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SOME CHARACTERIZATIONS
OF REGULAR MODULES

GORO AZUMAYA

Abstract

Let M be a left module over 2 ring R. M is called a Zelmanowitz-regular
modnle if for each z € M there exists a homomorphism f @ M — A
such that f(zjr = z. Let @ be a left R-module and h : @ — M a
homomorphism. We call & locally spiit if for each £ € M there exists &
homomorphism ¢ « M — @ such that A{g{z)) = z. M is called localiy
projective il every epimorphism onto M is locally split. We prove that
the following conditions are equivalent:

{1} M is Zelmanowitz-regular.

{2} every homomorphism into M is locally split.

{3) M is locally projective and every cyclic submodule of M 15 a
direct summand of M.

As generalizations of the concept of Von Neumann's regular rings to the
module case, there have been considered three types of modules by Fieldhouse
[1], Ware [4] and Zelmanowitz |5], each called regular. The Fieldhouse-regular
module was defined to be a module whose submodules are pure submodules
and the Ware-regular module was defined as a projective module in which
every cyclic submodule is a direct summand, while a left module M over a
ring R is called a Zelmanowitz-regular module if for each » € M there exists
a homomorphism f : M — R such that f(z)r = z. Now we introduce a
notion of locally split homomorphisms to show that a module is Zelmanowitz-
regular if and only if every homomorphism into the module is locally sphit,
and by making use of this we prove that Zelmanowitz-regular modules are
characterized as locally projective modules whose cyclic submodules are direct
summands. For convenience (but at the risk of confusion), we call a module
regular if every cyclic submodule of it is a direct summand. Thus, in this
termineclogy, a module is Ware-regular or Zelmanowitz-regular if and only if it
is prejective regular or locally projective regular respectively. Moreover we shall
see that every regular module is Fieldhouse-regular and that Ware-regular and
Zelmanowitz-regular modules are also characterized as projective Fieldhouse-
regular and locally projective Fieldhouse-regular modules respectively.

Let R be a ring with identity element. By a module we shall throughout mean
a unital left F-module, unless otherwise specified. Let ¢ and M be modules,
andlet h : @ — M be a (R—) homomorphism. h is called locally split if for any
Te € A{Q) there exists a homomorphism ¢ : M — ¢} such that A{g{xe)) = z.
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Proposition 1. Let A : @ — M be a locally split homomorphism, Then,
for any finite number of z1,72,...,T4 € h{(Q), there exists a homomorphism
g M > Q such thet h{g(zi)) = z; fori=1,2,.. . ,n.

Proof: In order to prove by induction, suppose that n > 1 and our assertion
is true for n — 1 (instead of n). Then there exists a ¢) 1 M — @} such that
Mgz = zifor 1 = 1,2,...,n — 1. Since z,, — A{g:{z,.}) is in A(Q), there
isa g ' M — @ such that h{g{z, — R{1{2:}))) = 2o — R{qi(z,s)). Let
g=qn+q@-q@ohoq: M — Q. Then h(¢(xs)) = b{q1(zn)) + h{g2(z2)) -
h(a2(A(01(30)))) = A(@1(2n)) + b(ae(zn — K@1(2a)))) = 20, 2nd Alg(zs)) =
has{o0)) + Baa(:) — hga(has (20)) = 21 + h(x(z)) — haa(es)) = 21 for
1 =1,2,...,n — 1. Thus ¢ is & desired homomorphism.

Let N be a submodule of a module M. N is called locally split in M if
the inclusion map N — M is locally split, i.e., for any zo € N therc exists a
homomorphism s : M — N such that s{zg} =z¢. B

Proposition 2. Let h : @ — M be @ homomerphism. Dencle by &' the
epimorphism @@ — h(Q)) regarded h as o map onle A{Q). Then h is locally split
if and only if k' is locally splil and h{Q) is locally split in M.

Proof: Let 29 be any element of h(Q)). Suppose that & is locally split. Then
there exists a homomorphism ¢ : M — @ such that k{¢{ze)) = z¢. This implies
that the homomorphism s = hog: M — h{Q) satisfies s(z¢) = 20, and thus
R{Q2) is locally split in M. On the other hand, if we denote by ¢' : K{(@) — §
the restriction of g to h({)) then we have h'(¢'(zo)) = h{g(zo)) = =g, which
shows that k' is locally split. Suppose conversely that h{(Q} is locally split
in M and k' is alse locally split. This means that there exist homomorphisms
st M — h(Q)and ¢' : A{Q) — @ such that s(zg) = zo and A'{¢'(z9)) = 2. Let
g=¢ os: M — Q. Then we have h{g{zo)) = K {¢'(s(z6)}) = P {¢'(z9)) = z».
Thus h is locally split. B

Proposition 3. Let M be o module. Then every locally split submodule of
M 18 pure sn M, while every locally split epimorphism from M is pure, i.e., the

kernel of the epimorphism is pure in M.

