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HARMONIC ANALYSIS AND THE GEOMETRY
OF SUBSETS OF Rn

GUY DAVID AND STEPHEN SEMMES

This subject has several natural points of view, but we shall start with the one
that corresponds to the following question : Is there something like Littlewood-
Paley theory which is useful for analyzing the geometry of subsets of Rn, in
much the same way that traditional Littlewood-Paley theory is good for ana-
lyzing functions and operators? To explain what we mean by this let us first
give examples of classical ideas of which we would like to have counterparts in
this geometrical setting .

Let O(x) be a smooth function on Rn with compact support, f

	

= 0, and
possibly more vanishing moments as well . Given a function f on R", we can
obtain a lot of useful information about it from the size of 0 ¡ * f(x), where
Ot(x) = t-no(t ), at least if 0 is sufficiently nondegenerate . Whether Ot*f --> 0
as t --> 0, and how fast, tells us about the smoothness of f, for instante .
There are also useful reproducing formulas for f with Ot * f arising as the

coeficients, e.g .,

( 1 )

	

f(x) = c

	

Ot * ~b t * f(x)dt1, 00
00

R
Ot(

	

- u)Ot * f(u)dudt

which holds if V is radial and not identically 0 . This allows us to express f as
a superposition of simpler objects, namely the functions 0t,u = Ot(- - u) .

In searching for a version of these ideas which is useful for analyzing subsets of
Rn we could try the following naive approach . Let E be a closed d-dimensional
set in Rn, and let p denote the restriction to E of d-dimensional Hausdorff
measure . (Throughout this paper d is an integer, 1 <_ d < n.) We could attempt
to analyze E by applying the usual techniques to /t, viewed as a measure on
Rn . In other words, we could try to derive information about E from t * te
and the reproducing formula
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Unfortunately, it is not at all clear how to do anything useful with these. For
example, if we take E to be a d-plane, which is the most basic d-dimensional
set, then Ot * M and this reproducing formula are not so simple . They do not
reflect the geometry so well .
To get a better idea of what is wrong with this approach, and what we

should do instead, we should be more precise about what we want . We would
like to have a method of analysis that can detect if E is a d-plane, and, more
generally, measure smoothness of E . We'd like to be able to discern rectifiability
properties of E, e.g ., to be able to distinguish totally unrectifiable Cantor sets
from sets which are subsets of a countable union of d-dimensional Lipschitz
graphs .

In this context d-planes play much the same role that constants (or affine
functions) do in the traditional setting . The smoothness of a set is closely
related to how well it can be approximated by a d-plane, just as the smoothness
of a function can be measured by how well it is approximated by constants or
afiine functions .
Here is one way that this manifests itself in traditional Littlewood-Paley

theory. Suppose that 0 has vanishing first moments in addition to f 0 = 0, so
that 0 * A = 0 for all afiine functions A . Given a function f, we have then that
10t * f 1 is controlled by how well f is approximated by afiine functions . When
we tried the naive approach to analyzing sets by Littlewood-Paley theory this
did not work, because we do not have Ot * p - 0 if E is a d-plane .

However, if we look at 0¡ * p(x) only for x E E, then there are lots of
-%'s so that this will vanish whenever E is a d-plane, any 0 which is odd, for
instance . There is still a serious problem with this, though : how do we recover
information about E from Ot *,u ¡E?

We no longer have a reproducing formula
as before .

It turns out that there is a way to overcome this difficulty . Before describing
our results we state a couple of easy definitions, postponing momentarily the
more complicated ones .
We say that E is a regular d-dimensional set if it is closed and there is a

C>0sothat
C-'Rd <_ [,(E n B(x, R)) < CRd

for all x E E, R > 0 . This means in particular that E is a space of homogeneous
type (with measure p and the Euclidean distance) in the sense of [~J.
A measure A on E x R+ is called a Carleson measure if there is a K > 0 so

that
A((E n B(x, R)) x (0, R)) < KRd

for all x E E, R > 0 . Such measures behave in some ways as though they are
d-dimensional, even though they live on a (d+ 1)-dimensional set .

Theorem. Let E be a regular d-dimensional subset of R' .

