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REMARKS ON KATO'S SQUARE-ROOT PROBLEM

JEAN-LIN JOURNÉ

0. Introduction

Let T be a maximal accretive operator on a Hilbert space I-l, with domain
V . There is a well-defined square-root of T, T'I' which satisfies the equation

T1/2U =
1f A-1/2 (T -i- A)-1 Tu dñ,

o
for all u in V[1] . When T is sectorial, Kato considers the prehilbertian structure
on V defined by

Supported by the N .S .F .

<u,v>y = <Tu,v>+<u,Tv>+<u,v>,

where < . , . > denotes the scalar product on 'H . Kato conjectured that the
domain o£ T1/2 was the completion of V in 'H for the prehilbertian structure
defined by < . , . >y . This conjecture was disproved by A . McIntosh [2] . He
observed that the failure of this conjecture was connected with the failure of
the inequality
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for general self-adjoint operators, ¡Al being (A')'/' . Since the boundedness of
the first commutator of Calderón [3] is a (true) special case of the above (false)
general inequality, McIntosh suggested that Kato's conjecture might be true
when T is a differential operator on R' of the form div AV, where A is a
matrix-valued function such that, for some S > 0 and for all x in R" and 1 in
Cn,

Re < 1, A(x)j >

	

>

	

$ 1112 .

It is this special case which is now known as Kato's conjecture or, more precisely,
Kato's square-root problem .
The connection suspected by McIntosh turned out to be quite significant and

led simultaneously to the solution of Kato's conjecture in dimension 1 and to
the proof of the L2 -boundedness o£ the Cauchy-kernel on Lipschitz graphs [4],
conjectured by Calderón and proved by himself in the case o£ small Lipschitz
constants [5] .
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A simple rescaling on A shows that it is enough to consider the case where
~~ A-I Iloo < 1 . In dimension larger than 1, Kato's conjecture has been solved
when A is a small perturbation of the identity, that is if 11 A-I jj '>" < en , where
en depends only on the dimension n and decays exponentially with n [6],[7] . A
natural way to attack Kato's conjecture is therefore to find best possible lower
bounds for en . Here we obtain explicit lower bounds for e n , decaying like n -1 / 2 .

In particular, if n < 5, one can take en to be 1/3 .

Also we answer a question of A . McIntosh concerning the solution of Kato's
conjecture in dimension 1 . Rescaling A so that, for all x in Rn, Re A(x) > I,
one may assume that ¡¡A-1 -Ijj,, < 1 . In dimension 1, the solution is obtained
by expanding an operator depending on A in a series of operators depending
multilinearly on the new variable B = I - A-1 , then by showing that these
operators are bounded on L2 and that the norms can be summed when 11 B ~j '>"
< 1 . In dimension larger than 1, a similar procedure does not seem to bring
the same kind of simplification and hence, it was suggested by A . McIntosh,
as a first step to understand the higher-dimensional case, to reprove Kato's
conjecture in dimension 1 without using the variable B . This is what we do at
the end of this paper.
The content of the sections of this paper are as follows. In the first we

introduce some notations and recall some formulas . In the second we recall
some basic facts about Carleson-measures . In the third, we state a theorem
about multi-linear operators, which readily implies the improvement on the
order of magnitude of en , and whose proof we outline . In the fourth and fifth
we prove some technical estimates on kernels of operators and in the sixth we
conclude the proof of the aforementioned theorem . In the seventh we show how
to use various properties of the operators arising in Kato's problem to improve
the lower bound for e, given by our theorem. In the eighth we give a direct
proof of Kato's conjecture in dimension 1 .

1 . Notations and Formulas

The following is partly borrowed from [7] .
If we make the change of variable A = t-2 , we see that the formula giving

T'I' can be rewritten as

T'/2 = 2

	

T

	

dt .
r

0

t2 T + I

Let Dj _ -ijai , D = V and D* = (DI , . . ., Dn ) . We denote by {A} the
operator of pointwise multiplication by the matrix A . Then T can be written
as D*{A}D. Let U = A - I. Then T = D*{U}D +,n, . Let Pt = (t2 A + I)-1 .
Then (t2T + I) -1 can be written as

j:(-1)'P, [t2D*{U}DPt]~,
j ;10



as long as 11 U jj,,,< 1 . And in this case,

Let Qt = tD* Pt and R be the matrix of operators whose entries are Dó' .
Observe that t 2DD*Pt = R(I - Pt ) . Therefore the Sobolev space W1,2 will be
in the domain of T 1 / 2 if the series of operators

Qt* [{U}R(I - Pt)]j
dt

j>- o

is convergent in L2-operator norm . That each summand is bounded with a
norm dominated by C,j 11 U j1i is known [6],[7] .

Observe that if A is bounded and strictly accretive, 11 AA - I 11,,~< 1, for
small enough . Hence one can always reduce to the case where 11 U 11 <,~< 1 .

Therefore Kato's conjecture will be solved if one can show that, for all e > 0,
each summand is bounded with a norm at most C,,(1 + e)j when 11 U jj".< 1 .
One can also do a power series expansion in the variable V = I - A-1 .
Starting from

we obtain
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-
= L..(-1)jpt [t 2 D{U}D*Pt ] jD*{A}D

= j:(-1)jD*Pt [t 2 {U}DD*Pt ] {A}D.
j_>0

(t2 D*{A}D + I) tD* = tD*{A}(I + t2 DD*) - tD*{A} (I - {A}-1)

(2)

	

rTtD*Rt [{V}Rt]'
dt

j30 0

	

t

= tD*{A} (I - {V}(I + t2DD*)-1 )(I + t2DD*),

(t2D*{A}D + I) -1 tD*{A} = tD*(I +t2DD*)-1 (I - {V}(I +t2DD*)- 1 ) .