Proof: Let N be a locally split submodule of M. Let xy,23,...,2, € M

satisfy the system of linear equations rj;z; + rjeze + -+ + rinTn = v; (I =
1,2,...,m), where each r;; € R and v; € N. Then, by applying Proposition 1
to vy, v2, ..., U, and the inclusion map N — M (instead of zy,22,...,2, and

h: @ — M), we can find a homomorphism s : M — N such that s{v;} = v
for: =1,2,...,m. We have then rj1s(z1) +ries(z2) + -+ rins{zyn) = s{v;) =
v; (i = 1,2,...,m). Since each s{z;) is in N, this shows that N is pure in M
by Cohn’s theorem.

Let next h : M — M’ be an epimorphism and N the kernel of k. Let
z1,Z3,...,Zy € M satisfy the system of linear equations rizi +7i2ze + - +
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Tin®n = v; {# = 1,2,...,m), where r;; € R and v; € N. Then we have
rivh{zy)+rih{z2) 4+ +rinh(zn) = R{v:i) =0{i = 1,2,...,m)}. Suppose that
is locally split. Then since each h{z;)isin A{M} = M"', by applying Proposition
1to k{z ), A(z2),...,A{z,) and A : M — M’ (instead of z1,%2,...,%, and
h: @ — M}, we find a homomorphism ¢ : M’ — M such that h{g(h(z;})) =
h(z;} re., z; — g(h(z;)) € N for j = 1,2,...,n. From the above equalities
it follows now riyglh{z)}) + rizg(h{z2)) + -+ + ringlh{z,}} = 0 and therefore
ri{zy — q(h{z1))) + ralze — g(h(z2}) + - + rinlzn — g(h(z4)) = v (1 =
1,2,...,m}. This implies that N is pure in M again by Cohn’s theorem. @

Remark. The notion of locally split submodules was introduced by Rama-
murthi and Rangaswamy [2] by the name of strongly pure submodules, and
they actually obtained the first half of the preceding proposition.

Theorem 4. Let M be o left R-module. Then the following conditions are
equivalent:

(1) M is e Zelmanowitz-regular module.

{2) Every homomorphism inio M (from any module) is locally split.

{3) Every homomorphism R — M is locally split.

Proof: (1) = {2) : Let @ be a module and & : ¢ — M a homomorphism.
Let 24 be any element of k{Q). Choose a zy € @ such that h{z) = z¢. Since
M is Zelmanowitz-regular, there exists a homomorphism f : M — R such that
flzo}ze = xe. Define a homomorphism ¢ + M — @ by ¢(z) = Flz)z for
z € M. Then we have h{g{zo}) = flzo)h{za) = f(zo)zo = zo, which shows
that k is locally split. :

(2) = (3) 1s trivial

(3) = {1} : Let rq be any element of M. Let ¢ : R — M be the homomor-
phism defined by g(r) = rzp for r € R. Then ¢ is locally split, se that there
exists a homomorphism f : M — R such that zo = ¢(f(z¢)) = f(z0)zo- This
shows that M is Zelmanowitz-regular. B

Now we call a module M a regular module if every submodule of M is locally
split in M.

Proposition 5. Let M be o module. Then the following conditions are
equivalent:

(1) M s e regular module,

(2) Evwery finttely generated submodule of M is a direct summand of M.

{3) Every cyclic submodule of M i3 a direct summand of M.

Proof: {1) = (2} : Let N = Rz; + Rz + .- + Rz, be a finitely generated
submodule of M. Since M is regular, N is locally split and therefore, by
applying Proposition 1 to the inclusion map N — M {instead of h : ¢ —
M3}, we can find a homomorphism s : M — N such that s(z;) = z; for i =
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1,2,...,n, or equivalently, s{x) = z for all x € N. This implies that N is a
direct summand of M.

(2} = (3} 1s trivial.

(3) = (1) : Let N be a submodule of M. Let 2y be any element of N. Then
the cyclic submodule Rxp is a direct summand of M, which means that thereis
a homomaorphism s : M — Rxo(C N) such that s(we) = wo. Thus N is locally
splitin M. B

It 1s to be pointed out that every submodule of 2 regular module is regular
too, and every regular module is Fieldhouse-regular, 1.e., every submodule is a
pure submaodule.

