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ASYMPTOTIC EQUIVALENCE
OF IMPULSIVE DIFFERENTIAL EQUATIONS
IN A BANACH SPACE

D.D. Balvov, 5.1. KoSTADINCOV AND A.D. MYSHKIS

Abstract

By means of Schauder’s fixed point theorem sufficient conditions for
asymptotic equivalence of impulsive equations in 2 Banach space are
found.

1. Introduction

Impulsive differential equations are a powerful apparatus for mathematical
simulation in physics, chemical technology, ecology, biotechnologies, impulse
technology and industrial robotics. That is why the theory of impulsive dif-
ferential equations develops actively in the last 20 years {4], [8-13], [15]. The
presence of phenomena specific for the impulsive differential equations such as
beating of the solutions, merging of the solutions, bifurcation, dying of the so-
lutions, loss of the property of autonomy, etc. makes this theory richer than
the theory of ordinary differential equations and, on the other hand, in the
investigation of impulsive differential equations a preliminary modification of
the methods used is necessary.

In relation to the mathematical simulation in theoretical physics recently the
investigation of impulsive differential equations in abstract spaces began [1],
[2]. In the present paper the asymptotic equivalence of impulsive differential
equations i a Banach space is investigated. We shall note that the asymptotic
equivalence of systems of ordinary differential equations has been investigated
by many authors (3], [5-7], [14], [18].

The present investigation is supported by the Ministry of Culture, Science and Education of
People's Republic of Bulgaria under Grant 61.
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2. Preliminary notes

Consider the impulsive equations

&) B oA d 1))

(2) z(tf)=L,2(t;7)(5 = 1,2,3,...)
and

(3) W Ay + S ¢ 1)

(4) v(t)) = (L + Hyw(t7) (G = 1,2.3,..)

in a real or complex Banach space X. Herc ¢ varies in the interval [Z, co); A(t):
X — X (for each ¢ € [f,00)) is a linear bounded operator and the operator-
valued function A(-} is continuously continuable from (¢;-1,%;) to ft;-1,2;](7 =
1,2,3,..., 4 = E]; Li+ X = X(j =1,2,3,...) are lincar bounded operators
having bounded inverse ones and L; X = X; the function f: [f,e0}x X — X is
continuosly continuable from (¢;_1,¢;)x X to [tj_1, 6] x X (7 =1,2,3,.. .}, H; :
X — X (j=1,2,8,...) the sequence T = {{;}52, satisfies the condition

ot << > 00

We assume that the solutions of equations (1), (2), {3) and (4) are continuous
from the left, thus in the conditions of a jump {2) and (4} instead of #; we shall
write ¢;. If z is a solution of equation {1}, (2) on the interval (@, 00), we shall
write z € ({1}, {2)), and analogously of equation (3), (4). An arbitrary sclution
of impulsive equation (1), (2) defined on some subinterval of [{, &) is continuable
to the whole interval which for impulsive equation {3), {4) in general is not true.

Denote by W(t,7)(f < #,7 < oo) the evolutionary operator of impulsive
equation (1), (2) associating with each elcment zp € X the solution z(1} =
W{t, m)zo of (1), (2) with condition 2(r) = ze.

The following equalities are valid

Wilt,7) = AQW (7)€ {51520, W 7) = LiW(E,7)

Assume that the space X is split up in a direct sum of the subspaces X
and X3, 1.e. X = X:1+4+X» and let Py, P; be the corresponding complementary
projectors (P, + P = I, where I is the identity operator). Set Wi(t;,t2) =
Wt )PBW L {t2) {(f = 1,2), where W(t) = W(t,1).

Let K C [t,00). Denote by S(K, X) the Banach space of all bounded func-
tions z : K — X which are continucus for ¢ # {; € K continuous from the left,
have a limit from the right, provided with the norm {||z||| = sup, ;¢ ||lz{£)}}.
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Lemma 1. Let F C S([a,00}, X}{a = T} and let the following conditions
hold:

1. There ezists a function po € S([a, 00), X) such that ||p{t) —wo(f)]| s 0

uniformly with respect to p € F.

