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APPROXIMATION PROBLEMS IN MODULAR
SPACES OF DOUBLE SEQUENCES

ALEKSANDER WASZAK

Abstract

Let X denote the space of all real, bounded double sequences, and let
®,, T be p-Tunctions. Moreover, let ¥ be an increasing, continuous func-
tion for v > 0 such that ¥(0) = 0.

In this paper we consider some spaces of double sequences provided with
two-rodular siructure given by generalized variations and the transialion
operator.

We apply the {04, f,)-convergence in )_((<I>, ¥) in order to oblain an
approximation theorem by means of the {m, n)-translation, j.e. a resnit
of the form {Tanz — £} — & in an Orlicz sequence space {F.

1. Notation

1.1. A function y defined in the interval [0, co), continuous and nondecreas-
ing for « > 0 and such that @{u) > 0 for u > 0,¢(u) — o0 as v — oo and
w({0) = 0, is called a -function. We will consider three p-funciions ®, and I,
Moreover, let ¥ he a nonnegative, nondecreasing function of u > U such that
T(u) — 0 as u — 0+, (see [3]).

1.2. Let X be the space of all real, hounded double sequences. Throughout
this paper sequences belonging to X will be denoted by v = (f,.} = (). ) or
(8 )0 = ((@)io Noy—p and [2] = {[tuu ), y = (5,0 ), 2P(#0, ) for p = 1,2,....
By a convergent sequence we shall mean a double sequence converging in the
sense of Pringsheim. The symbols X4 or X, denote subspaces of the space X
such that, for every fixed @ and for every fixed ¥ the sequences (#5,) and ({,7)
are nonincreasing or nondecreasing, respectively.

1.3. Let p, : X — {0,00) be a functional generated by the w-function ¢
such that for arbitrary 2,y € X and o, 8 > 0.
1‘ {)@(0) = 0!
1" po(z) = 0 implics ¢ = 0,
2" po{—2) = pola),
3 plaz + fy) < pola)+ ply) fora+ 8=1,
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3. Completeness of a two-modular space

3.1, We are now going to investigate the completeness of two-modular space
(X(®,0),%a,p,). The theorems on completeness of the spaces X,, and X (¥)

with respect to the F-norm || - ||,, or the modular functional g, have been
obtained in {7] (compare also [5]). Let us remark that the space X{®,¥)is
not complete with respect to | - ||, and g, respectively. Indeed, consider the

following example,
Let ®(u) = [ul, @(u) = fu}, ¥(u) = v? and @ = (tw)7y=0" = ()=
p=1,2,..., where
: :{GJT)I@_HT for g = v, ” :{tw for p <pandv <p,
e 0 elsewhere , ¥ 0 elsewhere .

Since

2 2
wo(z? r,5) < supsup su s < ,
ol ) mgaug:pgpgmpgygn fu+D{v+1) " (r+1)(s+1)

4

rs¥ (wy(2P;7,8)) < m

—{asr,s —+ 0

and

1 =1
vep(zl) = Z {tyw +tumtpr) =1t 5 +2 — = < o,
p+1) ; (417

i< rsp
then z? € X{®,¥). Further, f r <pand s < p, we have
2 4
P o - — g F _ - [
w.p(x :I.‘, T! S) — (p + 1)2 t rs (wiﬂ{x I‘T‘,S)) s (p + 1)2 3
if r > p and s > p, we have
2
F o g [ F _ - <
wel{z? -7, 8) < EEYIEEE rs¥{wy(af — z;7,8)} £
< 4 < 4
Tr+i)s+1) T (p+ 1)

and in conseguence we obtain
4
2P — z) = suprsPlwy(z? — 237, <L ——0 —0as 00.
p‘P( ) :? ( ‘F’( 3)} (p+ 1)2 - g
This shows that 27 — z in the F-norm of X,(¥). Moreover, we have
4
rsPlwo(z;r 8)) € ——————= — 0 asr,s — o0,

