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Abstract

EMBEDDING TORSIONLESS MODULES
IN PROJECTIVES

CARI, FAITH

In this paper we study a condition right FGTF on a ring R, namely when
all finitely generated torsionless right R-modules embed in a free module .
We show that for a von Neuman regular (VNR) ring R the condition is
equivalent to every matrix ring R� is a Baer ring ; and this is right-left
symmetric . Furthermore, for any Utumi VNR, this can be strengthened :
R is FGTF iff R is self-injective .

Introduction

When all injective modules over a ring R embed in a free R-module, the
ring R must be quasi-frobenius, (= QF) and conversely . In this case every
right or left R-module embeds in a projective R-module, and furthermore, the
one-sided condition implies the two-sided condition ([F-W]) . The two-sided
condition that all cyclic R-modules embed in projectives implies R is QF, but
here the one-sided condition is not sufficient .

Related to these rings are right IF rings initiated by Jain [J], Colby [Col,
Damiano [D], and Würfel [W] . A ring R is right IF if every (injective) right
module embeds in a fiat module, Le . if every injective right R-module is fiat .
These rings were characterized by Colby and Würfel in the one-sided case by
the property that all finitely presented right R-modules embed in projective
modules . Here, again, right does not imply the left condition ([Co]) . However,
two-sided IF are coherent (I .c .) . A number of characterizations of IF rings are
summarized in Section 4 .

In this paper we study a condition that is considerably weaker, namely right
FGTF: all finitely generated torsionless right R-modules embed in a projective
equivalently in a free right R-module . We let right FPTF denote the same
condition for finitely presented torsionless right R-modules .
We now introduce a concept that is germane to FGTF: A ring R is a right

*-ring (star ring) provided that every finitely generated right R-module has
finitely generated dual .

Easy exercises establish that any left Noetherian ring is right *, and that
any right *-ring is right FGTF . We establish here that over any von Neumann
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regular (= VNR) ring R that (right or left) FGTF and * rings are equivalent
concepts. This relates to a theorem of Kobayashi that states that any right
selPinjective VNR is a right *-ring. Furthermore, we establish the converse
to Kobayashi's theorem for Utumi VNR's . This generalizes his own converse
theorem for commutative VNR's to VNR's with (2-sided) self-injective maximal
right quotient ring Q'ax(R), é.g . to Abelian VNR's . As a corollary we show
that over an Abelian VNR ring R, that every matrix ring Rn is Baer iff R is
self-injective . The proof requires two theorems of Utumi : (1) on the left self-
injectivity of the maximal right quotient ring Qmax (R) of a non-singular ring
R; (2) on self-injectivity of continuous n x n matrix rings, n > 2 .
We also show by example that the converse to Kobayáshi's theorem fails for

all non-Utumi VNR's .
In Section 5, we relate IF, FGTF and * rings .

1 . Preliminaries

For a subset X of R, we let X1 denote the right, 1X - the left, annihilator
in R. Thus, a right ideal I is an annihilator iff I = X1 for X C R. Annulet
is a variant term for annihilator. Then, I is said to be fínitely annihilated
(= FA) provided that I = X1 for a finite set X . If a ring satisfies the acc on
annihilator left ideals (= R is a lacc ring), then every right annihilator of R
is FA by a theorem of [F1] .
A right R-module is torsionless if M has the eqúivalent properties : (T1)
M embeds in a direct product of copies of R ; (T2) M cánonically embeds in
its bidual module M**, (T3) For each nonzero x E M there exists f E M* _
HOMR(M,R) so that f(x) qÉ 0 .

Moreover, for any ring A, a cyclic right module A/I is :
(1) torsionless t=> I = X -L for a subset X of A (= I is a right annihilator)
(2) embeddable in a free module G I = X1 for IXI < oo (= I is FA).
We also record the fact mentioned in the abstract :

1.0 . Proposition. A right *-ring is right FGTF.

ProoP Trivial . (See, e.g. [F2] .) " .