Let Rt = (I + t2 DD*)-1 . Then if 11 V li~~< 1, one obtains that W1,2 will be
the domain of T 1 / 2 if the series of operators

is convergent . It is easy to check that tD*Rt = Qi and that Rt = I -R+RP, .
Hence there is a very close resemblance between the two expansions (1) and
(2) . In dimension 1 however, R = I and Rt = Pt , so that the expansion in
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the variable V is much easier to handle than in the expansion in the variable
U. By multiplying A by a large number so that Re A > I, one can reduce to
the case where II V II<,.< 1 . Therefore one can try to prove Kato's conjecture
by showing that for all e > 0, the summands in the series (2) are dominated
by CE (1 + e)j II V IIi in operator norm. This is how it was done originally
in dimension 1 [4] . In higher dimension it is not clear that one of the series
(1) or (2) has an advantage over the other . One can ask in particular if theie
is a simple relation between their radii of convergente . In dimension 1, it is
easy to see a priori that they are the same . Indeed, a function a is such that
II a -1 II .<, Ao < 1, if and only if II a-1 -1/(1- fió) II<, ,< A0/(1- Aó) .
Therefore if Kato's conjecture is true when II a - 1 II~< \o < 1, it is also
true when II (1 - A2 )a` - 1 II,,,, A o , and also when II a-1 - 1 II,< Ao after
rescaling . It is a little surprising, but easy to see, that this remains true in
higher dimension . It is a consequence of the following fact . If one puts on
GL n (C) the distante induced by the operator-norm on Cn,

d(A, B)

	

e,Cuéu=1 II Uj - VI II,

then inversion does not in general map halls to other balls . However it does
map a ball centered around a multiple of the identity to a ball of the same
nature, just as in C* . This is what the next lemma expresses .

Lemma 1 . Let 0 < Ao < 1 and A in GL,(C) . Then

IIA-III<ao ~ II(1-Aó)A- '-III<ao .

Proof.. Let w be a unit vector in C' . We want to show

II (1- aó)A -'w - w II ,< Ao .

Making the change of variables v = A-1w, it is enough to show that

II ( 1 - Aó)v - Av jj,< ao 11 Av ll

But v and Av are just two vectors x and y such that II y - x II< -\o II x II .
Therefore we can check this inequality in C letting x = 1 and y = 1 + z with
IzJ < Ao . After division by Iyi(1 - fió), this is equivalent to

I(1 + z) -' - (1 - ~`ó)-'I

	

>,0(j
- fió)-'

This, in turn, follows from the fact that the inversion in C* maps B(1, Ao) to

B((1 - Aó)-1, A0(1 - Aó)-1) . This proves Lemma 1 .

Since the inversion is an involution on GL � (C), it follows that a ball centered
around a multiple of the identity is mapped exactly onto a similar ball . From
the previous lemma we see that, if A is bounded and ReA > S > 0,

min II AA - I II,,.= min II AA-1- I II

	

.
a>o

	

a>o
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It follows that if the series (1) converges when 11 U II,>,> < Ao < 1, for some
Ao > 0, then W l,z is the domain of T1 12 when mine,>o II AA - I II,,~< Ao, and
therefore when mina>o II AA-1 - I II,,.< Ao . So the series (2) must converge
when 11 V II < ,.< A o . And conversely.
Having observed that the radii of convergence of (1) and (2) are the same,

we would like to recover this fact directly from the study of the multi-linear
terms of (1) and (2), and to show that this radius is 1 . As we shall see, the
method we use gives two distinct values for the radii of convergence of (1) and
(2), and this shows that it is not optimal .

2 . Preliminaries on Carleson Measures

Let p t denote the operator of convolution with the Poisson-kernel . Then a
Carleson-measure M on the half-space R++ 1 is a measure for which one has the
estimate

(3)

	

IR-+1
Ipj(X)12d1,(X, t) '< C(,1) II f II2

A necessary and sufñcient condition for a measure p to have this property is
the existence of a constant C > 0 such that for all cubes Q in Rn,

(4)

	

11(Q x [0, si) S Cm,

where IQI and 6 denote the Lebesgue measure and the side-length of Q . Let
us denote by cP the best constant in (4) . Then, for some absolute constant
C, C(p) <, Cc,. Also, if we replace the Poisson-approximation by some other
approximation of the identity (pt)t>o satisfying appropriate estimates, then the
best constant in (3) will presumably change. However, if one looks at the size
of the difference %

JR++1
(pj - pj)(,)jzdp(,, t)

we see that it depends only on a constant h,, which we define to be the best
constant in the inequality

1,(Q x [6/2,61) <, CIQ1 .

Of course h,, < c, . The point is that in general, and in working on Kato's
problem in particular, one tries to estimate cP for measures for which one
already has a good control of h,, .

Lemma 2 . Let p t and pt be as aboye. Then, for some C > 0,

JRn+
,I(ptf -ptf)(x)1 2dp(x,t) < Ch,, 11 f II2
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Proof: Observe that the operators Tk defined for k E Z by

< 9, Tkf >= f

	

[(Ptf -Ptf)(x)] [(p,9 - Pt9)(x)] dp(x, t),
R.^ X 12k ,2k+11

satisfy the assumptions of the Cotlar-Stein Lemma with a constant depending
only on h,, . This proves Lemma 2 .