	

The following



are equivalent .
(A) For each odd, smooth, compactly supported function 0 on Rn,

and
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2-'dO (l
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y) dlp(y)l'

_

	

dp(x)db2-i (t)

is a Carleson measure on E x R+ .
(B) E admits a corona decomposition.
(C) E has big pieces of Lipschitz images of subsets of Rd .
(D) E has very big pieces of bilipschitz images of subsets of Rd .
(E) There is an Al -weight w on Rd and an w-regular mapping z : Rd -+

Rn+i with E C z(Rd) .

Let us give some explanations .

	

In (A) db2-; (t) denotes the Dirac mass in
t at 2- j . One can think of (A) as a geometric analogue of the fact that f E
BMO(Rn) if and only if Iot * f(X)12dx tt is a Carleson measure on Rn x R+
for any 0 as above.
The definition of a corona decomposition is complicated and will be put oíf

for a while . It is a geometric condition that concerns the approximation of E
by Lipschitz graphs .
The precise statement for (C) is that there exist K, y > 0 so that for each

x E E, R > 0 there are subsets F of E fl B(x, R) and G of Rd, and a map
p : G -> F, such that p(G) = F, p(F) > ?IR', G has diameter _< R, and p is
Lipschitz with norm K, Le .,

I p(x) - p(y) I < K I x - y I

for all x, y E G . Of course you can extend p to a Lipschitz mapping of Rd intoRn .

(D) is much the same as (C) except for a change in quantifiers : for each e > 0
there is a K > 0 so that for each x E E, R > 0 there exist F, G, p as above
except that now p is bilipschitz, Le .,

K-1 1 x - y I :5 I p(x) - p(y) I C K I x - y I,

p((En B(x, R)) \ F) < e Rd ,

so that p(G) covers E fl B(x, R) except for a small set . It turns out that you
can extend p to a bilipschitz mapping of Rd into Rn if n >_ 2d + 1 . Of course
(D) implies (C) .

For (E) we begin by recalling that w is an Al weight on Rd if there is a C > 0
so that

I

	

w < C(ess inf w)
IQI

Q
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for all cubes Q. It is well-known that this implies that w is an A,,-weight,
which is characterized by the condition

for some C, Ó > 0 and all cubes Q .
To say that z : Rd -+ Rn+ 1 is an w-regular mapping means that z has locally

integrable distributional derivatives, ¡Vzl < Cw} a.e ., and

for all y E Rn+1, R > 0, where w(A) = fw(x)dx . Here we require that w be
A

at least an A,,,, weight, so that jOz1 E L~+E for some e > 0 . If we only requi"red
that w be an A,,, weight instead of an Al weight, then the resulting variation
(E') of (E) would still be equivalent to the other conditions .

If n >_ 2d we can even require that the mapping z in (E) take values in
Rn . Notice that when d = 1 we can always take w = 1 by replacing z by an
arclength parameterization . Thus, when n = 2 and d = 1, (E) says that E is
contained in a regular curve.

Let us relate this theorem to more familiar issues in harmonic analysis, the
behavior of singular integrals on E in particular . It is not hard to show that
(A) is equivalent to the square function estimate

IQI J c`' 1+b

	

<
CMQ

	

R

w({x E Rd :1 z(x) - y 1 <

	

R})

	

<

	

CRd

f I f

00

2-'dO ( x
2j

y ) f(y)dN(y)
_

	

2
dj,(x) < C(V)jIfIl22(E)

j-_oo E E

for all 0 as above and f E L2 (E) . This equivalence is obtained using standard
techniques, including those of the T(1) variety. There is an important concep-
tual difference between (A) and (A'), however; (A') is an estimate for square
function operators on E, while we think of (A) as a square function estimate
applied to E itself (or, more precisely, to h) .
Another equivalent condition is

sup ¡
e>0 JE ~

yEE
1x-y1>E

2
K(x - y)f (y) dp(y)

	

dh(x) < C(K) jif ij 2 2(E)

for all f E L2(E) and all smooth, odd functions K on Rn \ {0} which satisfy
¡VIK(-)¡ <_ C(j)1xi-d-J for j = 0,1,2, . . . . Indeed, one can prove that (a)
implies (A') using a standard trick with Rademacher functions, while (C), (D),



(E), and (E') all imply (a), by the results of [D1] . (For (C) we also need the
main result in [J3] .) One can also show directly that (B) implies (a), as in
[Se] .

