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Abstract

SOME CHARACTERIZATIONS
OF REGULAR MODULES

GoRo AZUMAYA

Let M be a left modula over a ring R . M is called a Zelmanowitz-regular
module if for each x E M there exists a homomorphism f : M -a R
such that f(x)x = x . Let Q be a left R-module and h : Q - M a
homomorphism . We cal¡ h locally split if for each x E M there exists a
homomorphism g : M - Q such that h(g(x)) = x . M is called locally
projective if every epimorphism onto M is locally split . We prove that
the following conditions are equivalent :

(1) M is Zelmanowitz-regular .
(2) every homomorphism into M is locally split .
(3) M is locally projective and every cyclic submodule of M is a

direct summand of M .

As generalizations of the concept of Von Neumann's regular rings to the
module case, there have been considered three types of modules by Fieldhouse
[1], Ware [4] and Zelmanowitz [5], each called regular . The Fieldhouse-regular
module was defined to be a module whose submodules are pure submodules
and the Ware-regular module was defined as a projective module in which
every cyclic submodule is a direct summand, while a left module M over a
ring R is called a Zelmanowitz-regular module if for each x E M there exists
a homomorphism f : M --+ R such that f (x)x = x. Now we introduce a
notion of locally split homomorphisms to show that a module is Zelmanowitz-
regular if and only if every homomorphism into the module is locally split,
and by making use of this we prove that Zelmanowitz-regular modules are
characterized as locally projective modules whose cyclic submodules are direct
summands . For conveniente (but at the risk of confusion), we call a module
regular if every cyclic submodule of it is a direct summand . Thus, in this
terminology, a module is Ware-regular or Zelmanowitz-regular if and only if it
is projective regular or locally projective regular respectively. Moreover we shall
see that every regular module is Fieldhouse-regular and that Ware-regular and
Zelmanowitz-regular modules are also characterized as projective Fieldhouse-
regular and locally projective Fieldhouse-regular modules respectively.

Let R be a ring with identity element . By a module we shall throughout mean
a unital left R-module, unless otherwise specified . Let Q and M be modules,
and let h : Q --> M be a (R-) homomorphism . h is called locally split if for any
xo E h(Q) three exists a homomorphism q : M -> Q such that h(q(xo )) = xo .
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Proposition 1 . Let h : Q ---> M be a locally split homomorphism. Then,
for any finite number of XI, x2, . . . , xn E h(Q), there exists a homomorphism
q : M -4 Q such that h(q(xi)) = xi for i = 1, 2, . . ., n .

Proof. In order to prove by induction, suppose that n > 1 and our assertion
is true for n - 1 (instead of n) . Then there exists a ql : M -> Q such that
h(gi(xi)) = xi for i = 1, 2, . . ., n - 1. Since xn - h(gl(xn)) is in h(Q), there
is a q2 : M -> Q such that, h(g2(xn - h(gl(xn)») = xn - h(gl(xn» . Let
q = ql -}- q2 - q2 o h o ql : M --> Q . Then h(q(xn)) = h(gl(xn)) + h(g2(xn)) -
h(g2(h(gi(xn)))) = h(gl(xn)) + h(g2(xn - h(gl(xnM) = xn, and h(q(xi)) _
h(gl(xi» + h(g2(xi» - h(g2(h(ql(xi)))) = xi + h(g2(xi)) - h(g2(xi)) = xi for
i = 1, 2, . . ., n - 1 . Thus q is a desired homomorphism .
Let N be a submodule of a module M. N is called locally split in M if

the inclusion map N --> 1V1 is locally split, Le ., for any xo E N there exists a
homomorphism s : M --> N such that s(xo) = xo .

Proposition 2. Let, h : Q -> M be a homomorphism . Denote by h' the
epimorphism Q -> h(Q) regarded h as a map onto h(Q) . Then h is locally split
if and only if h' is locally split and h(Q) is locally split in M.