From Lemma 2 we see that

2 1/2

[Jx.^+1
Ptf(x)1 d/t(x,t)1

	

[Cocwl2+C1h1,l2] 11 f 112,

where Co is independent of the approximation of the identity but C1, of course,
is not .

Lemma 3 . The constant Co can be chosen equal lo 2 in all dimensions .

Proof.. By Lemma 2 we know that we can choose Pt as we like to estimate the
best Co . By the same argument, we can replace P"t f(x) by Stf(x) = mQ(trx) f(x),

where Q(t, x) is the dyadic cube containing x of size 2k , with 2k-1 < t < 2k . It
is easy to see that

t
IStf(x)l'dp(x,t)~

1/2

<
cN'

IIm>ó
IStfm0,12

and it is a classical martingale-inequality that

l
maxiStf(x)j

	

<, 2llfll2 .t>o

	

z

Tol ether with Lernrna 2 applied with St instead of p t , these two inequalities
readily imply Lernrna 3 .

Arr obvious but uscful remark is that, in the inequality

t/2

[JR^+i
llfíef(x)ll 'dlt(x,t)~

	

1< (2cl~/2 +C1hl,/ 2 )llfll2 .

we can replace dIÁ(x, t) by dp(x, ut), where 0 < u < 1, and replace Pt by p,,, t
for sorne w > 1 .
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3 . A Multilinear Estimate

Let (Ai)iEN be a family of matrix-valued functions satisfying IIAjii ,,~ S 1 .
Let (Kj)iEN be a sequence of convolution operators mapping Cd-valued func-
tions to C1-valued functions . We assume that the symbols u(Ki), which are
matrix-valued, are of the form ((Sk,t(f)/IIIZ)) where the Skj's are homogeneous
polynomials of degree 2 . Let (MiEN be a sequence of numbers .

For t > 0 and i E N we define the operator Ki t = AiI -f- Ki(I - Pt ) . We
assume that the symbols of the K¡, t 's and the K¡'s, which are matrix-valued,
are contractions on Cd, for all 1 E Rd .

Theorem 1 . For all e > 0 there exisis CE > 0 such ¡ha¡, for all F E
LC, (Rd),

[Ja~112 dt/
1IQj{Aj}Ki,t . . . K._l,t{An}xn,iF

2-J1

2
< CE(1+2~+t=)nJIFI12 .

The proof which we shall outline follows as usual from Carleson-measures
estimates . The improvement over [6] and [7J comes from Lemma 3 and from
the fact that for the Carleson-measures that enter into the proof, it is very easy
to obtain a good control of h,, .

If (Fí)t>o is a family of vector-valued or scalar-valued L2-functions we shall
define I I IFt 111 by

IIIFtIII =
lJo[100

IIFtllz-l 1/ 2 .

Sketch of Proof. First we reduce (9) to a similar estimate where K,, t is
replaced by Pt . To do this we dominate

by

IIIQt{Aj}K,,

IIIQt{A1}Ki,t . . . K._i,t{A.}PtÁ'.FIII

. . . K�_l,t{An}K.,tFlll

+

	

IIIQt{A~ }h1, t . . . Kn_1, t{An}(~nI + hn)FIII

For all n > 0, Xn , Yn and in denote the sup of these 3 quadratic expressions
when IIFII2 < 1 . Since {An}(AnI -}- Kn ) is a contraction, Y,, < X,,_1 . Hence

(10)

	

Xn 1< Y� +X._1

So if Y,, grows at most like (1 + 2f -}- e)n for all s > 0, then so does Xn .
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To estimate IIIQt{A1}K1,t . . . K,l,t{An}PtFIII the classical thing to do is
to decompose the expression in the norm as a sum of the type

{Qt{A1}K1,t . . . {An_1}Kn_1,tAn}PtF+ error term,

where the error is of the form LtF with Lt l = 0 . The main term is estimated
using a Carleson-measure estimate which itself follows from an L2-estimate at
the order n - 1 . As we shall now see, this procedure can be improved to yield
better constants .

Let (wt)t>o be some radial smooth approximation of the identity, such that
w 1 is non-negative and supported in the unit ball . Now let vt =wt*wt . Observe
that convolution with w t or vt is a contraction on L2 or L°°. Now we dominate

and

IIIQt{Al}Ki,t . . . Kn_1,t{An}PtFIII

by the sum of the three following terms

( 11 )

	

IIIQt{Al}Ki,t . . . Kn_1,t{An}(P1 - v2nt)FIII,

(12)
111 Qt{A1}Kl,t . . . Kn_1 , t{An}v2ntF- {Qt{A1}K1,t . . . Kn_ 1 , ¡A n }v2ntF1

	

,

(13)

	

111 {Qt{A1}K,,, . . . Kn_1,tAn}v2ntFl

The, first term is less than III(Pt - v2 � t)FIII, which is dominated by

n

II1(Pi - v!)FIII + r, III(v2kt - vzk-lt)flll
k=1

and llena : by C(1 + n)IIFII2 .
The second terco !s also of the tYI>c IIILtFIII with L t l = 0 for all t > 0, and

can be estirnated directly without using induction on n . The corresponding
estimate grows slower than exponentially .
To estirnate (13) one has to estimate e ! , and h !, for the Carleson-measure

The constant h t, can be estarnated without induction and grows slower than
exponentially . To estirnate c !, we choose a cabe Q of side-length 6 and we want
to estimate

jQt/2^ {A}K1, t/2n . . . Kn_1 , t/2n An(x)
2 dtdx

I.EQ,trí t
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We shall see that because of the factor 2n, this is essentially dominated by an
expression of the form

up to error terms, with en 's such that 11°
°

1( 1 +E � ) < oo . Of course, here
the norm of An has to be taken in the Hilbert-Schmidt sense and this is what
introduces a factor -,íd-. In conclusion one obtains an inequality of the form

for lix - y¡¡ > t.