9. The set F i3 equiconlinuous on each intervel Jo,00) N (21,4 =
1,2,3,...)

3. For each t € [a,00) the set {¢(t): @ € F} i3 relatively compact in X,

Then F is relalively compact in 5{[a,00), X }.

Lemma 1 is proved in a standard way by the construction for any ¢ > 0 of
an e-lattice for F' in the space S(Jer, 00}, X).

3. Main results

Set h; = L;lﬂj- and z; = z(t;) where {t) is an arbitrary function of ¢.

Definition 1. The impulsive equations {1}, (2) and (3}, {4) are called asymp-
totically equivalent if for any bounded solution z € ((1}, {2)}; there exists
« € [t,o0) and a solution y € ((3), (4))a such that y(f) — z(1) T 0 and,

conversely, for any bounded solution y € ({3), (4)}; there exists a solution
z € ({1), (2))7 for which y(t) — =(t) O
—00

Theorem 1. Let the following conditions hold:

1. There ezists a bounded solution 2 € ({1}, (2));.
2. There exisis a conslant K > G for which

{5) ésgp’ Wi (2, 8)f(s, )l ds + Y szip“||wl(:,tj)hj(z)||+

Tty <t

+oup | [ s [Walr ) f(sllds £ Y supt Wty | 7, 0

T<rgt |t 142 <oo

where sup’, is taken over the sel {z € X : ||z — z(s)|| £ R} end sup/
over the set {z € X : ||z — z;|| £ R}.
3. The set f{(t,2):t <t < oo,l||lz—z(t)|| € R} 13 relatrvely compact in X.
4, For j = 1,2,3,... the mappings H; are conlinuous on the bolls B; =

oo

{z € X : ||z — z;]| € R} and the set |J hj{B;} is relatively compact in
=1

X.

Then for some o € [t,00) there ezists a solution y € {(3,(4))s for which
ytt) — z(t) = 0. If, moreover, the lefi-hand side of the relation in {5} {as o
—00
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funclion of t) belongs to the space Lp(t,c0) for some p € [1,c0], then |Jy(t) —
#(t}|] € Lp{@, 00}

Proof: Denote the left-hand side of relation (5) by F(t) and choose o >
so large that F(t) € Rfort > a. Theset D = {z € S{[o,00), X} : |||z -
z|ja,o0)|]] £ R} is nonempty, convex, closed and bounded.

On D define the operator { by means of the formula

(6) (Qz)(t)=x(t}+f Wilt,s)f(s,2(s))ds + D Wilt,t)hs(z;)—

oty <1

- fthz(f‘S)f(S}Z(S))ds— S Wity )hilz)

t<t; <oo

where z € Dt € [@,00}. The convergence of the improper integral and the
series in (6) follws from the fact that F(?) < co.

We shall show that the operator @ satisfies the conditions of Schauder’s fixed
point thecrem. .

1. @ : D — D. In fact, from the uniform convergence of the improper
integral and the series in the right-hand side of equality (6) and from the choice
of a it follows that @z € §{[a,00), X) and that (@)t} -z} S R, a £t <
0o,

2. The operator { is continuous. In fact, let € > 0 be an arbitrarily chosen
number and let £ > a be choosen so that F(s) < § fors 2 & Let 2,z € D
and o £t €& Then

II(Qz)(t)—(sz)(f)IISf W1t s)f (51 2(s)) — fs, (s}l ds+

3
+ / IWalt, $){F(s, 2()) ~ s, 21 ()l ds+
+ 3D W )z - hi(all+
Q‘SIJ{C
+ ) BWalt,t)lhs(z;) — hi(zi)li+
15t <€

