APPROXIMATION PROBLEMS IN MODULAR SPACES OF DOUBLE SEQUENCES

ALEKSANDER WASZAK

Abstract _

Let X denote the space of all real, bounded double sequences, and let Φ, φ, Γ be φ -functions. Moreover, let Ψ be an increasing, continuous function for $u \ge 0$ such that $\Psi(0) = 0$.

In this paper we consider some spaces of double sequences provided with two-modular structure given by generalized variations and the translation operator.

We apply the $\gamma(\tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$ -convergence in $\tilde{X}(\Phi, \Psi)$ in order to obtain an approximation theorem by means of the (m, n)-translation, i.e. a result of the form $(\tau_{mn}x - x) \to 0$ in an Orlicz sequence space l^{Γ} .

1. Notation

1.1. A function φ defined in the interval $[0, \infty)$, continuous and nondecreasing for $u \ge 0$ and such that $\varphi(u) > 0$ for $u > 0, \varphi(u) \to \infty$ as $u \to \infty$ and $\varphi(0) = 0$, is called a φ -function. We will consider three φ -functions Φ, φ and Γ . Moreover, let Ψ be a nonnegative, nondecreasing function of $u \ge 0$ such that $\Psi(u) \to 0$ as $u \to 0+$, (see [3]).

1.2. Let X be the space of all real, bounded double sequences. Throughout this paper sequences belonging to X will be denoted by $x = (t_{\mu\nu}) = ((x)_{\mu\nu})$ or $(t_{\mu\nu})_{\mu,\nu=0}^{\infty} = ((x)_{\mu\nu})_{\mu,\nu=0}^{\infty}$ and $|x| = (|t_{\mu\nu}|), y = (s_{\mu\nu}), x^p(t_{\mu\nu}^p)$ for p = 1, 2, ...By a convergent sequence we shall mean a double sequence converging in the sense of Pringsheim. The symbols X_d or X_1 denote subspaces of the space X such that, for every fixed $\overline{\mu}$ and for every fixed $\overline{\nu}$ the sequences $(t_{\overline{\mu}\nu})$ and $(t_{\mu\overline{\nu}})$ are nonincreasing or nondecreasing, respectively.

1.3. Let $\rho_{\varphi} : X \to (0, \infty)$ be a functional generated by the φ -function φ such that for arbitrary $x, y \in X$ and $\alpha, \beta \geq 0$.

1' $\rho_{\varphi}(0) = 0,$ 1" $\rho_{\varphi}(x) = 0$ implies x = 0,2' $\rho_{\varphi}(-x) = \rho_{\varphi}(x),$ 3' $\rho_{\varphi}(\alpha x + \beta y) \le \rho_{\varphi}(x) + \rho_{\varphi}(y),$ for $\alpha + \beta = 1,$

A. WASZAK

3. Completeness of a two-modular space

3.1. We are now going to investigate the completeness of two-modular space $(\tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$. The theorems on completeness of the spaces $\tilde{X}_{\rho_{\varphi}}$ and $\tilde{X}_{\varphi}(\Psi)$ with respect to the *F*-norm $\|\cdot\|_{\rho_{\varphi}}$ or the modular functional $\tilde{\rho}_{\varphi}$ have been obtained in [7] (compare also [5]). Let us remark that the space $\tilde{X}(\Phi, \Psi)$ is not complete with respect to $\|\cdot\|_{\rho_{\varphi}}$ and $\tilde{\rho}_{\varphi}$, respectively. Indeed, consider the following example.

