s conjecture might be true
when T is a differential operator on R™ of the form divA 'V, where 4 is a
matrix-valued function such that, for some § > 6 and for all z in R” and £ in
Cn!

Re < £, A(z) > 2 S)E[°.

It is this special case which is now known as Kato's conjecture or, more precisely,
Kato's square-root problem.

The connection suspected by Mclntosh turned out to be quite significant and
led simultaneously to the solution of Kato's conjecture in dimension 1 and to
the proof of the L —boundeduess of the Cauchy-kernel on Lipschitz graphs [4],
conjectured by Calderdn and proved by himself in the case of small Lipschitz
constants [5].

Supported by the NS F.
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A simple rescaling on A shows that it is enough to consider the case where
| =1 |loc < 1.In dimension larger than 1, Kato's conjecture has been solved
when A is a small perturbation of the identity, that 1sif || A—7 ||oc < €=, where
£, depends only on the dimension n and decays exponentially with » [6],[7]. A
natural way to attack Kato’s conjecture is therefore to find best possible lower
bounds for £,. Here we obtain explicit lower bounds for ¢,,, decaying like n=1/2,
In particular, if n € 5, one can take &, to be 1/3.

Also we answer a question of A, McIntosh concerning the solution of Kato’s
conjecture in dimension 1. Rescaling A so that, for all z in R™, Re A(z) 2 I,
one may assume that ||A™! — I||ee < 1. In dimension 1, the solution is obtained
by expanding an operator depending on A4 in a series of operators depending
multilinearly on the new variable B = I — A™!, then by showing that these
operators are bounded on L? and that the norms can be summed when || B ||oc
< 1. In dimension larger than 1, a similar procedure does not seem to bring
the same kind of simplification and hence, it was suggested by A. MclIntosh,
as 2 first step to understand the higher-dimensional case, to reprove Kato's
conjecture in dirnension 1 without using the variable B. This is what we do at
the end of this paper.

The content of the sections of this paper are as follows. In the first we
introduce some notations and recall some formulas. In the second we recall
some basic facts about Carleson-measures. In the third, we state a theorem
about multi-linear operators, which readily implies the improvement on the
order of magnitude of £,, and whose proof we cutline. In the fourth and fifth
we prove some technical estimates on kernels of operators and in the sixth we
conclude the proof of the aforementioned theorem. In the seventh we show how
to use various properties of the operators arising in Kato'’s problem to improve
the lower bound for &, given by our theorem. In the eighth we give a direct
procf of Kato’s conjecture in dimension 1.

1. Notations and Formulas

The following is partly borrowed from [7].

If we make the change of variable A = 172, we see that the formula giving
T/? can be rewritten as

2 (* T
Tlff*:-/ — di

Let D; zaa , D = Vand D* = (Dy,..,D,). We denote by {4} the
operator of pomthse muitiplication by the matrix A. Then T can be written
as D*{A}D. Let U = A~ I. Then T = D*"{U}D + A. Let P, = {’A+ I)"".
Then (tzT + IY7? can be written as

3 (-1¥P, [zﬁp*{U}Dp,] ,

20
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as long as | U [[oo< 1. And in this case,

= Ywn [?p(wyp-r) D 14)D
= > (-1 D At }DD*P,] {A}D.
jz0

Let Q, = tD*P, and R be the matrix of operators whose entries are %)L
Observe that t2DD*P, = R(I — F,). Therefore the Sobolev space W12 will be
in the domain of T!/? if the series of operators

N S - .t
1) S [ ectika - oy
- 0
iz0
is convergent in L%-operator norm. That cach summand is bounded with a
norm dominated by Cy7 || U |2, is known [6],[7].
Observe that if A is bounded and strictly accretive, || A& — I ||oo< 1, for
A small enough. Hence one can always reduce to the case where || U ||oo< 1.

Thercfore Kato’s conjecture will be solved if one can show that, for all £ > 0,
each summand is bounded with a norm at most C.(1 + ¢} when T |loe< 1.

One can also do a power series expansion in the variable V = [ — A~1,

Starting from

(#p*{4}D + I}tD* =tD*{A}(I +1°DD") ~ tD*{ 4} (1- {A}_‘)
= tD*{A} (r — VI +#DD*)"! )(1 +2DD%),
we obtain
—1 i

