Publicacions Matematiques, Vol 34 (1950}, 335-339,

TRUNCATED POLYNOMIAL ALGEBRAS OVER
THE STEENROD ALGEBRA

MOHAMED ALI

Abstract

1t 1s shown that the classification of peolynomial algebras over the mod
p Steenrod aigebra is an essentially different problem from the classifica-
tion of polynomial algebras truncated at height greater than p over the
Steenrod aigebra.

G. Introduction. Let B = Z,[yzn,,¥2ns;- - -, Y2n, | be & polynomial algebra
over A(p}, the mod p Steenrod algebra, where yon, has dimension 2n; and p
is an odd prime. If each n; is prime to p, the results of [1] and [2] imply
that the structure of B is well understood; in particular the set of dimensions
{2ny,2n2,...,2n,} is a union of sets given in the Clark-Ewing list of dimensions
in the main Theorem of [3]. Earlier attempts in the 1960's and early 1970’s to
classify the set of dimensions occurring in B often depended only on the A(p)-
algebra structure of BP*' = Z,lyan,, Y2y, - - - ¥2n, [P, the polynomial algebra
truncated at height p + 1. The question of determining the dimensions of the
generators of a truncated polynomial algebra 4 = Z,[22n,,Z20,,.. ., Z2n, P
over A{p}, where each n; is prime to p, is not well understood. It appears not
to be known if the set of possible dimensions in the two cases coincide as is
certainly the case when r = 1. The purpose of this note is to settle this question,
for example, Zy1(s,210]'? supports an A(11)-structure, but Zi4ys, y10] does
not.

The question has some topological significance. For example, if a product of
p-local spheres, 1S, Amin , 1 <¢ <r, supports an A(p) structure in the sense of

[5], then each n; € {1,2,. .., p} and there exisis a truncated polynomial algebra
over A(p), A = Zy|22n,,2any, - 220, [P1? [4]. If an addition, 1 < n; < p for
each i and there exists B = Z,[y2n,,¥2nss- - -+ ¥2n, s then the set of dimensions

{2n;,2n2,...,2n,} is gwen by the Clark-Ewing list. One would then expect
that, up to homotopy, H.S'( ) " supports the structure of a topological group.

1. Clark’s condition. First we apply a well known theorem of A. Clark
[2]; it is clear that the proof holds for a polynomial algebra truncated at height
greater than p.
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Theorem 1.1. Let A be a polynomial algebra truncaied atl height p+ 1 over
the mod p Steenrod algebra. If 2m is the degree of e generator of A, then either
m = 0 mod p or there exists a generator of dimension 2n with n =1 — p mod
m. .

If we restrict attention to A = Zp[sh,.zgm]*"“ as above, routine calculations
imply that, for small primes, the pairs of integers {2n, 2m} must lie in the table
below. o

p=3 {44}

p=5 {44}, {46}, {4,8}

p=T7 {44}, {46}, {48}, {412}, {6,6}, {6,12}, {8,12}, {12,I12}

p=11 {44}, {4,6}, {4,8}, {4,10}, {4,12}, {4,20}, {6,10},
18,20}, {10,10}, {10,20}, {12,16}, {20,20}

p=13 {4,4}, {4,6}, {4,8}, {4,12}, {4, 14}, {4,24}, {6,6}, {6, 10},
{6,12}, {6,24}, {8,8}, {8,12}, {8,16}, {8,24}, {12,12},

{12,18}, {12,24}, {16,24}, {24,24}

Comparing this list with the list of possible dimensions of the generators of
a polynomial algebra B = Z,[y2n, yom| over the Steenrod algebra [3], we see
that the only pairs which do not appear in the latter are {6,10} and {8,20}
when p = 11 and {6,10}, {8, 16} and {12,18} when p = 13. We must therefore
consider the possibility of defining the action of the Steenrod algebra on A =
Z,[z2n, Tam )P T! in these five cases. '

2. Steenrod theorem. In his last published paper, Steenrod considered the
question of defining the cyclic reduced powers on graded polynomial algebra.
We believe that his results have never been applied. We summarize them in
our context.

Let A be a graded algebra over the (unstable) mod p Steenrod algebra con-
centrated in even dimensions. Recall that the cyclic reduced powers are homo-

morphisms
pq C A% A2ﬂ+39tp—”

satisfying:
(1) p® = Identity,
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(2) p7z = 2% if 2¢ = dim=,
(3) p?z =0 if 2¢ > dim«,
(4) p*(zy) = o p'2p' 'y,
(5)If a < pb,

la/2)
R{a,b) = p°p" — Z( 1)ere ((p 1)(54)_1)?“*"*‘:)‘ =0.

a—pt

Now let A = Z,[zan,,T2n,,-- - %2n, P!, Suppose that for each 7, there are
defined homomorphisms p? by setting §%Z2n, = fo.i, 0 < ¢ < 2n;, where f,; €
A has dimension 2n; + 2¢(p — 1), F™ z2n, = 25, and p%22,, = 0 for ¢ > n; and
extending 57 over A by linearity and the Cartan formula (4). Theorem 6.2 and
Lemma 4.1 of {7] imply that these 57 define an action of the Steenrod algebra
provided that R(a,b)zsn, = 0 for all i where {a,b) = (p',b), ¢ > 0.

We now restrict attention to the five examples A = Zpfxz,, 22 [P*! listed
above where n < m. Suppose that ' 235 = g1,n,0 %2m = h1,m. We define
P xon mductwely for 1 <t <n by requiting R{1,7 — 1)z, = 0, or equiva-
lently, p* 22, = (3)718 5 1 20n, FTan = z§,, with similer deﬁmt:ons for zop.
Dimensional reasons 1mply that p* = 0 in all cases as 2mp — 2n < 2p(p -- I)
and therefore R(p!,b) = 0 for ¢ > 0. Thus to show that the definition of the '
defines an action of the Steenrod algebra it is sufficient to check that with the
chosen ¢ » and Ay 1, R(1,n — Dzy, = Cand R{1,m — 1}z, = 0.