A module M is called locally projective if every epimorphism onto M (from
any module) is locally split. It follows from Proposition 3 that every locally
projective module is flat, since a flat module is characterized as a module onio
which every epimorphism is pure. The notion of locally projective modules
was introduced by Zimmermann-Huisgen [6] and also by Raynaud and Gruson
(3] under the name of flat strict Mittag-Leffler modules. Their definitions are
apparently different from the above one. But the following proposition implies
that all the definitions coincide (if compared with [6], Theorem 2.1 and [3],
Proposition 2.3.4), and we will give a proof to the proposition for completeness:

Proposition 8. Lel M be a left R-module. Then the fellowing condifions
are equivalent:

{1} M s locally projective.

(£} For any fintiely generated submodule My of M, there exist ¢ fintdely
generated free left R-module F send homomorphisms f: M 5 Fand g F —
M such thal g{f{z}) = z for all z € M.

(8) For any zq € M, there ezist ¢ finile number of homomorphisms fi -
M — R{i =12,....,n) end elements y; ¢ M (i = 1,2,...,n) such that
Filzodn + falzodyz + - + fr{zo)yn = 0.

Proof: (1) = {2): Let @ be a free R-module having an epimorphism £ :
@ — M. Then h is locally split, so that, by applying Proposition 1 to the
finite number of generators of My, we can find 2 homomorphism ¢ : M — @
such that h{g{z}) = « for all £ € M. Since the image g(Ms) of My is a
finitely generated submoduleof @), there exists a finite subset {uj,uz,...,u.}
of the free basis of Q such that g{ My} is contained in the finitely generated free
submoduie F = Hu: + Rua2 +--- + Ru, of @. Since F is a direct summand of
@, there exists a homomorphism p: @ — F such that p{z) =z forall z € F.
Let f=pog: M — F,and let g: F — M be the restriction of & to F. Then
they clearly satisfy g{f(z)) = z for all z € Ady.

(2} = (3): Let 2o € M. Since Rz is finitely generated, there exist a finitely
generated free R-module ' and homomorphisms f : M — F, g: F — M such
that g(f(xe)} = zo. Let u3,uz,...,un be 2 free basis of F. Then we can, for
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each i, define a homomorphism f, 1 M — R by f(z) = filzdhuy + falzluz +
o4 folz)u, for z € M. Let yi = glui} € Mfor:=1,2,...,n. Then we have
zo = 9(f(z0)} = filzo)yr + falzo)yz + -+ + falzo}yn.

(3) = (1): Let @ be any R-module having an epimorphism » : @ — M.
Let 2o € M,and let fi : M — Randy, € M (¢ = 1,2,...,n) be as in (3}.
Let z; € £ be such that h{z;} = y: for each i, and define & homomorphism
g: M — Q by ¢(z) = filz)zr + foz)za + - + fulz)zn for z € M. Then we
have that h{g{ze)) = filzelyr + falzo)yz + - + Folze)yn = zo. Thus h is
locally split, so that M is locally projective. W

Proposition 7. Let M be a locally projective module, and let N be ¢ pure
submedule of M. Then N is locally projective and s locally splif in M.

Proof: Let ¢ be any element of N. By the preceding proposition, there exist
homomorphisms f; : M — R and elements y; € M (1 = 1,2,...,n) such that
flzodys + falzolyz + - + fal®o)yn = 2o. Since N is pure in M, we can find
elements vi, v2,..., v, in N such that fi{ze)vy + fo{ze)oe +- -+ fafzovn = 2o
according to Cohn's criterion. Now we define a homomorphism s : M - N
by s{(z) = filz)u + felzyva + - + falaz)vn for 2 € M. Then we have that
s{zyp) = zo. Thus N is locally splhit in M. On the other hand, if we denote by
g; the restriction of f; to N then clearly we have that gi{zodvy + g2(zo)vz +
-+ + gn(xo)vn = x¢, which shows that N is locally projective. B

Remark. That N is locally projective in Proposition 7 was mentioned in
(6, p. 238).

Theorem 8. Let M be ¢ module. Then the following conditions are equiv-
alent:

(1) M is a Zelmanowitz-regular module.
{(2) M s a locelly projective regular module.

(3) M is locally projective and Fieldhouse-regular (i.e., every submodule of
M is pure in M ).