and so x € X, (¥). However

oo L o]
1
= ¢ e re-1] 2 T iV -1
velz) Z [tpw +ip-1,0 1|_2“g=:1 (g + 1)v + 1} o

pr=1
whence = ¢ Xo. Finally 2? € X(®,¥), po(zP —z) = 0 as p — oo, but
z ¢ X(®,¥). '
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3.2, In the sequel, for a given sequence 2 € X we define a new sequence
F = (tu )50 =0 by the formulas

twot+a, forp=012,...andv=0,
ty =X top+a, forp=0andv=12,...,
tup +6, forpg>landwv>l,

where the constants @ and b can be of the form a = 4, — t40, b = tou — foo
{¢,v > 0 are arbitrary indices). In the following we shall consider the sequence
T defined by the constants a = ¢); — t15 and & = 1) — fgo.

Remark. The following identity holds 5g(%) = ve(Z).

Proof: Since T € £, then by definition of f¢{T) we have
(+) ve(Z) < va(T).

Now, let y = {5,,)5=0 € &, then spo = tuo + A, 50, = tor + 4 for u =
0,L2,...,v=12,... and s, = t,, + Bfor p > 1 and v > 1, where A
and B are two arbitrary numbers. In the following we may define the sequence
Y = (Suulny=o, Where 30 = tyo+ Ata, for p =0,1,2,.. ., 3, = to, +A+g, for
v=12,...,and5,, =t,+B+bforuy > 1landv > 1, witha = t5:+ B—t10-4
and b = fg1 = fgg. Obviously, ve{y} > ve(¥) and ve(y) = ve{F). Hence,
ve{y) = ve(T) for every y € Z. In consequence

(+4) te{E) = va(T).
Finally, by (+) and (++) we obtain 65(%) = ve(T). K

3.3. Theorem. Let @, be w-funclions and let ¥ be the function defined
as i 1. 1., which satisifies the condition:
there exists a ug > 0 such that for every & > 0 there 1s an 5 > O salisfying
the inequality Y{nu) < 6¥(u) for all 0 < u < uq.

Then, the twe-modular space {X{®,¥), s, p,) is v-complete.

Proof: Let us suppose that K is a 9e-ball in X(®,¥) and let ¥ € K for
p=1,2,...,(") be a j,-Cauchy sequence. It is easily seen that the sequence
(#P) is p,-convergent to an element # € X, (¥), (see [7] or compare [5]). In
consequence P —» x, where 7 = (D¢, Py} Next, we show that I € K. Taking
the sequence (z?), such that z¥ € P, 2P € Xg we may define the sequence
{z%). Of course, we have

ve(koZ?) £ My

for some positive numbers kg and My. If 7% = ti,), then

o
Z @ (kg |-{f“y-l‘nv-l __{fny-l'n» _?fnlraﬂu—l +?fnﬂ.“u ) S MQ

npr=1
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for all increasing sequences {m,) and (n,} of positive integers and for p =
1,2,... . Since &, — %,, as p — oo for every p and v, where (fyr) =%, then
we easily obtain

f=v] ) .
Z o (ko Izmﬂ—l;ﬂu—l - Emy—hn" - Emu e -1 + tmmn, I) —<— MG

for {m,},{n,), p as previously. Therefore va(koZ) £ My. Applying the above
remark, we obtain ds{koF) < My, and consequently € K. B

4. A theorem of approximation type

4.1. Let &,¢, ¥, T be the functions defined as in part 1.1. We shall consider
an Orlicz sequence space {I and the space X{(®,¥), and we shall apply the -
convergence in X (@, T) in order to formulate a theorem of the form 72—z —
0 in the space I .

Let us denote T(z,m,n, it,) = [(Tma®)uw — (Z)po| and M{z,m,n, u,v) =
|t,u+m,u+n - ip-i—m,u — tp,v-t-n + ip,vl: for all T, 1%ty Vs

Lemma.

(a) If x € Xa, then T{z,m,n,p,v) £ M(z,m,n}p,v) for el myn, p and v.
(b) Ifz € Xi, then T{x,m,n,p,v} < M{z,m,n,pu,v) for ellm,n, u and v.