(tQD“{A}D + r) tD*{A} = tD"(I + 2D D*)"} (1 —VHI+ zﬂpp*)—l)‘

Let R, = (I +#*DD*)"!, Then if || V Jloo< 1, one cbiains that Wi ? will be
the domain of T1/2 if the series of operators

dt

) Z/ tD"R,[{V} R, ’—

jE0

is convergent. It is easy to check that +D*R, = @} and that R, = I — R+ RP,.
Hence there is a very close resemblance between the two expansions {1} and
(2}. In dimension 1 however, R = I and R, = P, so that the expansion in
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the variable ¥ is much easier to handle than in the expansion in the variable
U. By multiplying A by a large number so that ReA 2 I, one can reduce to
the case where || V |loo< 1. Therefore one can try to prove Kato’s conjecture
by showing that for all € > 0, the summands in the series (2) are dominated
by Ce(1 +¢Y | V || in operator norm. This is how it was done originally
in dimension 1 [4]. In higher dimension it is not clear that onc of the series
(1) or (2) has an adventage over the other. One can ask in particular if there
is a simple relation between their radii of convergence. In dimension 1, it is
casy to see a priori that they are the same. Indeed, a function g is such that
la—1 |l Yo < 1, if and only if || @™ —1/(1 - A2) o€ Ao/ — A3)
Therefore if Kato’s conjecture is true when || @ — 1 || € Ao < 1, it is also
true when || (1 — AZ)a™! — 1 ||o€ Ao, and also when || a7l =1 || Ao after
rescaling. It is a little surprising, but easy to see, that this remains true in
higher dimension. It is a consequence of the following fact. If one puts on
GL,(C) the distance induced by the operator-norm on C¥,
a4, B) = _max IVE-VEI,

then inversion does not in general map balls to other balls. However it does
map a ball centered around a multiple of the identity to a ball of the same
nature, just as in C*. This is what the next lemma expresses.

Lemma 1. ZLet 0 < Mg < 1 and A in GL,(C). Then
| A-T[<r =] (1=ADAT = T[I€ Ao
Proof: Let w be a unit vector in C*. We want to show
(1= 23)A  w — w||€ Jo.
Making the change of variables v = A~ w, it is enough to show that
(1= 23— Av [I< Ao | Av |-

But v and Av are just two vectors £ and y such that ||y —z [|[€ A || = || -
Therefore we can check this inequality in C letiing z = 1 and y = 1 + 2z with
lz] € Xp. After division by |y|{1 — A3}, this is equivalent fo

(14 2)7 = (1= 257 < A1 =297

This, in turn, follows from the fact that the inversion in C* maps B(1,X¢) to
B((l — A Al - Ag)‘l). This proves Lemma 1. &

Since the inversion is an involution on GL.{C), it follows that a ball centered
around a multiple of the identity is mapped exactly onto a similar ball. From
the previous lemma we see that, if A is bounded and Red 2 § > 0,

min || A4 =T |leo=min | AA™ — T oo -
A>D A>C
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It follows that if the series {1) converges when B U fleo< Aa < 1, for some
do > 0, then W12 is the domain of T%/? when minyyg [| AA = I ||oo< Ag, and
therefore when minysg || AA™! — 7 |lw< Ag. So the series {2) must converge
when || V |loo< Ao. And conversely.

Having observed that the radii of convergence of (1) and {2) are the same,
we would like to recover this fact directly from the study of the multi-linear
terms of (1) and (2), and to show that this radius is 1. As we shall see, the
method we use gives two distinct values for the radii of convergence of (1) and
(2), and this shows that it is not optimal.

2. Preliminaries on Carleson Measures

Let p; denote the operator of convolution with the Poisson-kernel. Thern a
Carleson-measure g on the half-space Ri“ is a measure for which one has the
estimate

(3) Lo et Pdutan ) < OO I £ 1

+

A necessary and sufficient condition for a measure u to have this property is
the existence of a constant ¢ > 0 such that for all cubes @ in R”,

(@) (@ x (0,61} < ClQ),

where || and 6 denote the Lebesgue measure and the side-length of Q. Let
us denote by ¢, the best constant in (4). Then, for some absolute constant
C, C(p) £ Ce,. Also, i we replace the Poisson-approximation by some other
approximation of the identity {f:)¢>0 satisfying appropriate estimates, then the
best constant in (3} will presumably change. However, if one locks at the size
of the difference

f s |(p‘f - ﬁ*f)(f)rdu(x, )
R'-i-

we see that it depends only on a constant k, which we define to be the best
constant in the inequality

(5) #(@x(6/2,9]) < ClQl
Of course h, < c¢,. The point is that in general, and in working on Kato's
problem in particular, one tries to estimate ¢, for measures for which one

already has a good control of k.

Lemma 2. Let py and 5, be as above. Then, for some C > 0,

[l e dutey < cnui 513
A
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Proof: Observe that the operators Ty defined for & € Z by

< g!ka >= f

R x[-zt.-zk{—'l

[f =@ [(pis - o]t

satisfy the assumptions of the Cotlar-Stein Lemma with a constant depending
only on h,. This proves Lemma 2. B

From Lemma 2 we see that

1/2
(6) [Lﬁl'ﬁgf{m)rdp(x,t)] < [coct/ + Cbi] {1 £ o,
+

where Cj is independent of the approximation of the identity but C, of course,
is not.