Let $\Phi(u) = |u|, \varphi(u) = |u|, \Psi(u) = u^2$ and $x = (t_{\mu\nu})_{\mu,\nu=0}^{\infty}, x^p = (t_{\mu\nu}^p)_{\mu,\nu=0}^{\infty}, p = 1, 2, \dots$, where $t_{\mu\nu} = \begin{cases} \frac{1}{(\mu+1)(\nu+1)} & \text{for } \mu = \nu, \\ 0 & \text{elsewhere }, \end{cases}, \quad t_{\mu\nu}^p = \begin{cases} t_{\mu\nu} & \text{for } \mu \leq p \text{ and } \nu \leq p, \\ 0 & \text{elsewhere }. \end{cases}$

Since

$$\omega_{\varphi}(x^{p};r,s) \leq \sup_{m \geq r} \sup_{n \geq s} \sup_{p \geq \mu \geq m} \sup_{p \geq \nu \geq n} \frac{2}{(\mu+1)(\nu+1)} \leq \frac{2}{(r+1)(s+1)},$$
$$rs\Psi(\omega_{\varphi}(x^{p};r,s)) \leq \frac{4}{(r+1)(s+1)} \to 0 \text{ as } r, s \to \infty$$

and

ς

$$v_{\Phi}(x^{p}) = \sum_{1 \leq \mu, \nu \leq p} (t_{\mu,\nu} + t_{\mu-1,\nu-1}) = 1 + \frac{1}{(p+1)^{2}} + 2\sum_{\mu=1}^{p-1} \frac{1}{(\mu+1)^{2}} < \infty,$$

then $x^p \in X(\Phi, \Psi)$. Further, if r < p and s < p, we have

$$\omega_{\varphi}(x^{p}-x;r,s) \leq \frac{2}{(p+1)^{2}}, rs\Psi(\omega_{\varphi}(x^{p}-x;r,s)) \leq \frac{4}{(p+1)^{2}},$$

if $r \ge p$ and $s \ge p$, we have

$$\begin{split} \omega_{\varphi}(x^{p}-x;r,s) &\leq \frac{2}{(r+1)(s+1)}, \, rs\Psi(\omega_{\varphi}(x^{p}-x;r,s)) \leq \\ &\leq \frac{4}{(r+1)(s+1)} \leq \frac{4}{(p+1)^{2}} \end{split}$$

and in consequence we obtain

$$ho_{arphi}(x^p-x) = \sup_{r,s} rs\Psi(\omega_{arphi}(x^p-x;r,s)) \leq rac{4}{(p+1)^2} o 0 ext{ as } p o \infty.$$

This shows that $x^p \to x$ in the *F*-norm of $X_{\varphi}(\Psi)$. Moreover, we have

$$rs\Psi(\omega_{\varphi}(x;r,s)) \leq rac{4}{(r+1)(s+1)} \to 0 ext{ as } r,s \to \infty,$$

and so $x \in X_{\varphi}(\Psi)$. However

$$v_{\Phi}(x) = \sum_{\mu,\nu=1}^{\infty} |t_{\mu,\nu} + t_{\mu-1,\nu-1}| \ge 2 \sum_{\mu,\nu=1}^{\infty} \frac{1}{(\mu+1)(\nu+1)} = \infty,$$

whence $x \notin X_{\Phi}$. Finally $x^p \in X(\Phi, \Psi), \rho_{\varphi}(x^p - x) \to 0$ as $p \to \infty$, but $x \notin X(\Phi, \Psi)$.

3.2. In the sequel, for a given sequence $x \in X$ we define a new sequence $\overline{x} = (\overline{t}_{\mu\nu})_{\mu\nu=0}^{\infty}$ by the formulas

$$\vec{t}_{\mu\nu} = \begin{cases} t_{\mu0} + a, & \text{for } \mu = 0, 1, 2, \dots \text{ and } \nu = 0, \\ t_{0\nu} + a, & \text{for } \mu = 0 \text{ and } \nu = 1, 2, \dots, \\ t_{\mu\nu} + b, & \text{for } \mu \ge 1 \text{ and } \nu \ge 1, \end{cases}$$

where the constants a and b can be of the form $a = t_{\mu\nu} - t_{\mu0}$, $b = t_{0\nu} - t_{00}$ $(\mu, \nu > 0$ are arbitrary indices). In the following we shall consider the sequence \overline{x} defined by the constants $a = t_{11} - t_{10}$ and $b = t_{01} - t_{00}$.

Remark. The following identity holds $\tilde{v}_{\Phi}(\tilde{x}) = v_{\Phi}(\overline{x})$.

