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DILATIONS ASSOCIATED TO FLAT CURVES

STEPIIEN WAINGER

I would like to give an exposition of recent work of Tony Carbery, Mike
Christ, Jim Vance, David Watson, and myself concerning Hilbert transforms
and Maximal functions along curves in R2 [CCVWW] . Thus we let r(t) _
(t, y(t)) be a curve in R2 with y(0) = y'(0) = 0 .
For a function f in Có(R2 ), we set

Hrf(x) =
J

1 f(x - r(t))~t,
i

h

Mrf(x) =

	

supi 1 f

	

If(x - r(t))I dt .

We are interested in the problem of obtaining estimates of the form

1)

	

IIHrf1IL . < A(p,r)IIfJIL,

and

2)

	

IIMrflIL , < A(p,r)jIfJIL,

Positive results have been known for a long time for 1) and 2) under an
appropriate curvature hypothesis . The curvature hypothesis is that y(k)(0) 7~ 0
for some k > 2 . Thus if

3)

	

r(t) = (t,t
k
)

	

k > 2, k a positive integer,

or

4)

	

r(t) = (t, t k - tk+ 1 )

	

k > 2, k a positive integer,

the curvature condition is satisfied . If

5)

	

r(t)

the curvature condition is not satisfied .
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An important property of curves for which the curvature hypothesis holds is
that it is almost homogeneous . We say F(t) is homogeneous if there exists a
group of linear transformations A(A), defined for A > 0, such that,

6)

	

r(At) = A(A)r(t),

A(Alt) = A(A)A(p),
and

8)

	

A(A)x --~ 0 as A -+ 0 for every x

Thus F(t) = (t,tk ) is homogeneous with

A(A)
_

	

A

	

0l
- (0 ~k /'

and P(t) = (t, tk - t k+ 1 ) is almost homogeneous in that

In 3) and 4) above the dilations A(A) are staring one in the face . The question
we are interested in is whether or not there could be a useful family of dilations
for curves in which the curvature condition fails, a curve like

In discussing this question, it is well to keep in mind another example of a
homogeneous curve, namely

9)

	

F(t) = (t, t log 11D.

Here

I'(At) = A(A)F(t) + small error.

F(t) = (t, e_l/") .

A(a)
a o

= (AlogA A) .

Thus if we wish to have a theory that includes the example 9), we would not
want to take

_ 1\ 0A(a) -

	

0

	

Y(A)
in general .

Before describing the family of dilations that we found, let us try to decide
what we might hope to prove using them .

Let us assume that y(t) is odd and convex for t > 0 . Then most known
results are expressible in terms of a functional h(t),

h(t) = ty'(t) - y(t) .

Geometrically h(t) represents the distance from the origin to the y-intercept of
the line tangent to I' at I'(t) .
We then have the following Theorem:
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Theorem A. Assume y(t) is odd and convex for t > 0, then

IIHrfJIL2 < AlifJILZ

if and only if

10)

	

h(ct) > 2h(t) for all t > 0

for some c > 0. Also if

for some c > 0 and all t > 0,

See [NVWW1] and [NVWW2].

h(ct) > 2h(t)

IIMrfilLI < CIIflIL2 .

Further it is known that 10) does not suffice for 1) or 2) for all p, 1 < p < oo .
See [CCNWW] and [C1] . Using the family of dilations we construct we are
able to prove the following:

Theorem B. Assume y(t) is odd and convex for t > 0.

	

Then if for some
e>0,

11)

	

h(t) > e htt) ,

IIHrfJIL, <_ A(p,r)IIfJILI, 1 <p < 00,

and

~IMrfJIL, :5 A(p,r)IIfJILp,1 <p < oo,

(Oiher sufcient conditions are given in [CCCDRVWW] and [CW] .)

We may view 11) as an infinitesinal version of 10). In particular 11) implies
10) .

It tums out that the family of dilations we use are

B(A)
- (^/(A)

	

h(A))

Note that in the case of the curve

F(t) = (t,tlog Itl)

B(A) and A(A) are the same . In the case that

F(t) = (t, t k )
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A(A) and B(A) are not the same, but they are equivalent in the sense that if
K is an open convex set containing the origin in its interior, there is another
such set K1 such that

A(A)K1 C B(A)K

and visa versa .
The dilations B(A) do not form a group, that is condition 7) is violated .