+ [{ Wty )l 2(5)) = s, za())] dst
+ Y Wl g)[Rs(z;) — Rzl

£t <oo

Due to the continuity of the functions f and h; for a fixed function z; a
number 7 > 0 can be found such that for |||z — 21]|| < » each of the first four
addends in the right-hand side of the last inequality should be smaller than



IMPULSIVE DIFFERENTIAL EQUATIONS IN A BANACH SPACE 253

£. But then the right-hand side of the last inequality becomes smaller than
4£ 4+ 2£ + 2§ = ¢. For t > £ the following inequalities are valid

I{Q2)() — (Qa Xl < {Q2)) — =)l + (@=:)(2) — =(B)ll < 2% <e

Hence the operator { is continuous.

3. We shall show that the set QD is relatively compact in [}, For this
purpose we shall show that the conditions of Lemma 1 are fulfilled for F' =
QD, ¢o = z. Condition 1 of Lemma 1 follows immediately from relation (5).

We shall show that condition 2 of Lemma 1 holds. Let z € D and t',¢" €
{tx-1,t5) for some K where ¢ < t". Then, after elementary transformations

we obtain the equality
(@2E) ~ @a)(E") =a(t) — 2(t") = [ WAl o) (o, o(e)) -

_/ [WA(t", 8) — W(t', )| f (s, 2(s)) ds+

+ 0 (L) - WAl k()

oty <l

-/V Wal#',s)f(s,z(s) ) ds—
- [m[WE{t'aS) — Walt",s)| f((s, 2(s)) ds—

I

= S IWalt t;) — Walt", ¢ )Ri(z5),

=k

from which we deduce the estimate
I{Q2)(#") — (@)™ < ll=(t) — ("} + /: W1 (#", s)f(s, z(s))ll ds+

" / WY = W P~ (5)F (s 2(s))l ds+

+ > W) - WEDIIPW ™ ()85 (z)lI+

[ TR 1Y
+/v (Wa(t', s)f (s, 2(s))ll ds+
+ [T W e) - w6 s, el ds

+ Y W) = WP W T (#5)h(25)
i=k
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Denote by [1,...,I7 the successive addends in the right-hand side of the
last inequality and assume that ¢ —t' — 0. Then I, — 0 since z € S([f, 00), X).
I,, Iy — 0 because of the uniform {with respect to z,¢',#' ) boundedness of
the integrand., I3y — 0 and I; — 0 since under the signs of the integral and of
the sum the first factor tends vniformly to zero and the second one is uniformly
bounded. Represent g for £ > i in the form

o= [+ [ < [ W) - W 1R ) s el s + 2P ()

The second addend in the last mequality can be made arbitrarily small
for a sufficiently large value of £. For f fixed and #" — ' small enough the first
addend can also be made uniformly arbitrarily small (analogously to I3}. Hence
Is — 0. Analogously it is proved that I; — 0.

Thus the equicontinuity of the set QD on the interval (ti_1,tz] Is proved.

In order to verify condition 3 of Lemma 1, first we shall show that for t €
[, 00) the set { f° Wa(t, s)f(s, 2(s)) ds : z € D} is relatively compact in X. Let
¢ > 0 be arbiirerily chosen. Choose £ > # so that || ffm Wa(t,s)f(s, 2(5)}ds|| <
£ for all z € D. The set {W'(s)}f(s,2(s)) : t £ s £ &,z € D} is rela
tively compact in X. Hence the seis {ff W=(s)f(s,2(s))ds : z € D} and
{ff Walt,s)f(s,2(sDds : z € D} are also relatively compact subsets of X.
For the last set we choose a finite § -lattice- {ff Walt, s)f{s,zi(s)ds : 1 =
1,...,N;z; € D} and obtain that the set {[™ Wa(t,s)f(s,z(s))ds : i =
1,...,N} forms an e-lattice for the set {f Wa(t,s)f(s,z(s})ds : 2 € D}
which is therefore relatively compact in X.