Proof: Since $\overline{x} \in \tilde{x}$, then by definition of $\tilde{v}_{\Phi}(\tilde{x})$ we have

Now, let $y = (s_{\mu\nu})_{\mu,\nu=0}^{\infty} \in \tilde{x}$, then $s_{\mu0} = t_{\mu0} + A$, $s_{0\nu} = t_{0\nu} + A$ for $\mu = 0, 1, 2, \ldots, \nu = 1, 2, \ldots$ and $s_{\mu\nu} = t_{\mu\nu} + B$ for $\mu \ge 1$ and $\nu \ge 1$, where A and B are two arbitrary numbers. In the following we may define the sequence $\overline{y} = (\overline{s}_{\mu\nu})_{\mu,\nu=0}^{\infty}$, where $\overline{s}_{\mu0} = t_{\mu0} + A + a$, for $\mu = 0, 1, 2, \ldots, \overline{s}_{0\nu} = t_{0\nu} + A + a$, for $\nu = 1, 2, \ldots$, and $\overline{s}_{\mu\nu} = t_{\mu\nu} + B + b$ for $\mu \ge 1$ and $\nu \ge 1$, with $a = t_{11} + B - t_{10} - A$ and $b = t_{01} = t_{00}$. Obviously, $v_{\Phi}(y) \ge v_{\Phi}(\overline{y})$ and $v_{\Phi}(\overline{y}) = v_{\Phi}(\overline{x})$. Hence, $v_{\Phi}(y) \ge v_{\Phi}(\overline{x})$ for every $y \in \tilde{x}$. In consequence

Finally, by (+) and (++) we obtain $\tilde{v}_{\Phi}(\tilde{x}) = v_{\Phi}(\bar{x})$.

3.3. Theorem. Let Φ, φ be φ -functions and let Ψ be the function defined as in 1.1., which satisifies the condition:

there exists a $u_0 > 0$ such that for every $\delta > 0$ there is an $\eta > 0$ satisfying the inequality $\Psi(\eta u) \leq \delta \Psi(u)$ for all $0 \leq u \leq u_0$.

Then, the two-modular space $(\tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$ is γ -complete.

Proof: Let us suppose that \tilde{K} is a \tilde{v}_{Φ} -ball in $\tilde{X}(\Phi, \Psi)$ and let $\tilde{x}^{p} \in \tilde{K}$ for $p = 1, 2, \ldots, (\tilde{x}^{p})$ be a $\tilde{\rho}_{\varphi}$ -Cauchy sequence. It is easily seen that the sequence (\tilde{x}^{p}) is $\tilde{\rho}_{\varphi}$ -convergent to an element $\tilde{x} \in \tilde{X}_{\varphi}(\Psi)$, (see [7] or compare [5]). In consequence $\tilde{x}^{p} \xrightarrow{\gamma} x$, where $\gamma = \gamma(\tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$. Next, we show that $\tilde{x} \in \tilde{K}$. Taking the sequence (x^{p}) , such that $x^{p} \in \tilde{x}^{p}$, $x^{p} \in X_{\Phi}$ we may define the sequence (\bar{x}^{p}) . Of course, we have

$$v_{\Phi}(k_0 \overline{x}^p) \le M_0$$

for some positive numbers k_0 and M_0 . If $\overline{x}^p = (\overline{t}^p_{\mu\nu})$, then

$$\sum_{\mu,\nu=1}^{\infty} \Phi\left(k_0 \left| \bar{t}_{m_{\mu-1},n_{\nu-1}}^p - \bar{t}_{m_{\mu-1},n_{\nu}}^p - \bar{t}_{m_{\nu},n_{\nu-1}}^p + \bar{t}_{m_{\mu},n_{\nu}}^p \right| \right) \le M_0$$

for all increasing sequences (m_{μ}) and (n_{ν}) of positive integers and for p = 1, 2, Since $\overline{t}^{p}_{\mu\nu} \to \overline{t}_{\mu\nu}$ as $p \to \infty$ for every μ and ν , where $(\overline{t}_{\mu\nu}) = \overline{x}$, then we easily obtain