Lemma 3. The consiant Cy can be chosen equal to 2 in all dimensions,

Proof: By Lemma 2 we know that we can choose p; as we like to estimate the
best Cg. By the same argument, we can replace p, f(z} by 5¢f(z) = mgq o f(z),
where Q(t,z) is the dyadic cube containing = of size 2%, with 2kt cpg 2t It
is easy to see that

e 151/ (0)|

172
[ / S@ ] <o ,
Ry* J 2

and it 15 a classical mariingale-inequality that

(7)

g 15

;

}

| < 2Ji fil-

2

Together with Lemima 2 applied with §; instead of p, these two inequalities

readily imply Lemma 3. B

An obvious but usceful remark is that, in the inequality

1/
(8) [ /.. I!ﬁef(r)llzdﬁ(x,f)} < (22 4 G| 1.
+

wa can replace dup(z, 8} by dp(z,ut), where 0 < u < 1, and replace fi; by po
for some w > 1,
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3. A Multilinear Estimate

Let (Ai)ien be a family of matrix-valued functions satisfying || 4]l € 1
Let (K;)ien be a sequence of convolution operators mapping C%valued func-
tions to C? valued functions. We assume that the symbols a(ﬁf.), which are
matrix-valued, are of the form ({ Sk i(£}/1€]?)) where the S 1's are homogeneous
polynomials of degree 2. Let (A;}ien be a sequence of aumbers.

For £ > 0 and : € N we define the operator K;, = ;T + R',-(I — Py). We
assume that the symbols of the K; ¢'s and the K.’s, which are matrix-valued,
are contractions on CY, for all £ € R4,

Theorem 1. For all ¢ > 0 there ezists C. > 0 such that, for all F €
LE.(RY),
(9)
g , dt]1?
{/ N {A K oo Kaor, i{An} Kn, (Fl; 5 < Cu(1 + 2Vd + &)"|| Ffj2.
6

The proof which we shall outline follows as usual from Carleson-measures
estimates. The improvement over [6] and [7] comes from Lemma 3 and from
the fact that for the Carleson-measures that enter into the proof, it is very easy
to obtain 2 good control of A,.

I (Fy)imo is a family of vector-valued or scalar-valued L2 —functions we shall

define |[|F3]] by
dt
WA = [[ T ]

Sketch of Proof: First we reduce {9} to a similar estimate where K, , is
replaced by 7. To do this we deminate

i”Qt{Al}KI, P~ I{n—l,!{Aﬂ}I{n,tF”l

||IQ‘{A1}I{1,!' . I{n—l,t{An}Ptf;’nF”I
NQeAA I K oo Koy, of A} AR + Ko )F|!.

For all n > 0, X, Y, and ¥, denote the sup of these 3 quadratic expressions
when || Flls € 1. Since {A, HA T + K =) is a contraction, ¥, € Xn._,. Hence

(10) Xn S Yn +Xn—3

So if Y, grows at most like {1 + 2/d + £)" for all € > 0, then so does X,,.
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To estimate |||Qi{A1}K1,¢.- Kn-1,1{An}PiFj|| the classical thing to do is
to decompose the expression in the norm as a sum of the type

{Q;{AI}KU .. {A,._l}Kn_l_,An}P,F + error term,

where the error is of the form L. F with L,1 = 0. The main term is estimated
using a Carleson-measure estimate which itself follows from an L? —estimate at
the order n — 1. As we shall now see, this procedure can be improved to yield
better constants.

Let {w:)i»o be some radial smooth approximation of the identity, such that
wy is non-negative and supported in the unit ball. Now let v, = wy*w,. {bserve
that convolution with w, or v, is a contraction on L% or L*°. Now we dominate

M@ {A1} Ky, oo Kuos {AR}EF

by the sum of the three following terms :

(11) MQel A K e . Kn1, { A (P — var ) Fl],
(12)
|||Q,{AI}K1,¢ o Ky, ({An}vga F — {Qt{AI}KI,t . Kn_l‘tAn}vgn,Fm,
and
(13) m{Q,{A;}Kh,A.. K,,_I,,An}vgn!Flll.

The first term is less than ||| Py — wan ¢ }F|||, which 15 dominated by

NP = vy Pl + D i (vaee — var-r )£
k=1
and hence by C(1 4+ n)||Flf2.

The second term is also of the type |||LF|)| with L,1 = G for all ¢ > 0, and
can be estimated directly without using induction on n. The corresponding
estimnale grows slower than exponentially.

To estimate (13) one has to estimate ¢, and I, for the Carleson-measure

2dxdi

(c}i[Z"{Ai}h’!,l{‘J ---- I\'n—l,!f?'Au(I)

The constant h, can be estimated without induction and grows slower than
exponentially. To estimate ¢, wo choose a cube Q of side-length 6 and we want
to estimate

R 2didz
/ IQt;Q"{AI}Kl,tm“ I\n-l,t,-"znAn(x)| P
IEQ, €6
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We shall see that because of the factor 27, this is essentially dominated by an
expression of the form

2 2
Xn—luA"‘HL’((l-Hn)Q}‘
up to error terms, with £,’s such that [[no,(1 + &) < oo. Of course, here

the norm of 4, has to be taken in the Hilbert-Schmidt sense and this is what
introduces a factor v/d. In conclusion one obtains an inequality of the form

Y, £2X,_; ((1 + En)\/&) + error terms.
Combining this with {10), one obtains

(14) Xn € (1+2Vd)X ooy + error terms,

which implies the theorem, modulo appropriate control of the error terms.