Xn-1IIAn
11i

2((1+e,)Q) ,

Yn < 2Xn _1 ((1 + En) -líd) + error terms .

Combining this with (10), one obtains

(14)

	

Xn <, (1 + 2Vrd)Xn_1 + error terms,

which implies the theorem, modulo appropriate control of the error terms .

4 . Technical Preliminaries

An ingredient in most subsequent estimates is the following .

Lemma 4.

	

The kernels of the operators Ki, t satisfy ¡he inequality

llhi, t(x - y)¡¡

This lemma follows easily from the asymptotic properties of the Fourier trans-
form of 1/(1 + r2), which decays exponentially as well as its derivatives . We
omit the details..

Later in the proofs, we shall not need the full force of the exponential factor .
A polynomial factor of sufficiently high degree, depending on the dimension,
would be enough . Such decay, however, can only come from sufficient smooth-
ness of the symbol of K¡, t which is \i + (t2111 112 /1 + t2ll1ll2 ) x Requiring
that the symbol ofK; t be regular enough, and in a scale-invariant way, forces
110 2u(Ki) which is homogeneous of degree 2, to be a polynomial . This justifies
our assumption on a(Kj) at least in large dimension .
A consequence of Lemma 4 is the following .

Lemma 5. Le¡ f and g be two L2 -functions such that d(supp(f), supp(g))
= b > 0. Then if t < b/n,

(15)

	

<g,K1 t{A1} . . . {An_1}Kn tf >

	

Cn11fJ12119112e 2nt
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for some C > 0.

Proof. Observe that each K¡, t can be written as the sum of two operators
Mi , t and Ni, t , where Mi, t has a kernel supported in the strip { ~x - y¡ < b/n}
and Ni, t has, by Lemma 4, a norm dominated by

This quantity can be dominated by

(16)

and hence, Mi.t has a norm less than 1 + C(ó/nt)d -1 e-a/n t . Also,

(17)

	

<g,M1,t{A1} . . . {An -1 }Mn, tf >

	

=

	

0

because of the assumptions on the supports of f and g. Using the decomposition
Kt, t = Mi, t +Ni, t for all i simultaneously, and L2-estimates, we dominate the
left hand side of (15) by

(18)

1 /'
//,,

	

eid f

	

-
zn

C(S/nt)d-1 e-á/nt,

z .

Ilfl12119112

	

d-1
Cai + C

	

-~

	

e-b~ntl .
n/

/t

The restriction ll i a; = 0 follows from (17) and implies that (18) is dominated
by the right hand side of (15) . This proves Lemma 5 .
Remark: In the left hand side, of (15), one can allow t to take different

values t1 . . . tn . Then in the right hand side we have to set t = maxi ti . Also we
can replace one K¡ , t by Q t .
Lemma 5 can be used to estimate truncated operators . We fix a smooth

function 9 defined on Rd , equal to 1 if liz1l < 1 and to 0 if lizll > 2 . Notice that
®(x - y) = f 9(I)e'<f,x-Y>d~ . For every operator T bounded on L2, we define
the truncated operator T(,) to be

~

	

B(sl)
{ ei<x,'> }T{e-i<x,¿> }sndl.

.1t:ERd

This new operator is automatically bounded on L2 with a norm at most
11T1111b111 . We denote by (T), the difference T - T(,) .

Lemma 6. Le¡ T be ¡he operator Q t {A 1 }K1, t {A2 } . . . {An-1 }Kn, t, and le¡
s > 3nt. Then for some positive constants C and c,

( 19 )

	

11(T)911
'< Cne-91cnt.
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Proof.. We choose a function 0 defined on R, bounded by 1, supported in
[-1,1] and such that EjezO(x-j) = 1 . Let u = s/(6vld-). For all (ji)I-<¡-<d E Zd ,
we define opil " " id to be the multiplication by the function ~_ (ú - ji) . This
gives the following decomposition of the identity on Rd

1: Di, j,

(71 " " id) EZ'

This, in turn, gives the following decomposition of (T),,

(T) .,

	

E

	

~¿)1 " . JdT~5Jl+kl . . )d+kd I

k1 . . kdEZd \jl . . )dEZd s

The diameter of the union of the supports of 4>j1 . . jd and 4>i1+k1 . " 7d+kd is at
most (IIkII+2-,,Ad-)u . Since the kernel of (T),9 vanishes in the strip {IIx-yjj < s},
the terms corresponding to k E Zd such that (IIkII + 2v'-d)u < s, give no
contribution . For the remaining k's, we notice that ~¿jl " " 1d <Pt1 " " td = 0 if
I l% -3jI > 1 for any i . It follows by almost-orthogonality that
(20)

1,

	

¿)1 " . j,,(T)9<D71+k1 . .Jd+kd

	

<3d max IIl¿(T)J1 " " 7d

	

e

	

J1+kl . .)d+kdII .

71 "" 7a

	

71 7d

Since the distante of the supports of ~¿jl . " 7d and 4) )1+k1 . " Jd+kd is at least
(¡¡k¡I -2v9)u, which is more than nt if (IIkII +2v9)u > s, we can apply Lemma
5 . A summation over k yields

as a bound for (T)9 . By the choice of u, this sum is dominated by

This implies Lemma 6 .

k,(JIkli+24)u>,s

(IIkil-2V`d)u
Cne 2nt .