1 .1 . Theorem . A ring R is right FGTF if each annihilator right ideal of
the n x n matrix ring Rn is FA for every n .

Proof. The proof of this Folkloric theorem is by "Morita theory", Le . using
the fact that under the Morita equivalence

G ~mod-R---+mod-R�
X ---~Xn
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that n-generated right R-modules map onto cyclic right R,,-modules . Further-
more, a submodule X of free R-module, say X C_ Rn maps onto a principal
right ideal of Rn under O. Similarly, O preserves torsionless modules .

1 .2 . Corollary. If a ring R embeds in left Noetherian ring A, then R is
right FGTF.

Proof.. Then Rn embeds in a left Noetherian ring An , for every n, and thus
satisfies the acc on annihilator left ideals . By [F1], then each annihilator right
ideal is FA, so R is right FGTF.

2 . Semi-Continuous and Baer Rings

A ring R is said to be right semi-continuous ([F3]) if R has the property :
right SC: every right ideal is an essential submodule of one generated by an

idempotent .
In [F3] we indicated that this is equivalent to :
right CS: every complement right ideal is generated by an idempotent .
A ring R is right continuous provided that R is right SC and every right

ideal I which is isomorphic to a right ideal generated by an idempotent is itself
a right ideal generated by an idempotent .
A ring R is VNR (= von Neumann regular) iff each finitely generated right

ideal is generated by an idempotent . (This is right left symmetric .) Obviously
a VNR is right continuous iff R is right SC .
A VNR ring R is Abelian or strongly regular iff every idempotent in R is

central . Moreover, an idempotent e E R is Abelian if eRe is an Abelian VNR.

2.1 . Theorem . If R is a right continuous VNR ring, then R is right self-
injective under any of the following assumptions :

(1) R has no nonzero Abelian idempotents.
(2) Mn(R) is right continuous for any n > 1 (Utumi [U1 ]) .
(3) R is directly indecomposable qua ring (e .g., R prime) .
(4) Every primitive factor ring is Artinian .

See [G2] for proofs .
A ring R is a Baer ring if every right annihilator is generated by an idempo-

tent . (This is left-right symmetric .) By the Johnson-Utumi theory of maximal
quotient rings (see [F4, chap . 19 .]) every annihilator right ideal of a right
non-singular ring R is a complement right ideal and, thus, is a direct summand
when R is right self-injective, a fact that we record :
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Theorem of R.E. Johnson and Y. Utumi. The maaimal right quotient
ring Q;,az(R) of a right nonsingular ring R is a right self-injective VNR ring,
hence a right continuous Baer ring .

2.2 . Theorem . A VNR ring R is right FGTF if every Rn is a Baer ring
for every n > 1 .

Proof. This follows from Theorem 1 .1, since every finitely generated one-
sided ideal of a VNR ring is generated by an idempotent, and hence then so is
its annihilator .

2.3 . Theorem . For a VNR ring, the f. a.e. :

(1) R is right FGTF.
(2) R is left FGTF.
(3) R is a right *-ring .
(4) R is a left *-ring .
(5) Rn is a Baer ring Vn.

Proof.. Since "Baer ring" is left-right symmetric, (1) t~ (2) q (5) by Theo-
rem 2.2 . Moreover, (3) => (1) by Theorem 1 .0, and (1) (4) by Theorem 2.2
and Camillo's Theorem [C] cited below . (See Remark 2.5.A .) The remaining
implications follow by symmetry.
An R-module is coherent if every finitely-generated submodule is finitely

presented .

2 .4 Theorem ([C]) . For any ring R the f.a .e . :

(1) R is right 11-coherent, i.e . any product of copies of R is a coherent right
R-module .

(2) R is a left *-ring .
(3) Annihilator right ideals of Mn(R) are finitely generated, t/n > 1 .

2.5A Remark . Any right coherent right FGTF ring R is right II-coherent,
hence a left *-ring, whence left FGTF.
Thus by Camillo's. theorem :

2.5B Corollary . A left coherent right II-coherent ring is left II-coherent.