4, Technical Preliminaries

An ingredient in most subsequent estimates is the following,
Lemma 4. The kernels of the operators K; | satisfy the ineguality

. C =
£z — o)l € e 150

1
for ||z —y|| > ¢

This lemma, follows easily from the asymptotic properties of the Fourier trans-
form of 1/{1 4 £2), which decays exponentially as well as its derivatives. We
omit the details.

Later in the proofs, we shall not need the full force of the exponential factor.
A polynomial factor of sufficiently high degree, depending on the dimension,
would be enough. Such decay, however, can only come from sufficient smooth-
ness of the symbol of K; ¢ which is A; + (£2[{€]|2 /1 + £2])¢]|? ) x o( KK;). Requiring
that the symbol of K, ; be regular enough, and in a scale-invariant way, forces
l€]|2{ K;) which is homogeneous of degree 2, to be a polynomial. This justifies
our assumption on a(f{,-} at least 1n large dimension.

A consequence of Lemma 4 is the following.

Lemma 5. Let f and g be two L*—functions suck that d(supp(f), supp(g))
=6>0 Then if t £ 6/n,

(18)  |< g Ku,dAr} o {Anmi}En i f >| < CPWflallgllz e 7,
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Jor some C > (.

Proof: Observe that cach K| ; can be written as the sum of two operators
M; ; and N, ;, where M; 4 has a kernel supported in the strip {|z — 3| < §/n}
and N; , has, by Lemma 4, a norm dominated by

]. I
Ta S—JL‘lle.
& Jsti>s/n

This guantity can be dominated by

(16} C(8/nt)¢ e 8™,

and hence, M; , has a norm less than 1 + C(§/nt)¥Te=2/"t, Also,
(17) <g, My A} {AnatMe  f> = 0

becanse of the assumptions on the supports of f and g. Using the decomposition
Ki =M+ N; for all i simultaneously, and L?-estimates, we dominate the
left hand side of {15) by

5 d—1 —sim
a9 Wilels Y H(“‘*C(;‘:) o )
(oihgig=€{0,1}"
[, wi=0

The restriction [, a; = 0 follows from (17} and implies that {18) is dominated
by the right hand side of (15). This proves Lemma 5. W

Remark: In the left hand side, of (15}, one can allow ¢ to take different
values #; ... ¢;. Then in the right hand side we have to set ¢ = max; t;. Also we
can replace one K; ; by Q.

Lemma 5 can be used to estimate truncated operators. We fix a smooth
function 8 defined on RY, equal to 1 if ||z{ < 1 and to O if [|2]| > 2. Notice that
bz —y}= fé({)e"q’z_y)d{. For every operator T bounded on L?, we define
the truncated operator T, to be

f é(sg){ei(z,ébv}T{e—i<r,§>}snd€.
FER?

This new operator is automatically bounded on L? with a norm at most
ITIENE]1- We denote by (T}, the difference T — T} .

Lemma 6. Let T be the operator Q{A 1} {da} ... {An_} K. ¢, and led
s > 3nt. Then for some positive consianis C and ¢,

(19) I(T)al| < Chems/ene,
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Praof: We choose a function ¢ defined on R, bounded by 1, supported in
[-1,1) and such that 375 ¢(z—j) = 1. Let u = 5/(6+/d). For all (;‘,)mq € Z¢,
we define ®;, _j, to be the multiplication by the function [, ¢ (& —3,) This
gives the following decomposition of the identity on R? ;

I= 3 %,
{jr .- 74)EZS

This, in turn, gives the following decomposition of (17, :

(T)S = Z ( Z (P.h . jaTerHu . Jatka
1

ky .. kg€Z¢ \jy.. jq€Z4 s

The diameter of the union of the supports of ®;, ;, and @,, 44, .. .44, is at
most {||k]| +2v/d)x. Since the kernel of {T'}, vanishes in the strip {[|z —y|| < s},
the terms corresponding to £ € Z< such that (k]| + 2V/d)u < s, give no
contribution, For the remaining k's, we notice that &;, ;% ., = 0 #
|4 — §:| > 1 for any i. It follows by almost-orthogonality that

(20)

Z q)jl i jd(T)3@}1+h etk § 34 J.ma'§ "¢J1 .. ja(T)sq’J'1+k1 - Jatha Il-
HEES 7 v
Since the distance of the supports of ®;  ;, and @44, .. j.44, Is at least
(|| k|l = 2v/d)u, which is more than nt if (1% + 2\/3)'& > 3, we can apply Lemma
5. A summation over £ yields
z C“e“k]_n?!ﬁ)“.
ElIk4+2vd uzs
as a bound for (T'),. By the choice of u, this sum is dominated by

on Z eollkl/24 \/Ent_
kNkN2 44
This implies Lemma 6. B

5. Estimates for the error-terms

We first want to estimate (12). To control expressions of the form |||LF]||,
where L1 = 0 for all £ > 0, it is enough to have a bound on {{L,|| uniform in ¢
and some decay on || L, L} ]| when ¢/t tends to 0 or +co.

