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EMBEDDING TORSIONLESS MODULES
IN PROJECTIVES

CARL FarTu

Abstract

In this paper we study a condition right FGTF on a ring R, namely when
all finitely generated torsionless right R-modules embed in a free module.
We show that for a von Neuman regular {VNR) ring B the condition is
equivalent to every matrix ring fp s a Baer ring; and this is right-left
symmetric. Furthermore, for any Utumi VNR, this can be strengthened:
R is FGTF iff R is self-injective.

Introduction

When all injective modules over a ring R embed in a free R-module, the
ring R must be quasi-frobenius, (= QF) and conversely. In this case every
right or left R-module embeds in a projective R-module, and furthermore, the
one-sided condition implies the two-sided condition ([F—W]}. The two-sided
condition that all cyclic R-modules embed in projectives implies R is QF, but
here the one-sided condition is not sufficient.

Related fo these rings are right IF rings initiated by Jain [J], Colby [Co],
Damiano {D], and Wirfel (W]. A ring R is right IF if every (injective) right
module embeds in a flat module, i.e. if every injective right R-module is flat,
These rings were characterized by Colby and Wiirfe! in the one-sided case by
the property that all finitely presented right R-modules embed in projective
modules. Here, again, right does not imply the left condition {[Co]). However,
two-sided IF are coherent (i.c.). A number of characterizations of IF rings are
summarized in Section 4.

In this paper we study a condition that is considerably weaker, namely right
FGTF: all finitely generated torsionless right R-modules embed in a projective
equivalently in a free right R-module. We let right FPTF denote the same
condition for finitely presented torsionless right R-modules.

We now introduce a concept that is germane to FGTF: A ring R is a right
W-ring (star ring) provided that every finitely generated right R-module has
finitely generated dual.

Fasy exercises establish that any left Noetherian ring is right %, and that
any right %-ring is right FGTF. We establish here that over any von Neumann
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regular (= VNR) ring R that (right or left) FGTF and ¥ rings are equivalent
concepts. This relates to a theorem of Kobayashi that states that any right
self-injective VNR is a right %-ring. Furthermore, we establish the converse
to Kobayashi's theorem for Utumi VNR's. This generalizes his own converse
theorem for commutative VNR’s to VNR’s with (2-sided) seif-injective maximal
right quotient ring Q7,..(R), g to Abelian VNR’s. As a corollary we show
that over an Abelian VNR ring R, that every matrix ring B, is Baer iff R is
self-injective. The proof requires two theorems of Utumi: (1) on the left self-
injectivity of the maximal right quotient ring Q... (R} of 2 nor-singular ring
R; (2) on self-injectivity of continuous n x n matrix rings, n 2 2.

We also show by example that the converse to Kobayashi’s theorem fails for
all non-Utumi VNR's.

In Section 5, we relate IF, FGTF and * rings.

1. Preliminaries

For a subset X of R, we let X+ denote the right, TX the left, annihilator
in R. Thus, a right ideal I is an annihilator iff I = X+ for X € R. Annulet
is a variant term for annihilator. Then, [ is said to be finitely annihilated
(= FA) provided that I = X* for a finite set X. If a ring satisfies the acc on
annihilator left ideals (= R is a Lacc ring}, then every right annihilator of R
is FA by a theorem of [F1].

A right R-module is torsionless if M has the equivalent properties: {T1)
M embeds in a direct product of copies of R; {T2) M canonically embeds in
its bidual module M*", {T3} For each nonzero £ € M there exists f € M* =
Hompg{M, R} so that f{z}#0.

Moreover, for any ring A, a cyclic right module A/7 is:

(1) torsionless «» I = X for a subset X of A {= I is a right annihilator}
(2) embeddable in a free module & I = X+ for |X| < oo (= I is FA).

We also record the fact mentioned in the abstract:

I

1.0. Proposition. A4 right %-ring is right FGTF.
Proof: Trivial. (See, e.g. [F2].} B

- 1.1. Theorem. 4 ring R is right FGTF iff each annthilator right ideel of
the n X n metriz ring R, is FA for every .