C
n

	

E

	

esjjkjj/24fnt
.

k,IIkil>-4v'd-

5 . Estimates for the error-terms

We first want to estimate (12) . To control expressions of the form IIILtFIII,
where Ltl = 0 for all t > 0, it is enough to have a bound on IILtIl uniform in t
and some decay on IILiL7,II when t/t' tends to 0 or +oo .

Observe that, out of the two terms entering in the definition of Lt in (12), one
is a contraction and the other is of the form {At}v2nt . To estimate the latter we
remark that v2-t{At} * {At}v2-t is bounded on L1 and L°° with a norm at most
11V2-t(IAí12)II.. Therefore {At }v2n t is bounded on L2 with a norm dominated
by max x LMB(z 2nt)IAt1 21 1/2 .
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Lemma 7. The operator-norm of L t is bov,nded independently of n or t .

Proof. In view of the remarks preceding Lemma 7, we see that it is enough
to show that, for some C > 0 and all x E Rd ,

1/2

(21)

	

IjQt{A1 }K1, t . . . Kn, tAn(Y)I12dy<1
C(2nt)d/2 .f

Ilx-YII<2nt l

We fix x . To preve (21), we decompose An as Ao + 1:-°i Bj, where

Ao(z) = An(z)X{IIz-xll<(2n+2n/')t}

and for j > 0,

B.i(z) = An(z)X{(2n+2i-'+'I)t<IIz-x115(2n+2i+'I)t} .

Since Qt{A1 }K1 , t . . . K n, t is a contraction en L2 , the contribution of Ao is

less than IIAoll2, which is dominated by C(2nt)d/2 .

To estimate the contributions of the Bj's we use Lemma 5 and the remark
following its proof . Then, if a function is in L2 with norm 1 and is supported
in B(x, 2nt),

2
7-l+n/2 d-1

< 9,Qt{A1}Ii1,t . . . Kn, tBj >

	

Cn 11Bi1l2 (

	

n

Since IIB j ll2 <, C (2n + 2j-1+n/2)d/2 td/2, (21) follows by summation over j .
This preves Lemma 7 .

Remark. It follows that the measure

M = IIQt{A1 }h1, t . . . Kn,,An(y)112dydt/t

e

satisfies h t, < C.
Next we turn to the decay estimate for IIL t L*,, J¡, when t/t' is large or small .

We can assume t < t', taking the ádjoint if necessary .
Using the factorization of vi as wi * w t , we see that Lt can be written as Ltw2

where

Lt = Qt{Al}K1,t . . . Kn-1,t{An} - {Qt{A1}I11,t . . . Kn-1, ¡An},

and similaly for Lt , . From the proof of Lemma 6 we see that Lt , w2n t , is bounded
on L2 with a bound independent of n . Hence

IILtLt' jj < CIILtw2nt' II .
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Lemma 8.

	

JILtwz^t , II < C(tIt') 112 if t' > 4nt.

Proof.. First we observe that, because wl is supported in the unit ball,

(22)

	

(Ltwz^t')

	

= ((L,)z^t,wz^t')

We denote by Vt the operator Ltwz^t, . By Lemma 6 11(Lt)z^V I) is dominated by
e-z^t'/cni . Hence, by (22), so is 11(Vt)z^+lt,11 . Since the kernel of Vt - (Vt)z^+l t ,
is supported in flix - y¡¡ <, 2n+ztt}, it follows that it can be decomposed in
an almost-orthogonal sum of operators whose kernels are localized in x and y
on balls of diameter 2nt', as in the proof of Lemma 6 . We just need uniform
estimates for the norms of these operators, or even for their Hilbert-Schmidt
norms . Equivalently, we need estimates, uniform in xo E Rd, for

(23)

(24)

Let us rewrite Vt(x, y) as

which is equal to C2ntlt' .

~x - xoll<2^t',Ilwxoll<c2^t~
Il ví(x,

y)¡12 dxdy .

Let to = 2n/z (tt')l /z . For all j = (j l . . . id) E Zd , we define xj to be the point
to(jl . . . id) . Then, we can dominate (23) by

(~Ilx -xi II<fto
IIVt(x,

Y)112dxdy .

(25)

	

1Lt(x, z)(wz-t,(z - y) - wz^t , (xi - y))dz .

We use a truncation ofLt at scale to . That is, we write Lt as (L1)to +Lt-(Lt)to .
For the local part we use the Lz - boundedness of Lt, treating y in (24) as

a parameter, and we are reduced to controlling

(~,=,Il=-xi 115(f+z)to
Iwz^t,(z

-
y) -

wznt,(xj -
y)jzdzdy

{xi,llxi - oll<znt , }

This expression is easily seen to be dominated by

(2ntt/to)
d
((f + 2)to )d(2nt')d (

(,Ad-
t )d+~~)

d

,
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For the far-away part, we estimate the contributions of w 2 " t ,(z - y) and
W2-t' (xj - y) separately. By Lemma 6 the first contribution is dominated by

(25)

inequality

Ce-to /cnt

	

~

xi,llxi-x011<2ni, (Jy,=,lly-xo11<C2"t'

which is less than
C(2n/2(tl/t)de_ z / z ( e~ li/z

The second contribution can be rewritten as
2

II~(Lt)t.(x,
z)dz

	

dx)

lxi,ll xi -x011<2"t' l

	

IIx - xi 11<fto

Iw2"t , (z - y)I 2dydz) ,

I

	

t, ( x 7
- y)1 2dy)

y

Following the line of proof of Lemma 7, it is easy to see that the first factor in
the product is dominated by Ct de-f t o/ 0ni , and hence, that (25) is dominated
by the same quantity xto d .
This concludes the proof of Lemma 8 .
We are now ready to estimate maxlIF11 z= 1 (IILtFIII . By duality this is also

equal to maxlllf,lll=1 II f Lift dt/tll2 . It is easy to see that the square of this
expression is less than the operator-norm on L2 (R+ , dt/t) of the operator of
kernel k(s, t) = IIL,Li II . By Lemma 7, Leinma 8 and the remark preceding it,
this is less than Cn. Hence

(26)

	

IIILtFIII < Cn1i2IIFII2 .