Interesting particular examples of such kernels K(x) are the Cauchy kernel
K(z) = 1 en C and its counterpart in Rn, K(x) =' (d = n-1) . The double-
layer potential can of course be expressed in terms of this second example . We
do not know if the condition you get by demanding that (ce) hold only for
h(x) _ 1+~ is still equivalent to the others .
There is also a condition which is a version of Peter Jones' geometric lemma

and which is equivalent to the others . Given x E E and t > 0 set

(2)

	

P(x,t) = in
1

	

f

B(x,t)nE
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dist(y, P)
df,(y)

t

where the infimum is taken over all d-planes P .

	

Thus f(x, t) measures the
extent to which E can be approximated by a d-plane . Jones worked with a
similar quantity when d = 1, but with the L1 norm replaced by an L°° norm .
The conditions above are also equivalent to

(F)

	

f(x, t) 2dp(x)L is a Carleson measure on E x R+.
Jones and his student Fang have shown that this can fail in higher dimensions
even for Lipschitz graphs if we define f(x, t) in terms of an L°° norm instead
of an Ll norm. We would, however, still have an equivalent condition if we
replaced the Ll norm by an LP norm, P < dd2 .

The equivalence of (F) with (E) (for regular sets) can be viewed as a higher-
dimensional version of the results of Jones [J2] characterizing the 1-dimensional
sets which are subsets of rectifiable curves in terms of quadratic estimates en
the analogue of f(x, t) defined in terms of an L°° norm. Jones' techniques do
not work when d > 1, but they also do not require the set to be regular .

Conditions (A) and (F) are very similar in some ways . In particular, each is
a square function condition en E that has a classical counterpart for functions
en Rn. For (F) that counterpart is the following . Let f be a locally integrable
function en Rd . Set

y(x, t) = iaft

	

J

	

1 f(x) - a(x) 1 dx,
B(x,t)

where the infimum is taken over all affine functions a. Then

1,f

	

y(x't)2 da dx ~

	

Vf i2 .

Ra

(See [Do], for instante .) This is a well-known cousin of the more familar square
function estimate in which y(x, t) is replaced by a second dif%rente (which also
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measures how well f can be approximated by afine functions) . Notice that the
fact that (F) holds for Lipschitz graphs can be derived immediately from this
estimate . Indeed, if I' is the graph of a Lipschitz function A, it is easy to pass
back and forth between the /3(x, t)'s for I' and the y(x, t)'s for A .

This theorem tells us a lot about the relationship between the analysis and the
geometry on (regular) sets in R', but this relationship is very complicated . For
example, the equivalente between (A') and (a) is a purely analytical statement,
but we don't know how to prove that (A') implies (a) without going through the
geometry, and it is not clear if we should be able to do this directly. Similarly,
it is not clear how to preve that, say, (D) implies (E) without using singular
integral operators .

Thus the singular integral operators provide a useful tool for dealing with the
geometrical issues, because they allow you to transform certain kinds of geo-
metrical information into different geometrical information (to wit, the corona
decomposition) . Another example of this occurred in [Se] .
Some of the geometrical issues that we've discussed also arise in geometric

measure theory, at least in a qualitative form, and it is very helpful to compare
the two points of view, and so we now give a brief overview of some aspects of
geometric measure theory.

Let Hd denote d-dimensional Hausdorff measure . Let A be a subset of R"
with Hausdorff dimension d . We say that A is rectifiable if there is a countable
family of Lipschitz mappings fi : Rd -> R"°, i = 1, 2, . . ., such that Hd(A \

(Ufi(Rd))) = 0. In other words, A is covered by the union of the images of
the fi's except for a set of measure zero . This is equivalent to requiring that A
be covered (except for a set of measure zero) by a countable union of Lipschitz
graphs, or even Cl submanifolds .
We say that A is unrectifiable if Hd(A fl B) = 0 for every rectifiable set B.