However, one can dispense with 7) if one proves

12)

	

JIB(s)-1 B(t)jj < C(s)E

for some positive e . It turns out that 10) implies 12) .

The dilations are used in the proof of Theorem B in 2 ways . The first
application is to obtain uniformy decay estimates for measures supported on
I'(t), and the second is to be able to develop a Calderon-Zygmund theory. The
Calderon-Zygmund theory gives rise to a Littlewood Paley Theory from which
Theorem B can be derived using ideas developed in [DR] and [NSW] . The
Calderon Zygmund theory is developed by using a variant of the argument of
Coifman and Weiss concerning spaces of homogeneous type [CW] . Here we
shall concetrate on the decay of the Fourier trasnform of measures supported
on I' . We refer the reader to [CCVWW] for the Calderon Zygmund theory,
Littlewood Paley arguments and the rest of the proof of Theorem B .
We define measures dp � supported on I' as follows : For a test function

So

2 2 - ^

dl2 n(O) = 2n

	

'~

	

0(r(t)) dt .-

_

	

2 2-^

dU"(~) = 2' f

	

dt .
2-^

We wish to say in a precise way that dp,,(~) decays as 1 tends to oo "uniformly"
in n. (Note that the condition 10) does not imply that -> 0 as n --> oo
because F(t) can contain straight line segments while the condition 11) at least
insures that F(t) is either part of the x-axis or has no straight line segments .
The uniform estimate we obtain is (if 11) holds and ]P(t) is not a segment of

the x-axis

13)

	

Idl2"(« < clIB*(2`)J11`

for some e > 0 .
The use of the dilation is that we don't have to make a close examination of

the curvature of I' in the interval (2-n,2-2-"), but instead we can "normalize"



to the interval (1, 2) . Let us be more precise .

Thus to prove 13) it suffices to show

14)

	

11 f
2
e 4n'rn(t) dt1 < Cli,711-1~2

where 11 is a vector in R2 and rn(t) = B-1(2-n)1'(2-nt) . A calculation shows
that

Ir .(t) = (t, Y.(t»

where yn (t) has the following properties :

15)

	

yn(t) is convex

So
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dun(1) = 2n f2 .2-n
esf .r(t) dt - J 2

e'£'r(2-nt) dt
2-n

	

1
2

_

	

e¡£ .(B(2-n)
.B_1(2-n)r(2-n t)) dt

1
2
e¡B'(2-n)1.B-1(2-n)r(2-" t) dt .

1

?'n( 1 ) = 1

	

yn(1 ) = 0

17)

	

h' (s) > e
hn(s)
s

(Here hn(s) = s-/n(s) - -Yn(s)), and

-Yn(S) >

	

-Y , (S)

17) follows immediately from 11) while 16), 17), and the convexity of -r,,
imply 18) . One can then prove 14) by adapting the ideas of Van Der Corput,
see [SW] .
To see 18) note that

tyn(t) =f ?'n(s)ds < (t - 1)y;,(t)_
1

2

yn(t) C hn(t) C thn(t) -

	

yn(t)
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Thus for 1 < t < 2

7n (t)

	

47n(t)'

Finally 14) is obtained from Van Der Corput's Lemmas, Lemma 4.3 . of
[CCVWW] . If 17721 >_ 111,1, we use the "second derivative estimate" together
with 18) and 16) . If 17711 > 17721 we use the "first derivative estimate" for t's
such that 171217n(t) < 2` and the "second derivative estimate" together with
18) for t's such that

1 712 17n(t) >

	

17711 .

We remark that the operators considered above are special cases of more gen-
eral operators where x is in Rn, x - 1'(t) is replaced by a k-parameter surface
S(x, t), (t E R') with S(x, 0) = x, and 1/t is replaced by a Calderon Zygmund
kernel on R' . In this more general setting positive results have been obtained
in [C2] and [CNSW] provided S(x, t) satisfies an appropriate curvature con-
dition . We would hope that a better understanding of the operators Hr and
Mr above without the assumption of the curvature condition would eventually
carry over to the more general type of operator without assuming the curvature
condition . Let us remark that the arguments in [CNSW] strongly depend on
families of dilations .
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