Proof- R is left *, hence left FGTF, so 2.5A applies .

2 .5C Corollary. A left coherent left *-ring is left II-coherent .

2 .5D Remark. We can easily deduce Theorem 1.0 from Theorem 2 .4, using
Theorem 1 .1, since (3) of Theorem 2.4 implies the condition of Theorem 1 .1 .

Proof.. This follows from Theorem 1 .0, and the fact that any finitely gener-
ated submodule of a free module is coherent over a coherent ring.



(2) Qmax(R) = Qmax(R)
(3) R is Utumi.

The next proposition is almost obvious .

3.2 Theorem . For-an Utumi VNR the f a. e . :
(1) R is right FGTF.
(2) R is left FGTF.
(3) . R is right self-injective .
(4) R is left self-injective .
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3 . Utumi Rings

As stated supra the Johnson-Utumi theorem in a right non-singular ring R,
every right annulet is a complement right ideal . Utumi [Uz ] considered the
converse condition :

(right U) Every right complement is a right annulet .

We say R is right Utumi if R satisfies this condition, and R is Utumi if R
is right & left Utumi . A non-singular ring R is a right and left non-singular
ring .

Utumi's theorem . ([UZ]) . In a non-singular ring R, the f. a. e. :
(1) The maximal right quotient ring Qmax(R) is left .self-injective.

3.1 Proposition . A Baer VNR right Utumi ring R is right continuous .

Proof.. R is right SC (= CS), since every complement right ideal is generated
by an idempotent.

Proof.. It follows from Proposition 3 .1 and Theorem 2 .2 that Mn(R) is right
continuous Vn >_ 1 when R is left or right FGTF, hence from Theorem 2 .1 that
Mn(R) is (right and left) self-injective . Thus (1) => (3), and (2) => (3).

If R is right self-injective then Mn(R) is right continuous, since Mn(R) is
right self-injective . Thus, Mn(R) is a Baer ring b'n > 1 . Then R is right
and left FGTF by Theorem 1 .1, so (3) =~> (1). Then R is left self-injective by
(2) => (3), hence therefore (3) => (4). Using Theorem 2 .2, this completes the
Proof.

3.3 Corollary. An Abelian VNR ring R is right FGTF i�ffR is self-injective .

3.4 . Example. Any right bút not left injective ring Q, e .g . the maximal
right quotient ring Qrrnax(R) of a VNR ring R that is not Utumi, is a left *-ring
that is not left self-injective .

It follows from Kobayashi's theorem that R is right *-ring and from Theorem
2.3 that R is a left *-ring .
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4. If Rings

A number of these results are related to theorems of Gómez-Pardo and
González, Goodearl, and Levy on when do finitely presented cyclic [GP-G],
finitely generated nonsingular ([G1]), or finitely generated torsion-free modules
respectively embed in free modules (see [F2]) .
Moreover :

4.1 . Theorem . (Colby [Col, Würfel[W])
All finitely presented right R-modules embed in a free module if R is a right
IF ring.

4.2 . Theorem . ([J], [Col, [W], and [GP-G].)
The f. a.e. c . 's on a ring R.

(IF1) R is right and left IF.
(IF2) R is (right F? left) coherent and every finitely generated one-sided ideal

is an annihilator .
(IF3) Annihilation defines a duality between finitely generated one-sided ideals .
(IF4) R is coherent and every fíat module (either side) is FP-injective .
(IF5) The classes of flat left and Ro-injective left R-modules are equal.

A ring R is right (F) GF if every (finitely generated) right R-module embeds
in a free right R-module . Every quasi-Frobenius (QF) ring is both right and
left GF.

In this connection the following theorem is of interest .

4 .3 . Theorem . (Jain [J], Rutter [R]) . Any right FGF ring is right IF.

Also of interest here are certain other theorems of' Jain [J] which are sum-
marized in [F2, p.35, Theorem 4.2 and Corollaries] .

In [F2] we discussed various conditions that implied that right FGF rings are
quasi-Frobenius (QF), including the assumption that R is left and right FGF.
The general FGF problem, however, remains open. (However, see [Me].)