$$\sum_{\mu,\nu=1}^{\infty} \Phi\left(k_0 \left| \bar{t}_{m_{\mu-1},n_{\nu-1}} - \bar{t}_{m_{\mu-1},n_{\nu}} - \bar{t}_{m_{\mu},n_{\nu-1}} + \bar{t}_{m_{\mu},n_{\nu}} \right| \right) \le M_0$$

for $(m_{\mu}), (n_{\nu}), p$ as previously. Therefore $v_{\Phi}(k_0 \overline{x}) \leq M_0$. Applying the above remark, we obtain $\tilde{v}_{\Phi}(k_0 \overline{x}) \leq M_0$, and consequently $\tilde{x} \in \tilde{K}$.

4. A theorem of approximation type

4.1. Let $\Phi, \varphi, \Psi, \Gamma$ be the functions defined as in part 1.1. We shall consider an Orlicz sequence space l^{Γ} and the space $\tilde{X}(\Phi, \Psi)$, and we shall apply the γ convergence in $\tilde{X}(\Phi, \Psi)$ in order to formulate a theorem of the form $\tau_{mn}x - x \to 0$ in the space l^{Γ} .

Let us denote $T(x, m, n, \mu, \nu) = |(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|$ and $M(x, m, n, \mu, \nu) = |t_{\mu+m,\nu+n} - t_{\mu+m,\nu} - t_{\mu,\nu+n} + t_{\mu,\nu}|$, for all m, n, μ, ν .

Lemma.

(a) If $x \in X_d$, then $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν . (b) If $x \in X_i$, then $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .

Proof (a): For $\mu < m$ and $\nu < n$ we have $T(x,m,n,\mu,\nu) = 0$. If $\mu \ge m$ and $\nu < n$, then $T(x,m,n,\mu,\nu) = |t_{\mu+m,\nu} - t_{\mu,\nu}| \le |(t_{\mu,\nu+n} - t_{\mu+m,\nu+n}) + (t_{\mu+m,\nu} - t_{\mu,\nu})| = M(x,m,n,\mu,\nu)$.

If $\mu < m$ and $\nu \ge n$, then $T(x, m, n, \mu, \nu) = |t_{\mu,\nu+n} - t_{\mu,\nu}| \le |(t_{\mu+m,\nu} - t_{\mu+m,\nu+n}) + (t_{\mu,\nu+n} - t_{\mu,\nu})| = M(x, m, n, \mu, \nu).$

For $\mu \ge m$ and $\nu \ge n$ we have $T(x,m,n,\mu,\nu) = |t_{\mu+m,\nu+n} - t_{\mu,\nu}| \le |(t_{\mu+m,\nu+n} - t_{\mu,\nu}) + (t_{\mu,\nu} - t_{\mu+m,\nu}) + (t_{\mu,\nu} - t_{\mu,\nu+n}) = M(x,m,n,\mu,\nu).$

Finally $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .

Proof (b): For $\mu < m$ and $\nu < n$, $(\tau_{mn}x)_{\mu\nu} = t_{\mu\nu}$, then $T(x, m, n, \mu, \nu) = 0$. If $\mu \ge m$ and $\nu < n$, then $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu} - t_{\mu,\nu}| \le |(t_{\mu,\nu} - t_{\mu+m,\nu}) + (t_{\mu+m,\nu+n} - t_{\mu,\nu+n})| = M(x, m, n, \mu, \nu)$.