Proof:: Let xo be any element of h(Q) . Suppose that h is locally split . Then
there exists a homomorphism q : M -> Q such that h(q(xo)) = xo . This implies
that the homomorphism s = h o q : M -> h(Q) satisfies s(xo) = xo, and thus
h(Q) is locally split in M. On the other hand, if we denote by q' : h(Q) - Q
the restriction of q to h(Q) then we have h'(q'(xo)) = h(q(xo)) = xo , which
shows that h' is locally split . Suppose conversely that h(Q) is locally split
in M and h' is also locally split . This means that there exist homomorphisms
s : M -> h(Q) and q' : h(Q) -> Q such that s(x o ) = xo and h'(q'(xo)) = xo . Let
q = q' o s : M -+ Q. Then we have h(q(xo)) = h'(q'(s(xo))) = h'(q'(xo)) = xo .
Thus h is locally split .

Proposition 3 . Let M be a module . Then every locally split submodule of
M is pure in M, while every locally split epimorphism from M is pure, ¡.e ., the
kernel of the epimorphism is pure in M.

Proof.. Let N be a locally split submodule of M.

	

Let x l, X2, , . . , x,, E M
satisfy the system of linear equations rilxl -i- ri2x2 + - - - -}- rinxn = vi (i =
1, 2, . . ., m), where each rij E R and vi E N. Then, by applying Proposition 1
to v 1 , v2, . . . . v,n and the inclusion map N -> M (instead of x l , x2, . . . , xn and
h : Q -> M), we can find a homomorphism s : M --> N such that s(vi) = vi
for i = 1,2, . . .,m . We have then rils(xl)+ri2s(x2)-}-----}-ri ns(xn ) = s(vi) =
Vi (i = 1, 2, . . ., m) . Since each s(xi) is in N, this shows that N is pure in M
by Cohn's theorem .

Let next h : M -> M' be an epimorphism and N the kernel of h . Let
XI , x2, . . . , xn E M satisfy the system of linear equations ril xi +-ri2x2 +
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rinxn = vi (i = 1,2,� ,m), where rij E R and vi E N. Then we have
rilh(xl)+ri2h(x2)+-+rinh(xn) = h(vi) =O(¡ = 1,2. . . . , m) . Suppose that h
is locally split . Then since each h(xj) is in h(M) = M', by applying Proposition
1 to h(xl ), h(x2), . . . , h(xn) and h : M -r M' (instead of XI, x2, . . . , xn and
h : Q -> M), we find a homomorphism q : M' -> M such that h(q(h(xj))) =
h(xj), Le., xj - q(h(xj)) E N for j = 1, 2, . . . , n .

	

From the above equalities
it follows now rilq(h(xl )) + ri2q(h(x2)) + -

	

+rinq(h(xn)) = 0 and therefore
rii(xi - q(h(xi))) + ri2(x2 - q(h(x2)) + . . . + rin(xn - q(h(xn)) = vi (i =
1, 2, . . . , m) . This implies that N is pure in M again by Cohn's theorem .

Remark. The notion of locally split submodules was introduced by Rama-
murthi and Rangaswamy (2] by the name of strongly pure submodules, and
they actually obtained the first half of the preceding proposition.

Theorem 4. Let M be a left R-module . Then the following conditions are
equivalent :

(1) M is a Zelmanowitz-regular module .
(2) Every homomorphism into M (from any module) is locally split.
(3) Every homomorphism R -> M is locally split.

Proof.. (1) => (2) : Let Q be a module and h : Q -> M a homomorphism .
Let xo be any element of h(Q). Choose a zo E Q such that h(zo) = xo . Since
M is Zelmanowitz-regular, there exists a homomorphism f : M �+ R such that
f(xo )xo = xo. Define a homomorphism q : M -> Q by q(x) = f(x)zo for
x E M. Then we have h(q(xo)) = f(xo )h(zo ) = f(xo )xo = xo, which shows
that h is locally split .