A standard example of this (for d = 1, n = 2) is obtained as follows . First take
the Caritor set contained in [0,1] built from the usual construction except that
you rernove the middle 1 of each interval at each stage . The Cartesian product
of this set with itself has finite, positive 1-dimensional Hausdorff measure, but
it is unrectifiable .
One of thc. 1>asie rc,sults is that if A is a set with Hd(A) < oo, then A has a

rectifiable subset B such that A \ B is unrectifiable .
Clearly conditions (C), (D), (E), and (E') above are closely related to recti-

fiability . Certainly E is rcx :tifiable if it satisfies one of those conditions, as one
can easily show, but thc ; converse is not true . Rectifiability is really a qualita-
tive notion, while conditions (C) (E') are quo-urtitative . Like so many things in
harnionic analysis, (C) (E') are "uniforrn over all scales" ; they are not changed
by trauslatlng or dilating the set . The relationship between rectifiability and
(C) (E') is a lot like the orce between measurable functions that are positive
a.c . and A,, weights .

Une_ of the issues addressed in geometric measure theory is the problem of
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finding geometrical characterizations (or criteria) for rectifiability and unrecti-
fiability. One characterization is given in terms of the existence or nonexistence
of approximate tangent planes . One can think of this as being analoguous to
the existence of derivatives in the Lp sense, say, of a function on Rn, which
suggests that one look for associated square functions : just as differentiabil-
ity properties of functions on Rn can be characterized by square functions (as
in [St]), there ought to be square function characterizations of rectifiability.
Although the results of Jones [J2] and the equivalentes above go a long way
toward dealing with this issue, the role of square functions in these geometric
problems is far from being fully understood .
Another characterization of rectifiability goes as follows. Let A be an Hd-

measurable set with Hd(A) < oo . Then A is rectifiable if and only if for every
(measurable) subset B of A with Hd(B) > 0 we have Hd(PV(B» > 0 for
almost all d-planes V, where Pv denotes the orthogonal projection onto V.
(The notion of "almost every d-place" makes sense because the set of d-planes
is a smooth manifold.) Similarly A is unrectifiable if Hd(PvA) = 0 for almost
all V.
We would very much like to have a version of this last result with estimates .

That is, we would like to know whether a regular set that has (in some sense)
big projections on a lot of d-planes uniformly on all scales has to have big
pieces of Lipschitz graphs, say. Unfortunately the techniques used in geometric
measure theory do not provide such quantitative results .

This is really just one example of the general problem of finding quantitative
versions of qualitative results in geometric measure theory, if they exist . Here
are two others .

Suppose you have a Lipschitz function f defined on the unit cube Q in Rn
and taking values in Rn . It is a classical fact that if f(Q) has positive measure,
then there is a set A C_ Q with positive measure such that fIA is bilipschitz .
A quantitative version of this was proved in [D2] : if f has Lipschitz norm _< 1
and Jf(Q)j > ó, then there exists EC Q with ¡El > E such that

1 f(x) - f(y) 1 ~

	

ejx - y¡

	

for x, y E E,

where E depends only on n and 6 . The proof used a complicated stopping time
argument . Peter Jones [J3] later gave a much simpler proof in which square
function estimates played a crucial role .

If we replace (C) by the requirement that E have big pieces of Lipschitz
graphs, do we get another equivalent condition? Qualitative versions of this
are given by some of the characterizations of rectifiability which we mentioned
when we stated the definition of rectifiability.

Referentes for the topics in geometric measure theory that we've discussed
include [M], [Si], and [F] . Chapter 6 in [M] is a particularly good place to
start .
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In the remainder of this article we explain the definition of a corona decom-
position and also sketch the proof of (A) implies (B), which is the heart of the
theorem .

Roughly speaking, to say that E admits a corona decomposition means that
E x R+ can be decomposed into two regions, the good part and the bad part,
with the following properties . The bad part is small, in the sense that it is
controlled by a Carleson measure . The good part can be decomposed into
a family of stopping-time regions, en each of which E is well-approximated
by a Lipschitz graph with small constant . There aren't too many of there
stopping time regions, in the sense that they satisfy a Carleson measure packing
condition .
To make this precise it is helpful to use a family of subsets 0 of E which

plays the same role as dyadic cubes in Rd do . Namely, there is a C > 0 so that :
00

O = U 0(j), where each 0(j) is a partition of E ;
J--oo

(4)

	

if Ql E A(j ), Q2 E A(k), j < k, then either Q1 C Q2 or Q1 n Q2 = 0 ;

(5)

	

if Q E 0(j), then C-1 2i < diamQ < C2j and C-1 2 i d < p,(Q) < C2jd .