Proof (a): For u < m and v < n we have T(z,m,n,pn,v) = 0.

If ¢ > mand v < n, then T{z,m,n, 11, ¥) = [lpsme — tuwl < [{tppsn =
tp-i—m,u-{-n) -+ {t;.c+m,y - tp,v)l = M(r,m,n, p,!f).

Ifpu<mand v > n, then Tz, m,n, 1,0} = ftupgn — o) € f{tpusmew —
tp+m,u+n) + (tp,u+n - t;.a,u)l = M(x,m, nn”w”)'

For ¢ > m and v > n we have T(z,m,n,p1,v) = |tysm,vtn — Euul
|(tp+m,v+n - tgs,u)_ + (tg;,v - t;;-i—m,v) + (tp.v - ty.v+ﬂ) = M(:r,m, n, P;V)-

Finally T(z,m,n, pu,v) < M{z,m,n,pu,v) forall m,n,p and v. B

1A

Proof (b): For p < m and ¥ < n, {Tma®)uy = tuw, then T{z,m,n,u,v) = 0.

fu>mandrv <n,thenT{z,m,n, 0,0} = Rpsmo—tuwl < [(tpw—tusmo )+
(t.ri+m,u+n - ta.u+n)| = M(J:,m,n, ;_L,I/).

Ifu<mandw>n,then Tz, m,m, g, v} = |ty vin—tusl £ |[(tpp —tpvin)+
(tptmuptn = tutmew)| = M{z,m,n,p, v}

Foru>mandv>n we have T{z,m,n, 10,0} = psmuptn ~ tuot S [(fpo —
tp-!—m,u-{-n) + (t_u,y+n - t_n,u) + (t.u-!-m,u - t.u.v)l = M(z,m, Ty fdy V)-

Thus T{z,m,n, p,v} < M{z,m,n,pg,v) forall mn,p and v. ®
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4.2. Let us suppose that the functions ®,¢,T" and ¥ satisfy the following
condition:
(1) There exist positive constants g, b, up such that

Plau) < b@{u}P{plu}) for 0 < u < uy.

First let us remark that the condition {i} is equivalent to the following one:
{i1) For every uy > 0 there exists a constant ¢ > 0 such that
Pleu) <€ b®(u)¥(p(u)) for § <u < u;, (for a proof see [5]).

4.3. Let the functions ®,p, ¥, satisfy the assumptions 1.1. and 4.2., and
let ve{Az) < ocofora A >0

Theorem 1. If x € X4 or z € X, then

o
(+) S (A (rrs2) — ()] < brs Bz 7, 5))ve(Aa)
78
for ell nonnegative integers v and s, where ¢ and b are some positive constants.

Proof: We limit ourselves to the case when =z € Xy, By Lemma we have
[{Tmn2)pe = (2)uw] £ [ty = tutme = tptn + tatmutn| for arbitrary m,n, u
and ». Let a positive constant A and integers r and 5 be given. Since x is
a bounded sequence, taking u; = 4Asup, , |t .|, and choosing m > r,n 2 s
arbitrary, by (i) we obtain

TleAM(z,m,n, ¢, v)) < 5P(AM{(z,m,n, g, ) {(AM (2, m,n, g, 1))
for all m,n, u,» such that AM{z,m,n, ¢, v} < uy. We have

Y D(eAl(Tmnz)py — (@)ul) <
g,v=0
< bU(sup sup sup sup p(AM(z,m,m, ) Y B(AM(z,m,n, p0)) =
mrraZzazmyprn pDmSn
oo (k+1)m—1(i+1)n—1
= b (Azir,s)) D > @OM(z,m,n, ) =
ki=1 jp=im w=In
co Im-—12n-1
:blll(wv(/\a;;r,s)) Z Z Z qD(/\!ikm+an+u_ikm+u,(f—l)n+u_

k=1 u=m v=n

— Yk V)mtaints T He—D)mtbu (I=}ntsl) =

2m=12n-1 oo

= b¥(wy(Az; 7, 5)} Z 37 (AMtemtvints — trmau(i-Dntv—

u=m v=n k=1

—th—Dimdudnty T EHk—1imtu (i Dngel) &
2m—it2Zn—1

< bW{w,(Azirs)) > > vs(Az) = bmn¥{we(Az;r, s))ve(Az).