(2) =~> (3) is trivial .
(3) => (1) : Let xo be any element of M. Let g : R --> M be the homomor-

phism defined by g(r) = rxo for r E R. Then g is locally split, so that there
exists a homomorphism f : M --+ R such that xo = g(f(xo)) = f(xo)xo . This
shows that M is Zelmanowitz-regular .

Now we call a module M a regular module if Every submodule ofM is locally
split inM.

Proposition 5. Let M be a module . Then the following conditions are
equivalent :

(1) M is a regular module .
(2) Every finitely generated submodule ofM is a direct summand ofM.
(3) Every cyclic submodule ofM is a direct summand of M.

Proof: (1) => (2) : Let N = Rxl + Rx2 + - . . + Rxn be a finitely generated
submodule of M. Since M is regular, N is locally split and therefore, by
applying Proposition 1 to the inclusion map N -f M (instead of h : Q -~
M), we can find a homomorphism s : M -+ N such that s(xi) = xi for i =
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1, 2, . . . , n, or equivalently, s(x) = x for all x E N . This implies that N is a
direct summand of M.

(2) =~> (3) is trivial .
(3) => (1) : Let N be a submodule ofM. Let xo be any element of N. Then

the cyclic submodule Rxo is a direct summand of M, which means that there is
a homomorphism s : M -> Rxo(C N) such that s(xo) = xo . Thus N is locally
split in M.

It is to be pointed out that every submodule of a regular module is regular
too, and every regular module is Fieldhouse-regular, i .e ., every submodule is a
pure submodule .
A module M is called locally projective if every epimorphism onto M (from

any module) is locally split . It follows from Proposition 3 that every locally
projective module is fiat, since a flat module is characterized as a module onto
which every epimorphism is puro . The notion of locally projective modules
was introduced by Zimmermann-Huisgen [6] and also by Raynaud and Gruson
[3] under the narre of flat strict Mittag-Leffler modules . Their definitions are
apparently different from the above one . But the following proposition implies
that all the definitions coincide (if compared with [6], Theorem 2.1 and [3],
Proposition 2.3.4), and we will give a proof to the proposition for completeness :

Proposition 6 . Le¡ M be a left R-module . Then the following conditions
are equivalent :

(1) M is locally projective .
(2) For any finitely generated submodule Mo of M, there exist a finitely

generated free left R-module F aand homomorphisms f : M -> F and g : F -~
M such that g(f(x)) = x for all x E Mo.

(3) For any xo E M, there exist a finito number of homomorphisms fi
M --> R (i =

	

1, 2, . . ., n)

	

and elements yi

	

E

	

M (i

	

=

	

1, 2, . . ., n) such that
fi(x0)y1 -h f2(xo)y2 -t- . . . .f fn(xo)yn = xo .

Proof- (1) => (2) : Let Q be a free R-module having an epimorphism h
Q -+ M. Then h is locally split, so that, by applying Proposition 1 to the
finite number of generators of Mo, we can find a homomorphism q : M ---+ Q
such that h(q(x)) = x for all x E Mo. Since the imago q(Mo) of Mo is a
finitely generated submodule -of Q, there exists a finite subset {u l , u2, . . . , un}
of the free basis of Q such that q(Mo) is contained in the finitely generated free
submodule F = Rul -}- Ru2 + - . . -f- RUn of Q . Since F is a direct summand of
Q, there exists a homomorphism p : Q -> F such that p(z) = z for all z E F.
Let f = p o q : M -+ F, and let g : F -> M be the restriction of h to F. Then
they clearly satisfy g(f(x)) = x for all x E Mo .

(2) => (3) : Let xo E M. Since Rxo is finitely generated, there exist a finitely
generated free R-module F and homomorphisms f : M -> F, g : F --> M such
that g(f(xo)) = xo .

	

Let ul, u2, . . . , un be a free basis of F.