One can even build the cubes so that they have small boundary in a certain
sense . (See [D2] .) This property is very useful in passing from "dyadic" analysis
to "ordinary" analaysis on E. (An example of this occurred in [Se] .)

In defining a corona decomposition it is better to work with A instead of
E x R+. We say that E admits a corona decomposition if for each 77 > 0
we can partition 6 into the good set G and the bad set B with the following
próperties .
The bad set is not too large, in that it satisfies a Carleson measure packing

conditon,

(6) `

	

1: M < CIRI

	

for all R E A.
QEB
QCR

The good set CJ can be partitioned into a family .P of subsets S of 9, such
that :

(7)

	

each S is coherent, which means that it has a maximal element
Q(S), and that if Q E S, Q' E A, Q C Q' C Q(S), then Q E S ;

(8) for each S there is a d-plane P and a Lipschitz function A : P -+ P1,
JIVA11,, <_ 17, whose graph,I' = {p + A(p) : p E P} approximates E well from
the viewpoint of S, in the sense that

dist(x, I') < 77 diam Q
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whenever x E E, dist(x, Q) < diam Q;
(9) there aren't too many of the S's, in that they satisfy the packing condition

1 Q(S) 1 < CIRI

	

£or all R E A.
SE,-

Q(S)CR

Such a decomposition is of course very close in spirit to the classical corona
construction of Carleson ; he was building stopping-time regions (in the upper
half-plane, say) on which a given harmonic function is almost constant, while
we want stopping-time regions on which the geometry of E is almost constant .
There are a number of places where something like a corona decomposition

has been used before . One is in the work of Garnett and Jones [GJ] on the
corona problem on Denjoy domains . Although their decomposition is rather
different at the level of details, it is very similar in spirit . Another is in a
proof of Peter Jones on the boundedness of the Cauchy integral on regular
curves [J1], and also in his estimates for his version of the ,Q's (2) for rectifiable
curves [J2] . A corona decomposition also showed up in [Se] for a certain caass
of hypersurfaces in R", in connection with square function estimates for the
Cauchy kernel .

In each of there cases something like a corona decomposition was obtained
by applying the corona construction to a function that somehow controlled the
geometry. In our case we cannot apply the corona construction so directly, but
we shall use many of the same ideas .
The notion o£ a corona decomposition turns out to be very useful despite its

technical nature . It acts as a bridge between (A) and (F) on the one hand and
(C), (D), and (E) on the other ; that is, in proving the theorem we show that
both (A) and (F) imply (B), and that (B) implies each of (C), (D), and (E) .
We now try to give a rough sketch of the sort of things that show up in the

proof that (A) implies the existence of a corona decomposition .
The first step is to prove that (A) implies a weak form of (F) . Given k > 0

and Q E 0, set

(10)

	

1p EkQ

dist(x, P)
diamQ ,

where the infimum is taken over all d-planes P, and kQ = {x E E : dist(x, Q) <
(k - 1) diam Q} . We say that E satisfies the weak geometric lemma (WGL) if
for each e > 0,

(11)

	

1:

	

M < C(e)1RI

	

for all R E A .
QCR

R-(Q)>_E

In other words, the cubes for which /l,,(Q) > e satisfy a packing condition .
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The proof that (A) implies (WGL) is not terribly complicated, but it is
somewhat tricky and does not lend itself well to brief exposition .
The proof that (A) + (WGL) implies (B) is much more complicated, but the

basic idea is fairly simple . Fix il > 0, 77 small . We need to split A into B U G
as above . Let e, 6 > 0 be small and positive, and k > 0 be large, to be chosen
later ; k is not allowed to depend on e, 6, and e will be much smaller that 5 .
We put all the Q's with f<,~(Q) > e into 8, but we shall put other cubes into 13
as well . Of course we can put anything we want into 13, as long as we maintain
(6) .

If Q 0 8, so that ,Q<,(Q) < e, let PQ be a good d-plane for Q. It is not
hard to show that two candidates for PQ have to be close together, using the
regularity of E .