Proof: {1} = (2): If M is Zelmanowitz-regular, it follows from Theorem 4
that every epimorphism onto M is locally split and every monomorphism into
M is locally split, which mean that M is locally projective and regular respec-
tively. {Another proof for the local projectivity of M can be obtained directly
from Proposition 6, for that for any z¢ € M there exists an homomorphism
f : M — R such that f{ze)zo = xo implies that M satisfies the condition
(3} in Proposition 8 with n = 1, fi = f and y1 = xo. That a Zelmanowitz-
regular module is regular, i.e., every cyclic submodule of the module is a direct
summand, is also proved in (5, Theorem 1.6).

{2) = {3) is a consequence of the fact, due to Proposition 3, that every locally
split submodule is a pure submodule.
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(3} = (1} : Let @ be a module and h : @ — M a homomorphism. Since
h{Q) is a pure submodule of M by assumption, it follows from Proposition 7
that A(@)} is locally projective and is locally split in M. Regarding k as a map
onto A{)) we have an epimorphism &' : M — h(Q), but the local projectivity
of h(Q) implies that &' is locally split. Therefore, by Proposition 2, & is locally
split. Thus, M is Zelmanowitz-regular according to Theorem 4. B

Remark 1. Although we throughout assume that R has an identity element,
the paper (3] deals with modules over rings without identity element.

Remark 2. It is pointed out in [8] that over a regular ring a module is locally
projective if and enly if it is Zelmanowitz-reguiar. But this can be regarded as
a particular case of Theorem 8, because over a regular ring every module is flat
and hence is Fieldhouse-regular.

In this connection, we would like to mention of some properties of regular
modules and locally projective modules:

1. If M 1s o reguler R-module then ils Jacobson radical J{M} is zevo, and
if M i3 a fauthful regular R-module then the Jacobson radicel J(R) of R is zero.

The proof is actually given in [4], though regular modules in [4] mean
projective regular modules in the present paper. Namely, if zp 1s in J{M) then
Rzq is a direct summand small submodule of M and therefore 2y = 0, which
implies J(M) = 0. Since J(R)M ¢ J(M), it follows J{R} = 0 if M is faithful
and regular.

2. If M is a locally projective R-module then J(R)M = J{M).

For, let zg be in J{M); then by Proposition § there exist a finite number
of homomorphisms f; : M — R and elements y; in M (i = 1,2,...,n) such
that f](Ia)yl + fz(z‘a)yz + -+ fﬂ(m(}}yh = z9. Let L be a maximal left
ideal of R. Then its inverse image by f; is either equal to M or a maximal
submodule of M and therefore contains J{M}, or equivalently, fi{J{(M))C L.
Since this is true for every maximal left ideal L, it follows fi(J(M)) C J(R)
and in particular fi{zo) € J{R). This is true for each i = 1,2,...,n, so that
we have zp € J(R)M. Thus we know that J(M) C J{(R}M.

3. A module M i3 Fieldhouse-regular if {and only if } every finttely gener-
ated submodule of M is pure in M.

This is because Cohn's criterion for purity is concerned only with finite
number of elements.

Proposition 9. Let M be a Zelmanowiiz-regular module, and let § be the
endomorphism ring of M. Then, as an S-module, M i3 Zelmanowiiz-regular
too, and the Jacobson radicel J(S) of § is zero.

Proof: We consider M a right $-module and hence a two-sided R-S-module;
thus st = tos for all 5, ¢ € §. Let zp be an element of M. Then there exists
a homomoerphism f: M — R such that f(z¢)zo = zo. Let y € M. Then the
mapping = v f(z)y for @ € M is an endomorphism of M, which we denote
by €S Hse S, wehave flz)ys) = (f(z)y)sforall z € M, ie, J5 = §s.
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This implies that the mapping y — § for y € M is a homomorphism M — §
as S-modules. If we denote this by ¢ then we have f(xly = zg(y) for all z,
y € M. (In the notation in [3], ¢g{y) = [f,y] for all y € M.} Ii follows in
particular that zo = f(zo)}zs = 2og{zo} This shows that the S-module M
is Zelmanowitz-regular. Since M is a faithful S-module, we have J(S) = 0
according to the above mentioned property 1. B

Now, clearly a locally projective module is projective if it is finitely generated,
but this is true even if it is countably generated:

Proposition 10. Bvery countably generaied locally projective module is pro-
jective.