If F is a right cogenerator ring, then every right R-module is torsionless,
hence R is then FGF iff. FGTF. Whether R is necessarily QF is an open ques-
tion, so the classification FGTF problem will remain open until the FGF prob-
lem for right cogenerator rings is settled . (Note, however, by a theorem of On-
odera, any right and left cogenerator ring is selPinjective and right self-injective
right FGF rings are QF (see [F2] and [F5]) .

5 . If *-Rings

An element r E R is regular if r is neither a right nor left zero divisor
of R. Let R* denote the set of zero divisors of R. A 'right R-module M is



torsion-free if:
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xr=0=> x=OVxEM,rER* .

A ring R is right Ore if and only if R has a classical right quotient ring

Q = Qci(R) = {a/bla E R, b E R'}

where addition and multiplication in Q is canonical .
It is evident that over Q every right R-module is torsion-free .
Consider the property right f.g.t.f. = all finitely generated torsion-free right

R-modules embed in a free module .
We now come to Levy's theorems .

Levy's first Theorem . If R is a semi-prime right Ore ring then R is right
f.g .t .f. iff R is a left Ore ring . In this case Qc~(R) = Qci(R) is semisimple .

By a remark above, one sees that a ring Q = Q' (R) right FGF iff Q is right
f .g .t .f. In this case, by [F-W] we have :

5.1 . Theorem . ([F2]) If R is left and right Ore, then R is right and left
f.g.t.f. iff Q is QF.

5 .2 . Corollary . ([F2]) A commutative ring R is f.g .t .f. iff Qct(R) is QF.

Since any torsionless module is torsion-free, one concludes that any commu-
tative f .g .t .f. ring R, hence any R with Qct(R) QF, is right FGTF.

5.3 . Remark . It follows from 5.2 that an integral domain R that is not
coherent is an example of an FGTF ring that is not * .

5.4 . Theorem .

	

Píe f.a. e. c . 's on a ring R.
(1) R is a right and left FGTF and all finitely generated one-sided ideals are

annulets .
(2) R is a right and left IF *-ring .
(3) R is an IF and FGTF ring .

Proof.. (2) => (1) by Theorem 1 .0 and Theorem 4.2, (IF2) .
(1) =~> (2) . All annihilator in any matrix ring Rn right or left ideals are FA by

Theorem 1 .1 . Now let I be any right annulet . Now L = 1 I is FA, say L = 'Il,
for Il a finitely generated right ideal, which by hypothesis is an annulet . Thus,
L1 = I = Il is finitely generated . By (IF3) of Theorem 4.2, R is an IF ring .
By (IF2), R is coherent, hence R is a *-ring by Theorem 2.4 and Remark 2.5A .
Obviously (2) => (3) . 1Vloreover (3) => (2) since IF implies R is coherent so

Remark 2.5A applies .
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6. Problems

1.

	

Characterize the condition that all annihilator right ideals of M�(R) are
finitely generated (for all n > 1 ) ideal-theoretically in R .

2.

	

Same question for accl ( dcc1 ) in M,z(R).

In [C], Camillo raises the question :
3 .

	

((question of [C]) : If R is a (2-sided) Noetherian ring, is the polynomial
ring R[X] II-coherent for any set X ?

Camillo verifies 3 . for semiprime R and, in fact, for any R embeddable in
an Artinian ring . (A semiprime Noetherian ring is Goldie and has Artinian
classical ring of quotients .) However, as proved by Dean and Stafford [D-SI,
not every Noetherian ring can be embedded in an Artinian ring . Nevertheless,
using a theorem of [C-G], Camillo [C] verifies 3 . for any Noetherian ring R
that is an algebra over a non-denumerable . field .
4 .

	

Characterize right FGTF rings, equivalently, by Theorem 1 .1, character-
ize when every annihilator right ideal of R,,, n >_ 1, is FA . (This characterization
should be ideal - theoretically in R.)
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