Observe that, out of the two terms entering in the definition of L, in (12), one
is & contraction and the other is of the form {A4;}van,. To estimate the latter we
remark that ven{A4,}*{A4,}ve-¢ is bonnded on L! and L with a norm at most
llv2ne{|Ae|*)||loc. Therefore {A }van, is bounded on L? with a norm dominated

by max, [mB(x,z"t)fA!m”?
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Lemma 7. The operator-norm of Ly is bounded independently of n or &.

Proof: In view of the remarks preceding Lemma 7, we see that it is enough
to show that, for some C > 0 and all z € R¢,

1/2
(21) / NQe{AI} K e .. I{n,,An{y)H?dy) g CErYe.
z—yll<2met

+

We fix z. To prove (21), we decompose A, as Ag + _; ° B;, where

Ao(z) = A D)X {(z-2l<@m+27031)

and for 7 > 0,
BJ(Z) = An(z)x{(2"+2j_1+%)t(,“z—:]|;§(’2"+2j+¥)a}'

Since Qi{A1}K1 ;... Kq, ¢ is a contraction on L?, the contribution of Ag is
less than |jAol|2, which is dominated by C(2“t)‘”2.
To estimate the contributions of the B;'s we use Leruma 5 and the remark

following its proof. Then, if a function is in L* with norm 1 and is supported
in B{z,2"#),

pi=1+nf2y 1
< 0. QAN K1 KneBy > 1< CTIB I (T ) e

pi—tinf2
- n

Since [|Blls < C (27 + 2~ 1+n/2) 2

This proves Lemma 7. B

14/2_ (21) follows by summation over ;.

Remark. It follows that the measure

= th{Al}_Iﬂ,z Ko dAn(y)| P dydt /1t

satisfies h, < C.

Next we turn to the decay estimate for | L, L} ||, when t/t' is large or small.
We can assume < t', taking the adjoint if necessary.

Using the factorization of vy as wy *wy, We see that L; can be written as f,twf
where

L= Qe{A1} ... Kooy, ofAa) - {Q:{Al}K;‘t‘.. K,,v_]‘,A,,}1

and similafly for Ly . From the proof of Lemima 6 we see that Lyawngnp is bounded
on L? with a bound independent of n. Hence

HL L3 < CllEavznell
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Lemma 8. ||Lywa-o| < CEAN2 i ¢ > 47t

Proof: First we observe that, because w; is supported in the unit ball,

(22) (fd:wzn ")2'*4-‘:’ = ((f")z""wz"")zn“g :

We denote by V; the operator Lowpny. By Lemma 6 ||(f4)2n ¢ |} is dominated by
e~2"t'/ent Hence, by (22), so is [[{Vi)ans:¢fl. Since the kernel of V) — (Vi)ynirg
is supported in {||lz — y|| € 2°*%¢}, it follows that it can be decomposed in
an almost-orthogonal sum of operafors whose kernels are localized in z and y
on balls of diameter 27, as in the proof of Lemma 6. We just need uniform
estimates for the norms of these operators, or even for their Hilbert-Schmidt
norms. Equivalently, we need estimates, uniform in 2o € R4, for

(23) IVa(z, y) i dady.

/".:—zoﬂ(?“f.',||y—zo|]<c2"'t"

Let tg = 27/2(t')/2, For all j = (j1 ... ja) € Z%, we define z; to be the point
to{f1 ... ja). Then, we can dominate (23) by

(24) > ( / u%(:c.y)n’drdy) .
{5 sy —zall<aney ez l<Vato

Let us rewrite Vi{z,y) as
(25) /L(x,z)(wzn,.(z — ) — wanelz, — y))dz.

We use a truncation of L, at scale t. That is, we write L as (f,;};e +Li—(Li),.

For the local part we use the L2 — boundedness of Ly, treating y in (24) as
a parameter, and we are reduced to controlling

(/ {w2"f'(z - y) - wgn!r(l'}' — y)izdzdy) .
flezmey N walla—z 1€Vt

{z;.llz; —zo

This expression is easily seen to be dominated by

(2ntf)<f+l

d
(2 ) (VA + 2)t0) 2 Y (_(\/3 + 2)&;) |

which is equal to C27¢/t',
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For the far-away part, we estimate the contributions of wgne{z — y) and
wony{z; — y) separately. By Lemma 6 the first contribution is dominated by

Cemtolent 37 f g (2 y)lzdydz) ,
z-’.’“zj_ze[l.(-znt! plly—zoll<C2ne!

which is less than

i (_%")1;2

CEAE ))yle s
The second contribution can be rewriiten as

(25) > }(/Hz_zj"d&to

{z; bz —zolli~t

/(Eg,o(z,z)dz de)
( [ poanetes - D).