Proof: If we observe the fact that every locally projective module is a Mittag-
Lefler module, our proposition can be regarded as a particular case of (3],
Corollaire 2.2.2. But we shall for completeness give a proof which is valid for
our case. Let M be a locally projective E-module with countable generators
Z1,%2,%3,.... Let M = Rz;. By Proposition 6 there exisi a finitely generated
free R-module F) and homomorphisms f; : M — Fi, g1 : F2 — M such that
gi(fi(z}) = zfor all z € M;. Let next My = gi(Fi) + Rzz. Since M, is
finitely generated, again by Proposition §, there exist a finitely generated free
R-module F; and homomorphisms fz : M — Fb, g2 : F» — M such that
g2(f2(z)) = z for all = € M. In this way, for each = > 1, we can find a finitely
generated free R-module F, and homomorphisms f, 1 M — Fo, 9 F, — M
such that g.(fa(2)) = 2z for all 2 € M, = g,_1(Fa_1) + Rz,. But this is
clearly equivalent to that gn(fa(gn-1{y))) = gn_r(y) for all y € F,_ and
gn(falzn)) = 2n. From this follows then that 9. ¢ fu 0 gn_1 = gn_1 whence
Grn_1{Fnac1) C gal{F,) and z,, € ga{F,). Thus we have an ascending chain
gi{F1) C g2( ) C g3(F3} C ... of submodules of M whose unicn is equal to
M. For simplicity, we put s, = g, © fr, 1 M — ¢o(F,)} for each n. Then 5 is an
endomorphism of M satisfying 5,00,—1 = gn—1 and hence s,05,_1 = s, for
each n > 1. Moreover we point out that s,, 0g- = g, and 5, 0 s, = s, whenever
n > r, because if r < n then ¢.(F; ) C gn1(Fn-1) and 50 $,(g.(y)) = ¢-(y) for
ally € Fy.

Let F' be the direct sum of all F},’s. Then F is a countably generated free R-
module. The homomorphisms g, : Fr — M forn=1,2,3,... together definea
homomorphism g : F — M in the natural manner. The image g(F') is the sum
of all g.(F,Ys and hence is equal to M, because even their union is M. Thus g is
an epimorphism. In order to prove that M is projective, it is therefore sufficient
to show that g¢ splits, i.e., there exists a homomorphism [ : M — F such that
go f = 1, the identity map of A. Let now g, : F, — F be the canonical
embedding for n = 1,2,3,... Then we have g o g, = g, for each n, We shall
construct a homomorphism h,, : F, — F for each n such that go A, = g¢,, and
hpy 0 frn0gn 1 = Rpt10 far1 0§,y f » > 1. For this purpose, let first Ay = qi.
Then g o hy = ¢1. Suppose n > 1 and there is given an by, @ F, — F such
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that g 0 hp = g,,. We define hnp1 = (Rp 0 fu + gnt2© frpzo(l — Sn}) O gnt1-
Then we have g0 Angr = (90 a0 fo+ 90 8ns2 0 fatz0 (1l —52)) 0 gnt1 =
(gn 0 fo+ gnt20 fro2o (1 — 52)) O gnt1 = (Sn + 8p42 © (1 - Sn)) O Gnt1 =
(Sp + Snt2 = Sn42 O Sp) © gntl = Sn42 O gnt1 = atr. On the other hand, we
have hpi1 © fnt1 ©gnet = (Rn© fa + @420 far2 0 (1 — 84)) 0 8p41 0 gy =
(Rao fatgnt20 fns2 o(l—8a))egnnt— 1 =hpofoogn_1+gn_2 0 fn_20gn_y —
Gn_2 © fne2©3p @ gn_1 = hn © fn 0 gn3. Thus by induction we get a desired
sequence of homomorphisms hy{n =1, 2, 3,... }.

Let z € M. Then there exists an n > 1 such that 2 € gn_1(Fp-1) Lo, =
gn-1(y) for some y € Fa_). We have then that hn{(fa(2)} = hn(fa(gn-1{¥}))
Rasi{(Fat1{gn=1{¥))) = hat1(fas1(2)). Moreover, since z € gn(Fy) in this
case, by replacing n by n+1 we should have that ke 1(far1(2)) = hn2{fata(z)).
Continuing in this way, we confirm that h.(fa(z)) = hn(fm(z)) for every
m > n. This shows that A,(fn(z)) is independent of the choice of n 50 far as
T is in gno1{Fn_1). Thus by defining f(z) = ha(fa(z)) for z € M we have
a homomorphism f: M — F, which satisfies g{f(z)) = gn{fr(z)} = 2 {since
z € gn_1{Fn_1)). This completes our proof. B

1l

It is to be pointed out that the preceding proposition.can be regarded as a
generalization of [5, Corollary 1.7.].
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