Theorem 2.1. _

(a) p =11, Z1[z6, 210]'? end Zy)[zs, 220)*? support an action of the Steen-
rod algebra whick is unique up to algebra isomorphism over the Steenrod
algebra.

(b) P = 13, Z13[$Cs,_.’).‘,‘m]n, Z]3[2’.‘12,I13]“ and Z;slzs,zm]“ do not mpport
an actton of the Steenred algebra.

We consider the examples in turn.

{(a)(1)p = 11, {6,10}. We first prove uniqueness. Assume that Z;,{z¢, 210]*?
supports an A{p)-action. For dimensional reasons p'zs = axszly, p'Tie =
Bzl + v2. Routine computations show that

p’zs = (3) 7 207 z}! + ofa + 28)(a + 48)z8z}y + 5afla + 28)xgzio] = 24’

Therefore ay? = 3 and «+ 28 = 0. We can choose ¥ to have any non-zero value.
Soweset ¥ = 5. Then o = 1 and' 8 = 5. We deduce that if A supports an action
of the Steenrod algebra, the action is unique up to algebra homomorphism over
the Steenrod algebra and we can set plzs = zs2ly, pla = 5(23; + 22).
Therefore let ¢1,3 = z52%;, A1 s = 5(z) + 23) and define p7z¢, plz10 as de-
scribed above. The calculation above implies that R{1,2)zs = 0 and so we
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need only check that R(l 4)z; = 0. Routine caleulation verifies that this is
true.

(a) {2) p= 11, {8,20}. Again assume that Zn[za,xu] 12 supports an A(p)-
action. For dimensional reasons, plzs = aZszqg, piTo0 = Bx3, + vz§. Routine
computations show that

pizs = (4) Hala + B)a + 28)(a + 3B)zz20 + av(a - B)(a + 2B)z523,

' + oo+ 38)z3'] = 2
Therefore by suitable choice of 220, we can assume that a = 1. Ii follows that
8 = 5, vy = +4. Replacing =5 by —us if necessary, we can assume that vy = 4,

and therefore if A supports an action of the Steenrod algebra, the action is
unique up to algebra homomorphism over the Steenrod algebra and we can set
plas = ZgZio, P 220 = a3y + 423,

Therefore let g1,4 = zgZ0, h1,10 = 53, + 42§ and define §?xs, P22 as
described above. Clearly R(1,3)zs = 0 and so we need just to check that
R{1,9)xz40 = 0. Routine calculation verifies that this is true.

{b) (3) p = 13, {6,10}. Again suppose that 213[1‘5,119] supports an A(p)
action. For dimensional reasons plzg = az} + Bz3,, p* 210 = y2§z10. Routine
calculations show that

Pz = ()7 [6a" sl + i’ + (4o + 30)( + B)aiel
+ B (ba + 3y)adzl,] = z5°.
Therefore o® = 1, 8{6a? + {4a + 37}(Sar + 3v)} and ﬁz(ﬁa +34) =0in Zy3.
This is possible cnly if # = 0, but this implies that p¥z,4 € (z¢) which is not
possible as p®x1o = z}13. Thus Zis{ze,210)** will not support an A(13) action.

(b) (4) p = 13, {8,16}. Again suppose that 213[:.93,216] 14 supports an A(p)
actlon For dimensional reasons p'zg = az} + Azl +y2iv1e, p 216 = 6xsTie +
pzizis + 623, Routine calculations show that

plzs = (4)
[{7a* + 12088% + 8ayul + 6026y + 117292 +688%u + vu® + 29275}.1:
{90y + 3aPu + Bayp® + B8u* + vu® + 8076 + 3o’ v+
4av%8 + 907 B8 + 8albvb + By6? + 1286%8} x5 216+
{5038 + 1126 + 680y + 11aBby + da’~? + Bay?p + Ba®48 + 6aB86+
o’ By + 8oy + 3086u + Tybp® + 8Bu® + 96+26 + 86v8% + 26v° Jzials
{a?By + 1188y + 6oy + ¥ + 11ay?s + 12866y + 54261 + 128y’ +
6?96 + 108678 + 1206u + 12v8%u + 68u%6 + 110526 + 38%6u}ziziet
(962 8% + 68%8y + 5afy* + 382 + afvyb + 118786 + af’p + 9BvEu+
982 + 11944 + 7436 + 37%8% + 6v6° + 3086° + 98us Y xdxd 4+
{5aﬂ27+,839+4762g+ﬁ'}' +4,6726+12,8762+10&,326+ﬁ2p6+11;353}z3x16+
{1168® + 126 + 36°4* + 68%v6 + 9526 Yzease) = z3°
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One can show that this implies that # = 0, and so p%z;¢ € {z3) which is false
as pz1s = 713, Thus Zi3[zs, 716" will not support an A(13)-action.

(b) {5) p = 13, {12,18}. Similarly as in the last examples, we can see that,
for dimensional reasens, p'zy; = oz, + 8224, p'a1s = y2i,z18 and then

pPzia = (B1) 7' [{8a%x}] + B(Baty + 90 y? + 40Py + dayt + 64° Jaifad,

+ 8% {5a% + 7o’y + 5y + 3ay® Yal,zty + B {Ta® +9a%y + 11ay? + 4%} 2t,2%,
+ BH{To® + 120y + 647 }z1028,] = 213

This is true only if # = 0, but this implies that p9z1s € {212} which is impossible
as pPPz1s = 213 and so Zy3[z12, 713)"* will not support an A(13)-action.
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