	

Then we can, for
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each i, define a homomorphism fi : M -+ R by f(x) = f1(x)u1 +f2(x)u2
. . . + fn (x)un for x E M. Let yi = g(ui) E M for i = 1, 2, . . ., n . Then we have
x0 = g(f(xo)) = fl(x0)yl + f2(xo)y2 + - . . + fn(xo)yn .

(3) => (1) : Let Q be any R-module having an epimorphism h : Q -+ M.
Let xo E M, and let fi : M --+ R and yi E M (i = 1, 2, . . ., n) be as in (3) .
Let zi E Q be such that h(zi) = yi for each i, and define a homomorphism
q : M --> Q by q(x) = f1(x)z1 -1- f2(x)z2 +- . . + fn(x)zn for x E M. Then we
have that h(q(xo )) = f1(x0)y1 + f2(xo)y2 + --- + fn(xo)yn = xo . Thus h is
locally split, so that M is locally projective .

Proposition 7 . Leí M be a locally projective module, and leí N be a pure
submodule of M. Then N is locally projective and is locally split in M.

Proof.. Let xo be any element ofN. By the preceding proposition, there exist
homomorphisms fi : M -+ R and elements yi E M (i = 1, 2, . . ., n) such that
f1(x0)y1 + f2(xo)y2 + --- + fn(xo)yn = xo . Since N is pure in M, we can find
elements v1,v2, . . .,vn in N such that f1(xo)v1+f2(xo)v2+--'+fn(xo)vn = xo
according to Cohn's criterion . Now we define a homomorphism s : M -~ N
by s(x) = f1(x)v1 + f2(x)v2 + - - - + fn(x)vn for x E M. Then we have that
s(xo) = xo . Thus N is locally split in M. On the other hand, if we denote by
gi the restriction of fi to N then clearly we have that g1(x0)v1 + g2(xo)v2 +
. . . + gn(xo)vn = xo, which shows that N is locally projective .

Remark. That N is locally projective in Proposition 7 was mentioned in
[6, p . 236] .

Theorem 8. Leí M be a module . Then the following conditions are equiv-
alent:

(1) M is a Zelmanowitz-regular module .

(2) M is a locally projective regular module .

(3) M is locally projective and Fieldhouse-regular (i .e ., every submodule of
M is pure in M).

Proof.. (1) =* (2): If M is Zelmanowitz-regular, it follows from Theorem 4
that every epimorphism onto M is locally split and every monomorphism into
M is locally split, which mean that Mis locally projective and regular respec-
tively . (Another proof for the local projectivity of M can be obtained directly
from Proposition 6, for that for any xo E M there exists an homomorphism
f : M --> R such that f(xo)xo = xo implies that M satisfies the condition
(3) in Proposition 6 with n = 1, fl = f and y1 = xo. That a Zelmanowitz-
regular module is regular, Le., every cyclic submodule of the module is a direct
summand, is also proved in [5, Theorem 1.6] .

(2) => (3) is a consequence of the fact, due to Proposition 3, that every locally
split submodule is a pure submodule .
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(3) => (1) : Let Q be a module and'h : Q -+ M a homomorphism . Since
h(Q) is a pure submodule of M by assumption, it follows from Proposition 7
that h(Q) is locally projective and is locally split in M. Regarding h as a map
onto h(Q) we have an epimorphism h' : M -> h(Q), but the local projectivity
of h(Q) implies that h' is locally split . Therefore, by Proposition 2, h is locally
split . Thus, M is Zelmanowitz-regular according to Theorem 4 .

Remark 1 . Although we throughout assume that R has an identity element,
the paper [5J deals with modules over rings without identity element .
Remark 2. It is pointed out in [6] that over a regular ring a module is locally

projective if and only if it is Zelmanowitz-regular . But this can be regarded as
a particular case of Theorem 8, because over a regular ring every module is flat
and hence is Fieldhouse-regular .