Following the line of proof of Lemma 7, it is easy to see that the first factor in
the product is dominated by Ctge_ﬁ‘”mt, and hence, that (25} is dominated
by the same quantity xty 4

This concludes the proof of Lemma 8. A

We are now ready to estimate max)p),—1 [||L.F{|]. By duality this is also
equal to max) =1 | [ Li fedt/t|l>. It is easy to see that the square of this
expression is less than the operator-norm on L¥R,,dt/i) of the operator of
kernel k(s, t) = ||L,L;|l. By Lemma 7, Lemma 8 and the remark preceding it,
this is less than Cn, Hence

(26) LRIl < Cnt/2 || Fila.

6. Proof of Theorem 1

Wa recall that the numbers X, and Y, have been defined just before (10).
We wish to prove, for all £ > 0, the existence of & constant C, such that

(27) X, € Cell +2Vd + €)™
Let us recall that, by the remarks in Section 3 and (28),
Y, € (1114 (12) + (13) € C(n + 1) + Cn'/? 1 (13).

Also, by Lemmma 3 and {6}, if we define Z,, to be the best constant in the
inequality

1/2
- , dxdt
(28) (f "Q!{E" {A] }I\'t;?n . I‘-t!?"An(I)llz 1 ) < ClQI
TEQULCICH Q)
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then

1je
(28) (13) < Z/* + CRY/?,

where p, denotes the Carleson-measure appearing in (28). By the remark
following the proof of Lemma 7, we know that k, < C. Thercfore,

{30) Yo<2Z,+C(n+1).
Finally the proof of Lemma 7 shows, modulo trivial modifications, that
Z, £ XI_{1+C27 2 xd.

The factor d comes from the fact that in estimating c,_, one has to use the
Hilbert-Schmidt norm of 4,, which can be as large as /4.

From these two inequalities, we obtain
Y, < 2Vd{1+ 27N X,y + Cln + 1),
Since X, € X,,; 4+ V5, it follows
Xo S +2VA1+C27%) X,y + Cln + 1),

This implies (27} and proves Theorem 1. W

7. Application to the Kato-problem

Theorem 1 implies that the radius of convergence of (1} or (2} is 1/(1 + 2v/d)
at least. There are various ways to see that this is not sharp. One of them is to
observe that the constant 2 in {7} can be attained only for L? —functions which
have a particular distribution-function. Since the functions to which we apply
(7} are images of bounded functions restricted to cubes, their distribution-
functions have properties which permit to conclude that the constant 2 can be
improved in our case, thus leading to an improvement of the constant {1+ 2v/d)
in Theorem 1. In this section we shall be interested only in those improvements
which take in account the special form of the operators K; which occur in the
series (1) or {2}

The properties of the Riesz matrix which we shall use are that it is positive
and defines an orthogonal projection. We shall be working with the series (2)
and show the following.
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Theorem 2. The radius of convergence of the Kaio functional 1s at least
a~!, where a is the largest positive raot of the equation

(31) (X - %) VX —1=XVd

Before sketching the proof of this theorem, let us indicate that approximate
numerical values for a~! in dimensions 2, 3, 4, and 5 are respectively .474, 4186,
.376, and .347.

Sketch of proof: For simplicity we shall proceed as if the kernels of (1 — P)R
and € were supported in {||z — ¥|| < t}. This of course is not true, but, as the
proof of Lemma 7 shows, this is true for all practical purposes.

The fact that R defines an orthogonal projection yields the following im-
provement of (10}

(32) Xo € /Y2 +X2_,.

To see this we just need to observe that for a function F in L2, ||F|2 + (7 —
RYF|2 = ||Fl|2. Hence X» € maxyzy,2=1 AXn-1 + u¥s, which is exactly (32).

By the positivity of R we can write it as iz’r where § is a contraction. Since

Ky=I—(I—P)R=1—(I-P)*2 we can rewrite it as

2P+ s(1-(1-Pys).

It follows that
1
(33) Zn < 5(14+C27)(Zn0 + VidX._1),+ negligible error terms.

Note that, by (32),

L} 11;2
(34) X, € (Z Yf) .

Combining {30) and {34) we obtain

1

1/2
(35} Zn € 5Zn- +Vd (Z f) + negligible error terms.

=1

Let us ignore the error terms in (35). Let €' > 0 and B > 1 be such that for
j<n,Z;<Cp. Then Z, < CB" if B is such that

gt

\/1__1

g ﬁ“‘+\/3
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that is, if # 2 a. This implies Theorem 2 modulo the handling of the error
terms, which is trivial. B

Let us mention that in working with the series (1) instead of (2) one does not
seem to be able to improve (10} into {34}. Hence one obtains significantly worse
estimates for X, for (1) than for {2), while, as the next section will suggest,
one should expect a discrepancy growing slower than exponentially.