6. Proof of Theorem 1

We recall that the numbers Xn and Yn have been defined just before (10) .
We wish to prove, for all E > 0, the existence of a constant CE such that

(27)

	

Xn < C E (1 + 2-,Id- + E)n .

Let us recall that, by the remarks in Section 3 and (26),

Yn < (11) + (12) + (13) < C(n + 1) + Cnr / 2 +(13) .

Also, by Lernina 3 and (6), if we define Z,, to be the best constant in the

1/
l

(28)

	

(f

	

II Rt/2" {A1 }Ktl2" . . . Kti2"An(x)112
dx

t
dt

l

	

< CIQI .
xEQ,o<t<a(Q)

2



then

(29)
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(13) < Zñ/ 2 + Ch1~2,

where p,, denotes the Carleson-measure appearing in (28) . By the remark
following the proof of Lemma 7, we know that hN � < C. Therefore,

(30)

	

Yn < 2Zn + C(n + 1) .

Finally the proof of Lemma 7 shows, modulo trivial modifications, that

Zn '< X2 -1( 1 + C2 -n/2) x d.

The factor d comes from the fact that in estimating cPn , one has to use the
Hilbert-Schmidt norm of An, which can be as large as ~ld-.
From these two inequalities, we obtain

Yn < 2y"d- (1 + C2-n/ 2 )Xn_ 1 + C(n + 1) .

Since Xn < Xn_1 + Yn, it follows

Xn < (1 + 2-,íd-)(1 -}- C2-n/2) Xn_ 1 -{- C(n + 1) .

This implies (27) and proves Theorem 1 .

7 . Application to the Kato-problein

Theorem 1 implies that the radius of convergente of (1) or (2) is 1/(1 +2V,-d)
at least . There are various ways to see that this is not sharp . One of them is to
observe that the constant 2 in (7) can be attained only for LZ -functions which
have a particular distribution-function . Since the functions to which we apply
(7) are images of bounded functions restricted to cubes, their distribution-
functions have properties which permit to conclude that the constant 2 can be
improved in our case, thus leading to an improvement of the constant (1+2f)
in Theorem 1 . In this section we shall be interested only in those improvements
which take in account the special form of the operators K; which occur in the
series (1) or (2) .
The properties of the Riesz matrix which we shall use are that it is positive

and defines an orthogonal projection . We shall be working with the series (2)
and show the following .
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Theorem 2. The radius of convergence of ¡he Kato functional is at least
a-1 , where a is ¡he largest positive root of ¡he equation

(31)

Before sketching the proof of this theorem, let us indicate that approximate
numerical values for a-1 in dimensions 2, 3, 4, and 5 are respectively .474, .416,
.376, and .347 .

Sketch ofproof.. For simplicity we shall proceed as if the kernels of (I - Pt)R
and Qt were supported in {Ilx - y¡¡ < t} . This of course is not true, but, as the
proof of Lemma 7 shows, this is true for all practical purposes .
The fact that R defines

provement of (10) :

(32)

To see this we just need to observe that for a function F in Lz, JIP112
-f- 11(I -

R)F112 = JIF112 . Hence Xn < maxaz+,z= 1 AXn_1 -}- MY,,, which is exactly (32) .

By the positivity of R we can write it as ~, where S is a contraction . Since
Kt = I - (I - Pt)R = I - (I - Pt ) +S we can rewrite it as

It follows that
1

	

r
(33)

	

Zn < 2(1 (1+C2)(Zn-1 + YQXn_1), + negligible error terms .

Note that, by (32),

(34)

Combining (30) and (34) we obtain

J .-L . JOURNÉ

CX-21 Xz-1=XId.

an orthogonal projection yie1ds the following ¡ni-

Xn <

	

Yaz +Xn_1.

ZPt+2(I-(I-P,)S) .

n

Xn <
CE Y2
k=1

1

	

n-1
(35)

	

Zn < 2Zn-1 +f

	

E Z~

	

+ negligible error terms .
j=1 1)

Let us ignore the error terms in (35) . Let C > 0 and /a > 1 be such that for
1. < n, Zj < CQj . Then Zn < CQn if 9 is such that

an i
1
pn-1 + ~ld-

	

pn-1

,2

	

1_
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that is, if fi > a. This implies Theorem 2 modulo the handling of the error
terms, which is trivial .

Let us mention that in working with the series (1) instead of (2) one does not
seem to be able to improve (10) into (34) . Hence one obtains significantly worse
estimates for Xn for (1) than for (2), while, as the next section will suggest,
one should expect a discrepancy growing slower than exponentially.

8 . A direct proof of Kato's conjecture in dimension 1

We wish to prove the following :

Theorem 3. For all E > 0 there exists a con,stant CE such that for all n

	

1,
and al E Le (R), 1 < i < n, and f E LZ(R),

(39)

For all u E]0,1], we shall prove

(36)

	

QL

	

({aá}(I-PL))

	

< CE(1+e)n

	

~laj1j .JIfII2 .