u=m t=n



266 A, WaszaK

Finally we obtain

> DeA(Tmnd)pr — (@]} S brnP(wo(Az; 7, $))ve(Az)

pw=0

for some positive constants ¢, b, A and for all m > r,n > s, where r,s are
nonnegative integers. Hence, taking m = r and n = s, we get the inequality
(+). W

Theorem 2. Let &, be p-functions (O convez) and let ¥ have the same
properties as in the previous theorem. Letz € § € X(®,¥) end z € Xq {or
r€ Xi) Then 2 —2 € I for allv,s > 0, and 7.52 — T — 0 in the sense of
modular convergence in I'

Proofs First, let us remark that the condition z € X(®,¥) implies that
vg(Az) < oo and rs¥(w,(Az;7,8)) < ¢ for sufficiently small A > 0 and for
sufficiently large r and s, where ¢ is an arbitrary positive number. But, an easy
computation shows that if the p-function ¢ is convex then the conditions z €
X and vg(ke) < oo for some positive constant k are equivalent. Applying this
observation and Theorem 1, we conclude that 7,,2 — 2 € IT for all nonnegative
integers r and s. In order to get the condition 7,50 — 2z — 0 in the sense
of modular convergence in T, it will be necessary to take r,s — oo, in the
inequality (»). N

Theorem 3. Letz? = (1), 9 € X, thy =1, =0 forp=1,2,... where
pv=10,1,2,..., and let 2P, p = 1,2,... belong to the ve-ball in Xo, where
® is an increasing p-function. Then the set of sequences (zF} is uniformly
bounded.

Proof: By assumption ve(kez?) € Mg for p = 1,2,..., where ko, Mo are
some positive constants. In consequence, we have :

(ko8 1) = Blkolthy — 15, — tho +th.1) < velkoz?) < My

Now, applying the properties of @-function @ we obtain that there exists a
positive constant A such that [t,| < M for p,» =0,1,2,... . B

Theorem 4. Let T', 8, be p-functions (® end ¢ are convez) and let ¥
be ¢ nonnegative, nondecreasing function of u > 0 such that ¥{u) — 0 as
w — 0+. Let us suppose that the functions ®,p,¥ and T satisfy the condi-
tion 4.2.(i). Moreover, let (zP) be o sequence such that thy = t§, = 0 for
wr=01,2...,p=L2...,2" € 37, 3% € X{(®,9),2 L0 asp — o0 in
()mf(‘i’,lll),ﬁ¢,;3w). Then 1rex? — 2P — 0 with respect lo modular convergence
wn L, as p — oo, uniformly forr > 0 and s 2 0.

Proof- The condition £ -5 0 implies that * € K, where K is a 9g-ball,
with parameters ko, Mo, and by Theorem 3 we have |t8,| < M for all p,v,p
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with an M > 0. Choosing u; = 4AM, ¢ = a2, where 0 < A < ko, and applying
the inequality (*), we obtain

(+) Z F(C)\I(Trszp)yu - (zp).uul) < bp@(’\zp)v'#{/\rp) < bMOPsp(f\Ip)-

;_‘,U:O

By assumption there exists a A > 0 such that for every € > 0 there is an integer
P for which '
Po2MEPy = inf{p, (y): y € 2AiP} < ¢

for all p > P. In consequence there exist y? € 2A%?, such that

(++) pe(yP) <eforp > P
Since
yP 4+ (222 — P 1
P2z} = py (% S pely”) + pp(2(Aa? - S47))
and .
Ey" - AxP € Z,
then we have
(+++) Po(Az?) < pu(yP), forp > P.

By the inequalities {++} and {+++) we obtain
po(Aa?) <&

for sufficiently large p. Finally, the condition {+) implies that 7,427 — 2% — 0
with respect to modular convergence in I' as p — co, uniformly for r,s > 0. B
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