If $\mu < m$ and $\nu \ge n$, then $T(x, m, n, \mu, \nu) = |t_{\mu,\nu+n} - t_{\mu,\nu}| \le |(t_{\mu,\nu} - t_{\mu,\nu+n}) + (t_{\mu+m,\nu+n} - t_{\mu+m,\nu})| = M(x, m, n, \mu, \nu).$

For $\mu \ge m$ and $\nu \ge n$ we have $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu+n} - t_{\mu,\nu}| \le |(t_{\mu,\nu} - t_{\mu+m,\nu+n}) + (t_{\mu,\nu+n} - t_{\mu,\nu}) + (t_{\mu+m,\nu} - t_{\mu,\nu})| = M(x, m, n, \mu, \nu).$ Thus $T(x, m, n, \mu, \nu) \le M(x, m, n, \mu, \nu)$ for all m, n, μ and ν . **4.2.** Let us suppose that the functions Φ, φ, Γ and Ψ satisfy the following condition:

(i) There exist positive constants a, b, u_0 such that

$$\Gamma(au) \leq b\Phi(u)\Psi(\varphi(u))$$
 for $0 \leq u \leq u_0$.

First let us remark that the condition (i) is equivalent to the following one: (ii) For every $u_1 \ge 0$ there exists a constant c > 0 such that

 $\Gamma(cu) \leq b\Phi(u)\Psi(\varphi(u))$ for $0 \leq u \leq u_1$, (for a proof see [5]).

4.3. Let the functions $\Phi, \varphi, \Psi, \Gamma$ satisfy the assumptions 1.1. and 4.2., and let $v_{\Phi}(\lambda x) < \infty$ for a $\lambda > 0$.

Theorem 1. If $x \in X_d$ or $x \in X_i$, then

(*)
$$\sum_{\mu,\nu}^{\infty} \Gamma\left(c\lambda \left| (\tau_{rs}x)_{\mu\nu} - (x)_{\mu\nu} \right| \right) \leq brs \Psi(\omega_{\varphi}(\lambda x; r, s)) v_{\Phi}(\lambda x)$$

for all nonnegative integers r and s, where c and b are some positive constants.

Proof: We limit ourselves to the case when $x \in X_d$. By Lemma we have $|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}| \leq |t_{\mu,\nu} - t_{\mu+m,\nu} - t_{\mu,\nu+n} + t_{\mu+m,\nu+n}|$ for arbitrary m, n, μ and ν . Let a positive constant λ and integers r and s be given. Since x is a bounded sequence, taking $u_1 = 4\lambda \sup_{\mu,\nu} |t_{\mu,\nu}|$, and choosing $m \geq r, n \geq s$ arbitrary, by (i) we obtain

 $\Gamma(c\lambda M(x,m,n,\mu,\nu)) \leq b\Phi(\lambda M(x,m,n,\mu,\nu))\Psi(\varphi(\lambda M(x,m,n,\mu,\nu)))$ for all m, n, μ, ν such that $\lambda M(x,m,n,\mu,\nu) \leq u_1$. We have

$$\sum_{\mu,\nu=0}^{\infty} \Gamma(c\lambda|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|) \leq \\ \leq b\Psi(\sup_{m\geq r} \sup_{n\geq s} \sup_{\mu\geq m} \sup_{\nu\geq n} \varphi(\lambda M(x,m,n,\mu,\nu))) \sum_{\mu\geq m,\nu\geq n} \Phi(\lambda M(x,m,n,\mu,\nu)) = \\ = b\Psi(\omega_{\varphi}(\lambda x;r,s)) \sum_{k,l=1}^{\infty} \sum_{\substack{\mu=km}}^{(k+1)m-1} \sum_{\nu=ln}^{(l+1)n-1} \Phi(\lambda M(x,m,n,\mu,\nu)) = \\ = b\Psi(\omega_{\varphi}(\lambda x;r,s)) \sum_{k,l=1}^{\infty} \sum_{\substack{\nu=m}}^{2m-1} \sum_{\nu=n}^{2n-1} \Phi(\lambda|t_{km+u,ln+\nu} - t_{km+u,(l-1)n+\nu} - \\ - t_{(k-1)m+u,ln+\nu} + t_{(k-1)m+u,(l-1)n+\nu}|) = \\ = b\Psi(\omega_{\varphi}(\lambda x;r,s)) \sum_{\substack{u=m}}^{2m-1} \sum_{\nu=n}^{2n-1} \sum_{k,l=1}^{\infty} \Phi(\lambda|t_{km+u,ln+\nu} - t_{km+u,(l-1)n+\nu} - \\ - t_{(k-1)m+u,ln+\nu} + t_{(k-1)m+u,(l-1)n+\nu}|) \leq \\ \leq b\Psi(\omega_{\varphi}(\lambda x;r,s)) \sum_{\substack{u=m}}^{2m-1} \sum_{\substack{\nu=n}}^{2m-1} \sum_{\nu=n}^{2n-1} v_{\Phi}(\lambda x) = bmn\Psi(\omega_{\varphi}(\lambda x;r,s))v_{\Phi}(\lambda x). \end{cases}$$