Proof: The proof of this Folkloric theorem is by “Momta theory”, i.e. using
the fact that under the Morita eqmvalence

e{mod-RNHmod—.Rn
X —X"
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that n-generated right R-modules map onto cyclic right R,-modules. Further-
more, a submodule X of free A-module, say X C R™ maps onto a principal
right ideal of R, under ©. Similarly, © preserves torsionless modules. B

1.2. Corollary. If a ring R embeds in left Noetherian ring 4, then R is
right FGTF.

Proof: Then R, embeds in a left Noetherian ring A,, for every n, and thus
satisfies the acc on annihilator left ideals. By [F1], then each annihilator right
ideal is FA, so R is right FGTF. M

2. Semi-Continuous and Baer Rings

A ring R is said to be right semi-continuous ([F3]) if R has the property:

right SC: every right ideal is an essential submodule of one generated by an
idempotent,

In [F3] we indicated that this is equivalent to:

right CS: every complement right ideal is generated by an idemnpotent.

A ring R is right continuous provided that R is right SC and every right
ideal I which is isomorphic to a right ideal generated by an idempotent is itself
a right ideal generated by an idempotent.

A ring R is VNR (= von Neumann regular} iff each finitely generated right
ideal is generated by an idempotent. (This is right left symmetric.) Obviously
a VNR is right continuous iff R is right SC.

A VNR ring R is Abelian or strongly regular iff every idempotent in R is
central. Moreover, an idempotent ¢ € R is Abelian if eRe is an Abeliarn VNR.

2.1. Theorem. If R is o right continuous VNR ring, then R is right self-
injective under any of the following assumptions:

(1) R has no nonzero Abelinn idempotents.

(2) Mn(R) is right continuous for any n > 1 {Utums [U,y)).
(3} R 15 directly indecomposable qua ring (e.g., R prime).
(4) Every primitive factor ring is Artinian.

See [(G2] for proofs.

A ring R is 2 Baer ring if every right annihilator is generated by an idempo-
tent. (This is left-right symmetric.} By the Johnson-Utumi theory of maximal
quotient rings (see [F4, chap. 19.]) every annihilator right ideal of a right
non-singular ring R is a complement right ideal and, thus, is a direct summand
when R is right self-injective, a fact that we record:



382 C. Fa1TH

Theorem of R.E. Johnson and Y. Utumi. The mazimal right quotient
r

ring Qh..(R) of o right nonsingular ring R is a right self-injective VNR ring,
hence g tight continuous Daer ring.

2.2, Theorem. A VNR ring R is right FGTF iff every Ry ts ¢ Baer ring
for everyn 2 1.

Proof: This follows from Theorem 1.1, since every finitely generated one-
sided ideal of a VNR ring is generated by an idempotent, and hence then so is
its annihilator. B

2.3, Theorem. For a VNR ring, the fa.e.:
(1) R is right FGTF.

{2) R is left FGTF.

(3) R is o right % -ring.

(4} R is o left *-ring.

(5) R, is o Baer ring Vn.

Proof: Since "Baer ring” is left-right symmetric, (1) < (2) © (5) by Theo-
rem 2.2. Moreover, (3} = (1) by Theorem 1.0, and (1) = (4) by Theorem 2.2
and Camillo’s Theorem [C] cited below. {See Remark 2.5.A.) The remaining
implications follow by symmetry. ¥

An R-module is coherent if every finitely-generated submodule is finitely
presented.

2.4 Theorem {[C]). For any ring R the f.a.¢.:

{1} R is right l-coherent, .e. any product of copies of R is ¢ coherent right
R-module.

{2} R is a left % -ring.

(3) Annikilator right ideals of M,(R) are finitely generated, Vn > 1.