It is also not difficult to show that we can enlarge 13 in such a way that (6)
still holds and such that 0 \ B can be partitioned into a family .P of sets S of
cubes such that (7) holds, and also such that
(12) if Q E S, then angle (PQ,PQ(s)) < ó and
(13) if Q is a minimal element of S, then either Q has a son in B, or angle
(PQ,PQ(s)) > ó/2 .
In other words, in building S we keep going down and we don't stop unless we
run finto a bad cube, or unless PQ has turned from PQ(s) by a definite amount .

To show that E admits a corona decomposition we have to prove that each
S satisfies (8) and (9) . The first is obtained fairly easily using the fact that
each Q is well-approximated by PQ and the PQ's don't turn too much . In fact
you can build A, I' so that ¡¡DA¡[,, < Có and

(14)

	

sup

	

dist(x, I')

	

<_

	

Ce diam Q.
xE(k/2)Q

Thus I' approximates E to order e, not just 5, which turns out to be very
important .

Proving (9) is much more dificult . There is a simple preliminary reduction
which is helpful : we need only consider the S's for which

(15)

	

2 1 Q(S) 1< M(U {Q : Q is a minimal element in S such that angle

d(x) =

	

in{dist(x, Q) + diam Q} .

(PQ,PQ(s)) > 612}),

Le ., for which there are plenty of this kind of minimal cube in S .
There is a second preliminary reduction that we use, but it requires more

notation . Define d(x) on R" by
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Define the "summing region" o C E x Z by

u

	

=

	

{(x,1) : x E koQ(S), yod(x)

	

< 2 <	< diam Q(S)},

where ko > 0 (large) and yo > 0 (small) are chosen later, independently of E

and 6, but with ko much smaller than k. Given 0 as in (A), define J = J(S, ~)
by

1 101(x - y)dM(y) I 2 du(x),
(x,l)Ea E

where 01(x) = 2-Ido(

	

). To prove (9) it suffices to show that there is a finite
family T of O's so that

(16)

	

E J(S,0) < T 1 Q 1 implies that S does not satisfy (15),
v,E*

at least if ko 1 , y o , and E are small enough . Here r > 0 and T are allowed to
depend on any of the constants but not on S . This reduction is not hard to
obtain from the previous one and (A) .
The proof of (16) is sort of technical, but the rough idea is not too bad .

We first want to show that J(O, S) being small implies certain square function
estimates on A, which in turn imply that VA has small L2 oscillation, small
compared to 6 . Once we've done that it is not hard to show that S can't satisfy
(15) .
The idea for passing from a bound on J(S, ?P) to a square function estimate

on A is that E is well-approximated by I', and so if we replace E by I' in
J(S, 0), replace the dM's by something more pleasant, and choose 0 correctly,
we should get some sort of square function quantity of A, while only incurring
errors that are small compared to 6 . Replacing E by I' is not so hard, using
(14), and we get errors of order E, which is fine . Dealing with the d¡e's is more
complicated, but doable, and choosing the O's correctly is easy.
The preceeding outline of the argument is very sketchy, but hopefully it gives

some idea of what goes on .
It is interesting to look at the preceeding argument from the point of view of

nonlinear analysis in general . When faced with a nonlinear problem - such as
proving that (A) implies (B) - it is natural to look first at small perturbations
of a simple case, which you can try to treat by reducing to a linearized problem .
For example, in our situation we could look at small perturbations of d-planes,
such as Lipschitz graphs with small constante . Usually it is a serious problem
to get from small perturbations to the general case . This is precisely what the
corona construction did for us .

It is also interesting to compare the corona decomposition with more tradi-
tional ideas in Littlewood-Paley theory. In some sense the corona decomposi-
tion tells us how to break up E into simpler pieces with estimates that allow
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us to maintain control, in much the same way that Littlewood-Paley theory
permits you to break up a function into simpler pieces with good estimates,
using the reproducing formula (1), for instance . The work of Carleson provides
alternative methods for expressing functions as superpositions of simpler ob-
jects, e.g ., his construction for writing a BMO function as the sum of a bounded
function and the balayage of a Carleson measure . Although such constructions
are more complicated and nonlinear than the elegant reproducing formulas,
they seem to be more well-suited to our more geometrical context . One reason
for this is that we do not have a good geometrical counterpart to the notion of
orthogonality in function spaces .
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