Finally we obtain

$$\sum_{\mu,\nu=0}^{\infty} \Gamma(c\lambda|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|) \leq bmn\Psi(\omega_{\varphi}(\lambda x; r, s))v_{\Phi}(\lambda x)$$

for some positive constants c, b, λ and for all $m \ge r, n \ge s$, where r, s are nonnegative integers. Hence, taking m = r and n = s, we get the inequality (*).

Theorem 2. Let Φ, φ, Γ be φ -functions (Φ convex) and let Ψ have the same properties as in the previous theorem. Let $x \in \tilde{x} \in \tilde{X}(\Phi, \Psi)$ and $x \in X_d$ (or $x \in X_i$). Then $\tau_{rs}x - x \in l^{\Gamma}$ for all $r, s \ge 0$, and $\tau_{rs}x - x \to 0$ in the sense of modular convergence in l^{Γ} .

Proof: First, let us remark that the condition $x \in X(\Phi, \Psi)$ implies that $v_{\Phi}(\lambda x) < \infty$ and $rs\Psi(\omega_{\varphi}(\lambda x; r, s)) < \varepsilon$ for sufficiently small $\lambda > 0$ and for sufficiently large r and s, where ε is an arbitrary positive number. But, an easy computation shows that if the φ -function Φ is convex then the conditions $x \in X_{\Phi}$ and $v_{\Phi}(kx) < \infty$ for some positive constant k are equivalent. Applying this observation and Theorem 1, we conclude that $r_{rs}x - x \in l^{\Gamma}$ for all nonnegative integers r and s. In order to get the condition $\tau_{rs}x - x \to 0$ in the sense of modular convergence in l^{Γ} , it will be necessary to take $r, s \to \infty$, in the inequality (*).

Theorem 3. Let $x^p = (t^p_{\mu\nu})^{\infty}_{\mu,\nu=0} \in X_{\Phi}$, $t^p_{\mu0} = t^p_{0\nu} = 0$ for p = 1, 2, ... where $\mu, \nu = 0, 1, 2, ...$, and let $x^p, p = 1, 2, ...$ belong to the v_{Φ} -ball in X_{Φ} , where Φ is an increasing φ -function. Then the set of sequences (x^p) is uniformly bounded.

Proof: By assumption $v_{\Phi}(k_0 x^p) \leq M_0$ for $p = 1, 2, \ldots$, where k_0, M_0 are some positive constants. In consequence, we have

$$\Phi(k_0|t^p_{\mu\nu}|) = \Phi(k_0|t^p_{00} - t^p_{0\nu} - t^p_{\mu0} + t^p_{\mu\nu}|) \le v_{\Phi}(k_0x^p) \le M_0$$

Now, applying the properties of φ -function Φ we obtain that there exists a positive constant M such that $|t_{\mu\nu}^p| \leq M$ for $\mu, \nu = 0, 1, 2, \ldots$.

Theorem 4. Let Γ , Φ , φ be φ -functions (Φ and φ are convex) and let Ψ be a nonnegative, nondecreasing function of $u \ge 0$ such that $\Psi(u) \to 0$ as $u \to 0+$. Let us suppose that the functions Φ, φ, Ψ and Γ satisfy the condition 4.2.(i). Moreover, let (x^p) be a sequence such that $t^p_{\mu 0} = t^p_{0\nu} = 0$ for $\mu, \nu = 0, 1, 2, \ldots, p = 1, 2, \ldots, x^p \in \tilde{x}^p, \tilde{x}^p \in \tilde{X}(\Phi, \Psi), \tilde{x}^p \xrightarrow{\gamma} 0$ as $p \to \infty$ in $\langle \tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi} \rangle$. Then $\tau_{rs} x^p - x^p \to 0$ with respect to modular convergence in l^{Γ} , as $p \to \infty$, uniformly for $r \ge 0$ and $s \ge 0$.