2.5A Remark. Any right coherent right FGTF ring R is right [I-coherent,
hence a left %-ring, whence left FGTF,

Thus by Camillo’s theoremn:
2.5B Corollary. A left coherent right I1-coherent ring is left ﬁ-cokerent.
Proof: R is left %, hence left FGTF, so 2.5A applies. W
2.5C Corollary. A left coherent left *-ring is left II-coherent.

2.5D Remark. We can easily deduce Theorem 1.0 from Theorem 2.4, using
Theorem 1.1, since (3) of Theorem 2.4 implies the condition of Theorem 1.1.

Proof: This follows from Theorem 1.0, and the fact that any finitely gener-
ated submodule of a free module is coherent over a coherent ring. B
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3. Utumi Rings

As stated supre the Johnson-Utumi theorem in a right non-singular ring R,
every right annulet is a complement right ideal. Utumi [U;] considered the
converse condition:

(right U} Every right complement is & right annulet.

We say R is right Utumi if R satisfies this condition, and R is Utumi if R
is right & left Utumi. A non-singular ring R is a right and left non-singular
ring.

Utumi’s theorem. {[U]} . In ¢ non-singuler ring R, the f.a.e.:
(1) The mezimal right gquotient ring QT .. (R) is left self-injective.

2) Qras(R) = Qlans(R) "
{3) R is Ulumi.

The next proposition is almost obvious.
3.1 Proposition. A Baer VNR right Utumi ring B i3 right continuous.

Proof: R is right 5C (= C8), since every complement right ideal is generated
by an idempotent. B

3.2 Theorem. For an [tumi VNR the fa.e.:
(1) R is right FGTF.

{2) R isleft FGTF.

(3) R is right self-injective.

(4) R is left self-ingective,

Proof: 1t follows from Proposition 3.1 and Theorem 2.2 that M, (R) is right
continuous ¥n > 1 when f is left or right FGTF, hence from Theorem 2.1 that
Mn(R) is {right and left) seli-injective. Thus {1) = (3}, and (2) = (3).

If R is right self-injective then M,{R} is right continuous, since M,(R) is
right self-injective. Thus, M,(R) is a Baer ring ¥n > 1. Then R is right
and left FGTF by Theorem 1.1, so (3) = (1). Then R is lefl seli-injective by
(2) = {3}, hence therefore (3} = (4). Using Theorern 2.2, this completes the
Proof, B

3.3 Corollary. An Abelian VNR ring R is right FGTF iff R is self-injective.

3.4. Example. Any right but not left injective ring @, e.g. the maximal
right quotient ring Q. .(R) of 2 VNR ring R that is not Utumi, is a left %-ring
that 1s not left self-injective.

It follows from Kobayashi’s theorem that R is right %-ring and from Theorem
2.3 that R is a left *-ring. W
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4. If Rings

A number of these results are related to thecrems of Gémez-Pardo and
Gonzalez, Goodearl, and Levy on when do finitely presented cyclic [GP-G],
finitely generated nonsingular {{G1]), or finitely generated torsion-free modules
respectively embed in free modules {see {F2]).

Moreover:

4.1, Theorem. (Colby [Co], Wiirfel[W])
All finitely presented right R-modules embed in @ free module iff R is a right
IF ring.

4.2. Theorem. {[J], [Co], W], and [GP-G].}
The f.a.e.c.’s on a ting R,
(IF1} R is right and left IF.
(IF2) R is (right & left) coherent and every finitely generated one-sided ideal
s an annihilator.
(IF3) Annihilation defines o duality between finitely generated one-sided ideals,
(IF4) R is coherent and every flat module (either side} is FP-injective.
(IF5) The classes of flat left and Ro-injective left R-modules are equal.

A ring R is right (F)GF if every {finitely generated) right R-module embeds
in a free right R-module, Every quasi-Frobenius (QF) ring is both right and
left GF. :

In this connection the following theorem is of interest.
4.3. Theorem. {Jain [J|, Rutter [R]). Any right FGF ring is right IF.

Also of interest here are certain other theorems of Jain {J] which are sum-
marized in [F2, p.35, Theorem 4.2 and Corollaries].