The proof we shall give clearly yields multilinear estimates . However we shall
work with one single bounded function a of norm 1, and we shall denote {a}
by a . This symbol will stand for {a}) for any power j, for instante in (43) and
(44) .
Proof..

	

The proof of Theorem 3 relies on a trivial extension of one identity
of [4], namely :

(37)

	

QtaPt = Pt{Pta}Qt + {Qta}Pt - Qt{Qta}Qt .

Let S i be such that Pt SL = Pat for some a > 0 . Then Qt St = tDPt S, =
tDP«t = óQat This, together with (37) and a rescaling immediately gives :

Lemma 9 . For all u > 0 and a > 0,

(38)

	

QutaPat = uPut{Puta}Qat + {Quia}Pat - IXQut{Quta}Qat "

11 IQut (a(I - Pt»n aPt	I < C(1 + E)n ~If IJ2 .

This clearly implies (36) . The reason for introducing the parameter u will
become apparent during the proof.

Let p be an integer possibly equal to l . We write n = qp+r = q+(p-1)q+r =
q+s, with r < p. Let a > 1 and fj = a9 . Finally, for -y > 1, we set Qé = Pt-Pyt .
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We wish to reduce the study of
111 Qvt

(a(I - Pt»n aPt
111

to the study of

8+1

(40) I I Quta(I - P«t)a(I - Pa,t)a . . . a(I - P.q- t ) (a(I - Ppt))

	

aPptf

	

,

where we shall be able to take advantage of the factor

	

inLemma 9 . To do this
we replace each Pt by the corresponding P-y t, where -y is some appropriate power
of a . Starting this process from the right and using Minkowsky's inequality
we dominate the left hand side of (39) by the sum of (40) and the following
expressions .

(41)

(42)

Qut (a(I - Pt)) naQQf

Qut (a(I -
p,»

n-1a&aPptf

¡Qut (a(I - Pt)) n-2aOAa(I - Ppt)aPptf

Qut (a(I - Pt )) v-1
aoA (a(I - Ppt)) 9aPptf

Qut (a(I - Pt)) 9-2 aQt9-1 (a(I - pRt»s+1aPptf II

s+1

QutaQt a(I - Pa2t)a . . a(I - P,,,,-lt) (a(I - PPt)/	aPptf

To study (40) we expand each (I - Pyt) and regroup the resulting 2n terms
aecording to the location of the first Py t which appears when going from the
left . A new application of Minkowski's inequality then shows that (40) is less



than the sum of the following expressions:

(43)

(44)

IQutaP«ta(I - P,,2,)a . . a(I - Pa,~,,) (a(I

s+i
QutaP.,, , t(a(I - Ppt) /

aPp t ~

QutaPpt (a(I - Ppt )l 9aPpt 111

111Q«taPptaPptf

Q-taPptf] 11

KATO'S SQUARE-ROOT PROBLEM

	

317

An application of Lemma 9 permits to decompose each of these expressions
in the sum of three terms, the two last of which can be handled via the usual
Carleson-measure argument, thanks to the following lemma .

Lemma 10 . Leí 0 < wo . . . < w, Then the kernel

	

I't(x, y) of

P,,,oa(I-P.,)a(I-P,) . . . (I-P,,,� _1)aP. �

is dominated by C (w� /wo)i12 (l+n)3 (_.t)1,+,,,,1,2 .~,zThe same is true if P,, o t
is replaced by Q,,,o t .

We defer the proof of this lemma until the end of the section .
We introduce some notations for best constants in quadratic estimates, for

which we shall obtain estimates by induction . These constants depend on n
which, for the time being, is fixed . Recall that u E]0,1] .
The first constant DQ s is the best constant in the inequality

(45 )

	

(40) - C11 f 11 2 .

(46)

	

1I Qut (a(I - Pt)I
k
aPtf111 <, Clif 112 .

Ppt»
s+laPptf

The constant E', independent of a, is the best constant in the inequality

We want to derive an inequality for DQ s . As we already observed, (40) is
less than the sum of (q+s+1) quadratic gauantities, (q-1) for {43) and (s+2) for
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(44) . Each of these quantities can be dominated by three others using Lemma
9 . It will follow that D9 , is dominated by the sum of 3(q+s--1) numbers .
Corresponding to the first term in Lemma 9 we have the following (q+s+1)
numbers :

~Dq-1,s, -Dq-2,s, . . . ,
aq

1Di,, -Es, QEs -1, . . . ,

	

Eo, ~CO .
a2

	

-

Here co denotes the best constant in the inequality

IIIQt,f111 < CII .fll2-

Those numbers are obtained by rescaling and using the fact that the Pt 's are
contractions on L2 and L°°. The two last terms in Lemma 9 can be regrouped
in a single one . Lemma 10 and the usual Carleson-measure argument give a
global estimate in Cf 1 /2 (1 -}- n)4 . In doing this, one uses that the measure
IQut a1 2 dxdt/t is a Carleson-measure uniformly in u .
The previous remarks yield the following

q-1

	

s

(47)

	

Dv,s <

	

.Z Dq-j,s +
u

co +
zs

	

Em + Caq/2 (1 + ,n)4 .

j-1 a

	

p

	

fl "'=o

The strategy is to use (47) to show that if

(48)

	

ER, < C1(1 + E)'

for some e > 0 and uniformly for m E N and u E]0,1], then for some e' < E,

(49)

	

Du,s < C2 (q, s)(1 + E')q(1 + e)9

where C2(q, s) has the form C(q +s + 1)4 and is independent of u E]0,1], This
will require an appropriate choice of a and p . Then one shall show that for
some e" < e,C > 0, and uniformly in u E]0,1],

(50)

	

Euum < C(1 + e")"` .