In this connection, we would like to mention of some properties of regular
modules and locally projective modules :

1 . If M is a regular R-module then its Jacobson radical J(M) is zero, and
ifM is a faithful regular R-module then the Jacobson radical J(R) of R is zero .

The proof is actually given in [4], though regular modules in [4] mean
projective regular modules in the present paper . Namely, if xo is in J(M) then
Rxo is a direct summand small submodule ofM and therefore xo = 0 , which
implies J(M) = 0. Since J(R)M C J(M), it follows J(R) = 0 if M is faithful
and regular .

2. If M is a locally projective R-module then J(R)M = J(M).
For, let x o be in J(M); then by Proposition 6 there exist a finite number

of homomorphisms fi : M --> R and elements yi in M (i = 1, 2, . . ., n) such
that fl(xo)yl + f2(xo)y2 +

	

+ fn(xo)yn = xo .

	

Let L be a maximal left
ideal of R. Then its inverse image by fi is either equal to M or a maximal
submodule ofM and therefore contains J(M), or equivalently, fi(J(M» C L .
Since this is true for every, maximal left ideal L, it follows fi(J(M» C J(R)
and in particular fi(xo) E J(R). This is true for each i = 1, 2, . . . , n, so that
we have xo E J(R)M. Thus we know that J(M) C J(R)M.

3 . A module M is Fieldhouse-regular if (and only if) every finitely gener-
ated submodule of M is pure in M.

This is because Cohn's criterion for purity is concerned only with finite
number of elements .

Proposition 9. Let M be - a Zelmanowitz-regular module, and let S be the
endomorphism ring of M. Then, as an S-module, M is Zelmanowitz-regular
too, and the Jacobson radical J(S) of S is zero .

Proof.. We considerM a right S-module and hence a two-sided R-S-module ;
thus st = t o s for all s, t E S . Let xo be an element ofM. Then there exists
a homomorphism f : M -> R such that f(xo )xo = xo . Let y E M. Then the
mapping x ~-+ f(x)y for x E M is an endomorphism of M, which we denote
by y E S. If s E S, we have f(x)(ys) = (f(x)y)s for all x E M, Le ., ys = ys .
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This implies that the mapping y >-> y for y E M is a homomorphism M -+ S
as S-modules . If we denote this by g then we have f(x)y = xg(y) for all x,
y E M. (In the notation in [5], g(y) = [f, y] for all y E M .) It follows in
particular that xo = f(xo)xo = xog(xo) . This shows that the S-module M
is Zelmanowitz-regular . Since M is a faithful S-module, we have J(S) = 0
according to the above mentioned property 1 .

Now, clearly a locally projective module is projective if it is finitely generated,
but this is true even if it is countably generated :

Proposition 10. Every countably generated locally projective module is pro-
jective.

Proof.. If we observe the fact that every locally projective module is a Mittag-
Leffler module, our proposition can be regarded as a particular case o£ [3],
Corollaire 2.2 .2 . But we shall for completeness give a proof which is valid for
our case . Let M be a locally projective R.-module with countably generators
x1, x2, x3, . . . . Let Ml = Rx1 . By Proposition 6 there exist a finitely generated
free R-module F1 and homomorphisms fl : M -~ F1, g1 : F1 --+ M such that
g1 (f, (x» = x for all x E Ml . Let next M2 = g1 (F1) + Rx2 . Since M2 is
finitely generated, again by Proposition 6, there exist a finitely generated free
R-module F2 and homomorphisms f2 : M --> F2, 92 : F2 -> M such that
g2(f2(x)) = x for all x E M2 . In this way, for each n > 1, we can find a finitely
generated free R-module F� and homomorphisms f,, : M -4 F,,, gn : F� -+ M
such that gn(f,,(x)) = x for all x E M,, = g�_1(F�_ 1 ) + Rx n . But this is
clearly equivalent to that gn(f� (gn-1(y))) = 9n-1(y) for all y E F� _1 and
gn(fn(xn)) = xn . From this follows then that gn o f,, o gn_ 1 = g._1 whence
gn_1(Fn_1) C gn(F.) and x �, E g,(Fn ). Thus we have an ascending chain
g1(F1) C g2(F2) C g3(F3) C . . . of submodules of M whose union is equal to
M. For simplicity, we put s � = gn o fn : M - gn(F.) for each n. Then s is an
endomorphism ofM satisfying sn ogn_ 1 = gn-1 and hence sn o s � _1 = s a _1 for
each n > 1 . Moreover we point out that sn o g,. = gr and sn o s,. = s, . whenever
n > r, because if r < n then gr(F,) C gn-1(Fn-1) and SO sn(gr(y)) = gr(y) for
allyEFr .