8. A direct proof of Kato’s conjecture in dimension 1
We wish to prove the following:

Theorem 3. For glle > 0 there exists a constant C, such that for alln £ 1,
and a; € LZ(R),1 <1 € n, and f € LYR),

(36) (12 I_I (e} - Pyl < ccr 4oy 1:[ e looll 2

The proof we shall give clearly yields multilinear estimates. However we shall
work with one single bounded function a of rorm 1, and we shall denote {a}
by a. This symbol will stand for {a}? for any power j, for instance in (43) and

(44).
Proof: The proof of Theorem 3 rclies on a trivial extension of one identity
of [4], namely:

(37) GaP, = P{Pa}Q: + {Qua} P — Q{Qa}Q:

Let 5; be such that PS5, = Py, for some a > 0. Then ,5, = tDPS, =
tDP,, = %Qm. This, together with (37) and a rescaling immediately gives:

Lemma 9. For allu >0 and o > 0,
(38)  QuiaPar = —Pur{Puc)Qar + {Quia}Pat — =Qui{Quic}Qur
For all u €]0, 1], we shall prove
(39) || @uealz = Py ap|| < 1 + €7 £l
This clearly implies {36). The reason for introducing the parameter u will
become apparent during the proof.

Let p be an integer possibly equal to 1. We write n = gp+r = g+{p—1)gtr =
g+s,withr < p. Let @ > 1 and # = of. Finally, for v > 1, we set ] = P,— P,
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We wish to reduce the study of ||

Qe fall - P:))n anl” to the study of

(40) |||Quat — Paall - Pasoda... a(l = Pag-a) (ol - PB,))"“apmfm,

where we shall be able to take advantage of the factor 1 in Lemma 9. To do this
we replace each P, by the corresponding P.,,, where 7 is some appropriate power
of . Starting this process from the right and using Minkowsky’s inequalily
we dominate the left hand side of {38) by the sum of (40} and the following
expressions.

(41) i
|| @ue(alz ~ Py) aQf4]|
[@we (a2~ 2)) ™ a@aracs]
} l@ue(atz - )" aQfa(r - PacyaPact]||
||| @ue(atr = 20) "™ 202 (az — Pa)) "aPaus]|
(12) 2
|| Qu,(a(r - Pt))q_ ade" (a(r - Pg;}) ’“ame\”
< -
|[@uwadsalt - Paza.. ar - Pas-12)(all - Pg,})’“aPﬁ.fm

-

To study (40) we expand each (I — P.) and regroup the resulting 2" terms
according to the location of the first P, which appears when going from the
left. A new application of Minkowski’s inequality then shows that (40) is less
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than the sum of the following expressions:

If”

(43) s+1
QuaPara(l — ParJa.. all = Pacr)(all - Par)) aPauf

{

Qu,apc,,_,,(a(f - Pﬁ,))mapﬁ,f”

l
L

(44) o
QuiaPy, (a(r _ Pg,)) aPyq “ |

Qu!apﬂtapﬁtf|“

st

I
I

An application of Lemma 9 permits to decompose each of these expressions
in the sum of three terms, the two last of which can be handled via the usual
Carleson-measure argument, thanks to the following lemma.

Lemma 10. Let 0 <wq ... € wn. Then the kernel  Ty(z,y) of
Poall—P,)afl - P,)... (I-P,,_,)aP,,
is dominated by C {wn jwo)'/? (14n)? (w—n(% The same is true if Puge
15 repleced by Qo

We defer the proof of this lemma until the end of the section.

We introduce some notations for best constants in quadratic estimates, for
which we shell obtain estimates by induction. These constants depend on o
which, for the time being, is fixed. Recall that  €]0,1).

The first constant D7 , is the best constant in the inequality
(45) {40} < ClIf|l2-

The constant £}, independent of a, is the best constant in the inequality

Qui(a(r — P0) arf]|| < U

(46) ”

We want to derive an inequality for D} ,. As we already observed, (40} is
less than the sum of (q+s+1) quadratic quantities, (q-1) for {43) and (s4+2) for
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(44). Each of these quantities can be dominated by three others using Lemma
9. It will follow that D} is dominated by the sum of 3{q+s+1) numbers.
Corresponding to the first term in Lemma 9 we have the following {q+s+1)

numbers:

u u # u u u u
;Dq_l_,, -&?Dq_z,,, ey -QT':TDI’S’ EEg, BE,-], ey BE{;‘ ECG.
Here ¢ denotes the best constant in the inequality
QAN < Clfllo-

Those numbers are obtained by rescaling and using the fact that the P’s are
contractions on L? and L™, The two last terms in Lemma 9 can be regrouped
in a single one. Lemma 10 and the uswal Carleson-measure argument give a
global estimate in CB 21 + n)'. In doing this, one uses that the measure
|Quial?dzdt /t is = Carleson-measure uniformly in u.

The previous remarks yield the following :

g—1 L]
(47)  Dp <Y Dyjet %ce + %‘, S Em + Cad(1 + ).
j=1 m=0

The strategy is to use (47) to show that if
{48} Er £ Ci(14+e)™
for some £ > 0 and uniformly for m € N and u €]0, 1], then for some €' < ¢,
(49) D2, < Cafg,sX1+£)1(1+¢)”
where Ch{g, s} has the form C(g + s + 1)* and is independent of u €]0,1], This
will require an appropriate choice of o and p. Then one shall show that for
some " < ¢,C > 0, and uniformly in v €]0,1],

(50) E: < C(1+e")™.