By iterating this procedure one can malee e as small as we want, thus proving
the theorem .

Let us be more precise . Let e > 0 and choose p such that

(51)

	

21/2v+1

	

<

	

1 +e < 21/2p-2 .

Then we cla,im that if (48) holds, then (49) holds for any

(52)
1/3

e' > ((1 +E)2r-2/

	

-1 .



Notice that, by (51), (1+E2

	

1/3
p _)

	

- 1 < e . Also we claim that in (50) we can
choose any e" such that

(53)

(56)
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e" > (1 + e)1-1/p(1 -I- e')1/p - 1 .

Since 2 1 / 2p+ 1 i s the only fixed point of the transformation

x ___> (

	

2

	

)1/3

x2p-2

(55)

	

a(1 +e') > 2 .

Observe that, by (55), j:i~, l (a(1 + E'))
increasing one just needs

it follows by iteration that we can make e as close as 21/2p+1 - 1 as we want .
Then, by increasing the value of p we can get e as close to 0 as we want . Hence,
to finish the proof of the theorem, we just need to prove two claims and Lemma
10 .
Proof of the first claim : We assume (48) and (51), and we want to conclude

(49) for any e' such that

(54)

	

1+e' > ( (1+e)2p-2 )

Let a = (1 + e)
2p-2(1 + E') 2 . Notice that, by (54),

In order to deduce (49) from (48), we shall use an induction on q based on
(47) . Then it will be sufficient that C2 be so that, for all 0 < k' < q,

k'-1
C2 s k ~ -j) iC2 (s,k')(1+E)9(1+S')k , E

	

( k.

	

(1+E)'(1+e')k-
j-1

+Ca lo / 2 (s + k' + 1)4 + Cl
s k,1 (1 + e)' .

< 1 . Hence, since C2(s, .) will be

(57)

	

C2(s, k ' )( 1 +
e)"

( 1 + e')k' > C3 ce k '/ 2 (s -1- k' + 1)4 -F- sák ,1 (1 + e)9,

where C3 is some constant which remains bounded if e and e' stay away from
their minimum values and Cl remains bounded . Let us set C2(s, k') = 2C3(S+
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k' + 1)a and check that with this choice (57) is satisfied . Equivalently we need
that for all 0 < k' < q,

(5g)

	

2(s + k' + 1)4(1 + e),(1 + e
l
) k

'
>
ak

'/2(s + k' + 1)4 +
s
a,1 (1 + e)9 .

In (58), the second term of the right hand side is obviously less than half of the
left hand side . To see that this is the same for the first term, we first observe
than when k' = q it follows from a9/2 = (1+e)(p-1)Q(l+e')a ' (1+e),(1+e')9 .

To deduce it for smaller values of k', just observe that al/2 > (1 + e') . Hence,
(58) is proved, from which follow (57) and (56) . Hence (49) follows from (48)
by induction, using (56) and (47) .

Proof of the second claim : With our choice for C2 , (49) reads as follows :

(59)

	

D9, , < C(q + s + 1)4(1 + e) , ( 1 + e')9 .

We want to deduce (50) from (48) and (59) , assuming that e" satisfies (53) .
The decomposition of the left hand side of (39) in (41)+(42)+(40) implies
that Eñ is dominated by the sum of (s + 2) + (q - 1) + 1 terms . To handle
the (s + 2) first ones, we decompose Qá

	

Pas -f 2PutQut L . By (48), this
gives a contribution of co logp for the first one and Cl log /l(1 + e»,

	

0
j <, s, for the (s + 1) following. By (59) one has contributions of the form
C(q - j + s + 1)4 j log a (1 + e)9(1 + e') 9-j, 1 < j < q - 1 for the terms
constituting (42) and finally C2 (q, s)(1 + e)'(1 + e')Q for (40) . Summing these
estimates, and then using (53) and the fact that (q + 1)(p - 1) >, s we obtain

Eñ '< C(q + s + 1 ) 6 (1 + e)'(1 + e')9 < CE,,(1 + e1L)n.

This proves the second claim .
Proof of Lemma 10 : An obvious estimate is

rl(x, Y),<¡¡PWOt(x - -)¡1211PW� L( . - Y)¡¡ 2 = C1-1(WOWn)-1/2 .

This is sufficient when Ix - y¡ < C(1 + n) 3/2Wnt since in this case,

)_1/2

	

Wn
L/2

)3 Wnt
t _1 (WOW n

	

< C ~-)

	

(1 +12
WO

	

(Wnt)2 + (x - y)2

If IX - M > C(1 + 7L),t/ 1Wnt , we truncate P,,,ol(x - .) and P,,, al ( . - y) on balls
respectively centered at x arld y and of diameter Ix - yJ/4 . The far-away parts
have L2 - norins of the arder of I x - yj -s/2wot and IX - yI -s/2wnt respectively.
Hence, they will give contributions of at rnost CWntIx - y¡-s/2(wot)-1/2 . It
rernains to control the contribution of the local harts . Here we use that their
supports Nave a distance Ix-y¡/4 . As we inentioned in the remarle following the
prcxlf of Lemma 5, we can apply it in our situation and this gives a contribution
C~nC~z_bI/~W^L(W~Wn)'~/2t-~, This concludes the proof of Lemma 10 and of
Theorern 3 .
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