Analopously the rclative compactness in X of the remaining addends is
verified, hence of the sum in the right-hand side of equality {6} for arbitrary
fixed ¢ € [@, co} as well when z runs over the set [J. This enables us to apply
Lemma 1.

From Schauder's theorem it follows that the operator ¢ has a fixed poing
y € D. We shall show that y € ({3}, (4))a-

Let t € [, 00)\{t,;}521- Then, in view of the fact that 2 is 2 solution of
impulsive equation (1), {2} and of the equality W1 (¢, £)+Wa(t, t) = I, we obtain

() ¥'t)={(Qy)'(t) =
= z'(8) + Wa(t, ) f (¢, () + A(t)] Wilt, s)f(s,u(s))ds+

+AE) Y Walttihiys) + Walt ) f (2, y(2))—

o<ty <t

- Al#) [° Walt,s)f(s,y(s))ds — A(t) Y Walt,1;)hi(y;) =

1<t < oo

= A(t)y(t) + £(t, (1))
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Let f = #; € [a,o0). Then

(8) w(t}) = (Qu)th) =

=Lizx + | LiWi(te, )f(s,9(s))ds + Y LaWilta.t;) - hiy;)-

o« okl <l
—f LiWa(te, s)f(s,9(s))ds — > LiWal(tr,t;)h5(y;) =
£ G=kt1

= Lifye + Wi{te, tedha{yse} + Walts, tethe(ye )] =
= Lyyx + Hiye

Finally, as a2 consequence of the definition of the operator ¢} we obtain the
estimate

liw(t) — =) = [{Qu)(E) — 2()l| < F{E) (o <t < 00)

which implies all assertions of Theorem 1. B
Remark 1. For dim X < oo Theorem 1 still holds without condition 3
and the second part of condition 4.

Theorem 2. Let a solution y € ((3), (4))7 exist setisfying the condition

(9) /Tllwi(f,S)f(s‘y(S))lldH > IWatt,t)hsty)li+

1<t <t

+ [T lds+ Y W kil 2, 0
t t<t; <oo
Then there exisis a solution x € ({1}, {2))7 for which z{t) — y(2) P 0.
If for some p € [1,00] the left-hand side of relation (9 belongs i the. space
Ly(1,00), then ||z(t) — y(2)|| € Lo(2, 00} too.

Proof: For t > T define the function z by means of the formula

2(t) = y(t) ] Wilt, ) (s, g ds = 5 Walt,t;)hs(u5)+

<y <t

" j Walt,s)fls, u(sNds + 5 Walt,)h,u5)

1< oo
By a straightforward verification, analogously to {7) and (8), it is estab-

lished that = € ({1}, (2}); and has the necessary properties. B

Theorems 1 and 2 immediately imply the following theorem of asymptotic
equivalence of impulsive equations (1), (2) and (3}, (4}
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Theorem 3. Let for any R > 0 the following conditions hold:
1.

(10) j;Hf{‘g’ﬁﬂwi(fys)f(svz)"ds+ D sup [Wa(t,t)hi(2))+

Ty < 1=
+_sup | sup IWa(r,s)f(s,2)llds + ) sup [Walr. t5)R;(2)I1 = ©
e S =l 1< <o IFISR

2. The set f{{t,2) : 1 <t < o0,|lz|| £ R} 4s relatively compact in

3. The mappings H; (7 = 1,2,8,...) are continucus and the sel
U hi{z € X : ||z|| € R} is relatively compact in X,
7=1

Then the impulsive equations (1), (2) and {8}, ({) are asympiotically equiv-
alent. Moreover, if the left-hand side of relation (18} belongs for somep € [1, 0]
to the space Ly(t,00), then ||y(t) — z(t}|| € Lp{a, o) as well.

Remark 2. For dim X < oo Theorem 3 still holds without condition 2
and the second part of condition 3.
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