By iterating this procedure one can make ¢ as small as we want, thus proving
the theorem.

Let us be more precise . Let ¢ > 0 and choose p such that
(51) QUBHL o 14 « 2172

Then we ¢laim that if (48) holds, then (49} holds for any

(52) ¢ > (#)m -1
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1/3
Notice that, by {51), (zm";-,p—_,) — 1 < &, Also we claim that in (50} we can
cheoose any " such that

(53) e > (L4 e) V(14 e)e 1

Since 21/2P%1 i5 the only fixed point of the transformation

9 1/3
Ir — (I‘Zp—ﬁ) ,

it follows by iteration that we can make ¢ as close as 21/27%1 _ 1 as we want.
Then, by increasing the value of p we can get £ as close to 0 as we want. Hence,
to finish the proof of the theorem, we just need to prove two claims and Lemma

10.

Proof of the first claim: We assume {48} and (51}, and we want to conclude
{49) for any £’ such that

; 5 1/3
(54) 1+ > (m;ji) .

Let o = {1 +&¥P~%{1 + £')2. Notice that, by (54},
(55) a{l+&')>2

In order to deduce (49) from {48), we shall use an inducticn on ¢ based on
(47). Then it will be sufficient that €, be so that, for all 0 < &' < ¢,

(56)

Cals, K)(L+ e (1+€) > Z

;=1

.t 1
Ok s+ 1 4+ 1)t + ¢ s;, (1+e).

M(l«l—e) (14 i

Observe that, by (55), 3055, (a(l + 5*))"3 < 1. Hence, since Cz(s, ) will be

increasing one just needs

(657)  Cals, YL+ )" (1 + &V 2 Crak (s + K +1)8 + 2 4;,1(1 ey,
&

where () is some constant which remains bounded if ¢ and ¢’ stay away from
their minimum values and C] remains bounded. Let us set Cy(s, k') = 2C(s +
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k' 4+ 1)* and check that with this choice (57) is satisfied. Equivalently we need
that for all 0 € k' € ¢,

s+

ﬂ‘k.‘

1{1 +e).

(58) 2s+k + 1)1+l +e) 2o M+ K 1) +

In (58), the second term of the right hand side is obviously less than half of the
left hand side. To see that this is the same for the first term, we first observe
than when k' = q it follows from a%/? = {(14}P~" D149 < (1+e)*(1+£')0
To deduce it for smaller values of &, just observe that «'/? > (1 +¢'). Hence,
(58) is proved, from which follow {57} and (66}. Hence (49} follows from (48)
by induction, using {56} and {47}). B

Proof of the second claim: With our choice for Cy, {49} reads as follows:
(59) DY, < Clg+s+ D1+ e {1+

We want to deduce {50) from {48} and (59) , assuming that " satisfies {53).
The decomposition of the left hand side of {39) in (41)}4(42)+(40} implies
that E% is dominated by the sum of (s + 2} 4+ (¢ — 1) + 1 terms. To handle
the {s + 2) first ones, we decompose Qf as —flﬁ 2P, m‘%. By (48), this
gives a contribution of ¢y log 4 for the first one and Cy log B{1 + &)/, 0 <
j £ s, for the {s + 1) following. By (59) one has contributions of the form
Clg—j+s+1)jloga(l+e)(1+e) 7, 1< < ¢g—1for the terms
constituting {42) and finally Ca(g, s)}(1 + €)}*(1 + ¢'}¥ for (40}, Summing these
estimates, and then using (53) and the fact that (g -+ 1}{(p — 1} 2 5 we obtain

EXSClg+s+1¥1 +e)° (1 +&Y < Con(1 4+ M.

This proves the sccond claim. W

Proof of Lemima 10: An obvious estimate is
Pe(z,9) € (1Pooedz — Izl Panel. = ¥llz = C* (wown) 2.

This is sufficient when |z — y| € C(1 + n)*%w,t since in this case,

wWpt
(wat}? + (z—y)?

1/2
1~ wywn) P € C (:%") (14 n)
¢

If o — y| 2 C(1+ n)**w,t, we truncate Pz — .} and P,,(. — y) on balls
respectively coentered at « and y and of diameter |z — y|/4. The far-away parts
have L? — norms of the order of |z — [ 732wt and |z — yl =3/ %w,t respectively.
Hence, they will give contributions of at wnost Cw,t|z — y[73 2 (wet) V2 1t
remains to control the contribution of the local parts. Here we use that their
supports have o distance |z —y|/4. As we mentioned in the remark following the
proof of Lemnina &, we can apply it in our situation and this gives a contribution
Crelz—vlitwntiy00, 17121 This concludes the proof of Lemma 10 and of
Theoremn 3. 8
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