Proof: The condition $\tilde{x}^p \xrightarrow{\gamma} 0$ implies that $\tilde{x}^p \in \tilde{K}$, where \tilde{K} is a \tilde{v}_{Φ} -ball, with parameters k_0, M_0 , and by Theorem 3 we have $|t^p_{\mu\nu}| \leq M$ for all μ, ν, p

with an M > 0. Choosing $u_1 = 4\lambda M$, $c = a \frac{u_0}{u_1}$, where $0 < \lambda < k_0$, and applying the inequality (*), we obtain

$$(+) \qquad \sum_{\mu,\nu=0}^{\infty} \mathbb{P}(c\lambda|(\tau_{rs}x^p)_{\mu\nu} - (x^p)_{\mu\nu}|) \leq b\rho_{\varphi}(\lambda x^p)v_{\Phi}(\lambda x^p) \leq bM_0\rho_{\varphi}(\lambda x^p).$$

By assumption there exists a $\lambda > 0$ such that for every $\varepsilon > 0$ there is an integer P for which

$$ilde{
ho}_{arphi}(2\lambda ilde{x}^{p}) = \inf \left\{
ho_{arphi}(y) : y \in 2\lambda ilde{x}^{p}
ight\} < arepsilon$$

for all p > P. In consequence there exist $y^p \in 2\lambda \tilde{x}^p$, such that

$$(++) \qquad \qquad \rho_{\varphi}(y^p) < \varepsilon \text{ for } p > P.$$

Since

$$\rho_{\varphi}(\lambda x^{p}) = \rho_{\varphi}\left(\frac{y^{p} + (2\lambda x^{p} - y^{p})}{2}\right) \leq \rho_{\varphi}(y^{p}) + \rho_{\varphi}(2(\lambda x^{p} - \frac{1}{2}y^{p}))$$

and

$$\frac{1}{2}y^p - \lambda x^p \in \overline{c},$$

then we have

$$(+++) \qquad \qquad \rho_{\varphi}(\lambda x^p) \leq \rho_{\varphi}(y^p), \text{ for } p > P.$$

By the inequalities (++) and (+++) we obtain

$$\rho_{\varphi}(\lambda x^p) < \varepsilon$$

for sufficiently large p. Finally, the condition (+) implies that $\tau_{rs}x^p - x^p \to 0$ with respect to modular convergence in l^{Γ} as $p \to \infty$, uniformly for $r, s \ge 0$.

References

- 1. T.M. JEDRYKA AND J. MUSIELAK, Some remarks on F-modular spaces, Functiones et Approximatio 2 (1976), 83-100.
- 2. J. MUSIELAK, "Orlicz spaces and modular spaces," Lecture Notes in Math. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- 3. J. MUSIELAK AND W. ORLICZ, On modular spaces, Studia Math. 18 (1959), 49-65.
- J. MUSIELAK AND A. WASZAK, On two modular spaces, Comment. Math. 23 (1983), 63-70.

- J. MUSIELAK AND A. WASZAK, Generalized variation and translation operator in some sequence spaces, Hokkaido Math. Journal 17 (1988), 345-353.
- A. WASZAK, On convergence in some two-modular spaces, General topology and its relations to modern analysis and algebra, V, Heldermann Verlag Berlin 1982, 667-678.
- 7. A. WASZAK, On some modular spaces of double sequences I, Commentationes Math. (in print).

Keywords. Sequence spaces, modular spaces 1980 Mathematics subject classifications: 46A45, 46E30

> Institute of Mathematics Adam Mickiewicz University ul. Matejki 48/49 60-769 Poznan POLAND

Rebut el 16 de Juny de 1989