[n [F2} we discussed various conditions that implied that right FGF rings are
quasi-Frobenius {QF}, including the assumption that R is left and right FGF.
The general FGF problem, however, remains open. {However, see [Me].)

If F is & right cogenerator ring, then every right R-module is torsionless,
hence R is then FGF #f FGTF. Whether R is necessarily QF is an open ques-
iion, so the classification FGTF problem will remain open until the FGF prob-
lem for right cogenerator rings is settled. {(Note, however, by a theorem of On-
‘odera, any right and left cogenerator ring is self-injective and right self-injective
right FGF rings are QF (see [F2] and [F5]}.

5. If #-Rings

An element r € R is regular if r is neither a right nor left zero divisor
of R. Let R* denote the set of zero divisors of R. A right R-module M is
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torsion-free if:
zr=0=>zc=0¥z€ M,rc R*.

A ring R is right Ore if and only if R has a classical right quotient ring
Q@ =0Qu(R)={afblac R, be R"}

where addition and multiplication in ¢ is canonical.
[t is evident that over @ every right R-module is torsion-free.

Consider the property right f.g.t.f. = all finitely generated torsion-free right
R-modules embed in a free module.

We now come to Levy's theorems.

Levy’s first Theorem. If R ts a semi-prime right Ore ring then R is right
fg.tf iff Ris aleft Ore ring. In this case QLAR) = QL (R) is semisimple.

By a remark above, one sees that a ring @ = Q4 (R} right FGF iff @ is night
f.g.t.f. In this case, by (F— W] we have:

5.1, Theorem. ([F2]) If R is left and right Ore, then R is right and left
fgtf if Qis QF.

5.2, Corollary. ([F2]) A commutative ring B i3 f.g.t.f iff Qe R) is QF.

Since any torsionless madule is torsion-free, one conciudes that any commu-
tative f.g.t.f. ring R, hence any R with Qci(R) QF, is right FGTF.

5.3. Remark. It follows from 5.2 that an integral domain R that is not
coherent is an example of an FGTF ring that is not *,

5.4, Theorem. The f.a.e.c.’s on a ring R,

{1) R i3 a right and left FGTF and all finitely generaied one-sided ideals are
annulets.

(2} R i3 a right and left IF ¥ -ring.

(3} R is an IF and FGTF ring.

Proof: (2) = (1) by Theorem 1.0 and Theorem 4.2, (IF2).

(1} = (2). All annihilator in any matrix ring R, right or left ideals are FA by
Theorern 1.1. Now let I be any right annulet. Now L = LT is FA,say L = L1,
for I) a finitely generated right ideal, which by hypothesis is an annuiet. Thus,
LY = I = I, is finitely generated. By (IF3) of Theorem 4.2, R is an IF ring.
By (IF2}, R is coherent, hence R is a %-ring by Theorem 2.4 and Remark 2.5A.

Obviously {2) = (3}. Moreover {3} = {2) since IF implies R is coherent so
Remark 2.5A applies. W
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6. Problems

1. Characterize the condition that all annihilator right ideals of My(R) are
finitely generated (for all n > 1} ideal-theoretically in K.

2. Same question for accl ( deel ) in Mn{R}.

In [C], Camillo raises the question: '

3. (Question of [C]): If R is a (2-sided) Noetherian ring, is the polynomial
ring R[X] II-coherent for any set X 7

Camillo verifies 3. for semiprime R and, in fact, for any R embeddable in
an Artinian ring. (A semiprime Noetherian ring is Goldie and has Artinian
classical ring of quotients.) However, as proved by Dean and Stafford {D-8],
not every Noetherian ring can be embedded in an Artinian ring. Nevertheless,
using a theorem of [C—GJ, Camillo [C] verifies 3. for any Noetherian ring R
that is an algebra over a non-denumerable field.

4. Characterize right FGTF rings, equivalently, by Theorem 1.1, character-
ize when every annihilator right ideal of R, n 2 1,is FA. (This characterization
should be ideal - theoretically in R.)
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