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DISCONTINUITY OF THE PRODUCT
IN MULTIPLIER ALGEBRAS

M. OUDADESS

Abstract

Entire functions operate in complete Jocally A-convex zlgebras but not
continuously. Actually squaring is not always continuous. The counter-
example, we give, is a multiplier algebra.

1. Introduction

W. Zelazko constructs ([{13]) an example of a non m-convex algebra on which
all entire functions operate. Doing so he solves a problem stated in [12). The
example turns out to be a uniformly A-convex algebra. The problem in question
had also been solved in [10].

We obtain that entire functions do not operate continuously. Actually we
show by a counter-cxample, which is 2 multiplier algebra, that the product is
not (globally) continuous in general. On the other hand we obtain here that it
is always sequentially continuous in any unital and complete locally A-convex
algebra. In the Uniformly A-convex case it is hypocontinuous.

2. Sequential continuity and hypocontinuity of the product

Let E be a locally convex algebra with a topology defined by the family of
semi-norms (pa)aca. Then E is said to be locally A-convex ([4]) if for every
z € E and every A € A there exist M(A,z) >0, N{}\,z) > 0 such that

palzy) S M(A z)paly) (v e E)
palyz) S N(XAz)paly)  (ye E).

A locally A-convex algebra is said to be Uniformly A-convex algebra if M( A, z)
and N(),x) can be chosen independently of A ([5]).

Observe that the so-called locally m-convex algebras ([8]) are particular cases
of the above definition. Some examples of all these classes of algebras and
relationships among them can be seen in ([4]) and ([5]).
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Let E be a commutative Banach algebra without order i.e if zy =0 (y € E)
then z = 0. The multiplier algebra M{E) of E s the space of linear operators
T verifying T{zx.y) = zT{y}z,y € E). Endowed with the strong topology given
by the family of semi-norms (P, ).eg, where p,{T) = [|Tz|/(z € E), M(E) is
a unital, complete, uniformly locally A-convex algebra which is not always m-
convex since it is a generalization (see [1, p. 138]) of the algebra Cy(R), of [4],
that is not m-convex.

We can endow any unital locally A-convex algebra with a locally m-convex
topology M{7) finer than 7 by putting ga(z) = sup{pa{z.¥) : paly) < 1}. This
topology is complete when 7 is. Moreover 7 and M(7) have the same bounded
sets {[2]); indeed it suffices to show that bounded sets for 7 are bounded for
M({7), but this follows from the fact that any barrel in a complete locally convex
space is bornivorous.

Proposition 2.1. Entire functions operate on any unitel and compete locally
A-convez algebra.

Proof: (E, M(7)) is a unital complete locally m-convex algebra and entire
functions operate on such zlgebras ([9]); the result follows since T is coarser
than M(7). @ '

Proposition 2.2. In any unitel and complete locally A-convex algebra
(E,7), the product is always sequentially continuous.

Proof: Let (2,)n and (yn)a be two sequences converging to zero in {E,7).
Since T and M (7) have the same bounded sets, (ga{zy})n is bounded for every
). Then the conclusion follows from the relation pa{z.y) < ga{z).paly), for
every z and y. Wl

We can endow any unital and complete uniformly A-convex algebra (E,7)
with 2 Banach algebra norm || - || finer than 7, by putting |jz{] = sup{gr(z} :
A € A}y it is Cochran’s norm ([5]). And, as before, we can show that 7 and
[ - || have the same bounded sets. This has, as a consequence, the proposition
2 of (13). . '

Now recall that, in a locally convex algebra {E,r}. The mulliplication is
said to be left (right} hypocontinuous if for each neighborhood U of O and any
bounded set B there exists a neighborhood V of o such that B.Y ¢ U(V.B C
U). The multiplication, in E, is called hypocontinucus if it is left as well as
right hypocontinuous.

Proposition 2.3. In 2 unitel end com.pief.e uniformly A-convez algebra
{E,T) the product is elways hypoconiinuous, ' '

Proof: By ([6, proposition 9, p. 155]) it is sufficient to prove that if we
consider the map u : 2 —L,, where L.{y) = zy (2,y € E} then, for every
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bounded set B in E, the set u( B) is equicontinuous. But this follows from the
relation pa(zy) < [z]]- paly)(z,y € E, X € A) and the fact that T and ||-|| have
the same bounded sets. B

3. Discontinuity of the product

Our counter-example is the multiplier algebra of an H*-algebra. It goes along
the lines of ({7, problem 111]).

An H*-algebra is a Banach algebra E, with involution *, which is a Hilbert
space under a scalar product {.,.} such that.

a} ||lz||? = {z,z), for every 2 in B

b) lz*|| = ||=(|, for every z in E

c) z*.z # 0, for every z in E\{0}.

d} {z.y, 2) = {y, 2*.2} = {z,2.y*), for every z,y,2 in E.

In such commutative algebras there always exists a cornplete orthogonal sys-
tem of idempotent and self-adjoint elements {we can even suppose more but
this is sufficient for our needs; cf [3]).

Counter-example 5.1. Let (E,| - ||) be a commutative infinite dimen-
sional H*-algebra. Without loss of generality suppose E separable. Let then
(e1,€2,...,€k...} be a complete orthogonal system of self-adjoint and indem-
potent elements. The set {vk.ex : k = 1,2,...} is unbounded since llexll =
{(k=1,2,...} and it contains the pull vector in its weak closure {cf., [T, prob-
lem 28]). Hence there exists a net (k;); of positive integers such that /&;.e;,
converges weakly to zero (it cannot be a sequence).

For each k, consider the multiplier Ay defined by Ax(z) = k'.ex.z where &' is
the fourth root of k. We have || Az, (z)[|? = (V&i.ex,, .27}, hence ||As,{2)]| —
0. But A}“‘_(z} = ki.ex,.z, and. if therefore we take in particular z = (1,...,n"1,
...}, then A} .(z) = es,. So ||A},(z)|l 2 1. Whence squaring is not continuous.

Remarks,

1. In many interesting situations the product is continuous. This is the case
for the example Cy(R) of [4]. It is also so for any multiplier algebra M(E)
where E admits factorization, i.e for every z € E, there exist z and y in E such
that z = z.y.

2. In connection with the previous remark, we can notice that there cannot
exist a Banach algebra F admitting a bounded approximate identity and such
that the set N = {z : 2? = 0} is §-dense in F. Indeed the product, and in
particular squaring, is continuous, hence {TeM(E) : T? = 0} in B-closed. It
is also f-dense since it contains N and E is S-dense in M(E) for it admits
a bounded approximate identity. Therefore any element of M (E) should be
nilpotent. But this contradicts the fact that M(E) is always unital.

3. Incidentally we get that an absolutely convergent series in a complete
locally convex space does not necessarily define a continuous mapping. Indeed
if (E,7) is a locally uniformly A-convex algebra whose topology 7 is given by a
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family of seminorms {P))x, there exists a Banach algebra norm || - || and o > 0
such that Py{z)} € a.llz||, for every A and every z. Now if f(z) = S as.z"isan
entire function, then, for every A, PA(3 an.z®) < .} lax||z||*. Hence the
series is absolutely convergent; but the previous counter-example shows that
the map 2 — f(z) is not always continuous.

Acknowledgments. I'm indebted to the referee for having detected an error
in the first version and having suggested many improvements for the writing of
the second one.
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