Let F be the direct sum of all Fn 's . Then F is a countably generated free R-
module . The homomorphisms g,, : Fn --> M for n = 1, 2, 3, . . . together define a
homomorphism g : F --> M in the natural manner . The image g(F) is the sum
of all gn(Fn)'s and hence is equal to M, because even their union isM. Thus g is
an epimorphism . In order to prove that Mis projective, it is therefore sufficient
to show that g splits, Le ., there exists a homomorphism f : M -> F such that
g o f = 1, the identity map of M. Let now qn : Fn -> F be the canonical
embedding for n = 1, 2, 3 . . . . Then we have g o qn = gn for each n. We shall
construct a homomorphism hn : Fn -> F for each n such that g o hn, = g � and
h,L o fn o gn-1 = hn+1 o fn+1 o gn-1 if n > 1 . For this purpose, let first h1 = q1 .
Then g o h1 = g1 . Suppose n. > 1 and there is given an hn : Fn -> F such
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that g o hn = gn . We define h,,+1 = (hn o fn + qn+2 0 fn+2 0 (1 - Sn)) 0 9n+1 .
Then we have g o hn+1 = (g o hn 0 fn + 9 0 qn+2 0 fn+2 0 (1 - S n )) 0 9n+1 =

(9n O fn + 9n+2 0 fn-2 O (1 - Sn )) O 9n+1 = (S n + Sn+2 0 (1 - S n )) O gn+1 =

(Sn + Sn+2 - Sn+2 0 Sn) O gn+1 = sn+2 o gn+1 = gn+1 - On the other hand, we
have hn+1 0 fn+1 0 9.-1 = (hn 0 fn + qn+2 0 fn+2 0 (1 - Sn)) 0 s n+1 0 gn-1 =
(hn O fn + qn+2 O fn+2 O ( 1 - Sn))o9nn - 1 = hn O fn O gn-1 + qn-2 o fn-2 O gn-1 -
qn _2 0 fn_2 0 S n 0 gn_1 = hn o fn 0 gn-1 . Thus by induction we get a desired
sequence of homomorphisms h n(n = 1, 2, 3 . . . . ) .

Let x E M. Then there exists an n > 1 such that x E gn-1(Fn_1) Le., x =
gn-1(y) for sume y E Fn_1 . We have then that hn(fn(x)) = hn(fn(9n_1(y») =

hn+1(fn+1(9n-1(y))) = hn+1(fn+1(x))- Moreover, since x E gn(Fn) in this
case, by replacing n by n+l we should have that hn+1(fn+1(x)) = hn+2(fn+2(x)) .
Continuing in this way, we confirm that hn(fn(x)) = h,n(fn,(x)) for every
m > n . This shows that hn(fn(x)) is independent of the choice of n so far as
x is in gn -1(Fn_1) . Thus by defining f(x) = hn(fn(x)) for x E M we have
a homomorphism f : M --> F, which satisfies g(f(x)) = gn(fn(x)) = x (since
x E gn-1(Fn_1» . This completes our prooL

It is to be pointed out that the preceding proposition .can be regarded as a
generalization of [5, Corollary 1.7 .] .
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