SOME CHARACTERIZATIONS OF REGULAR MODULES

Goro Azumaya

Abstract

Let M be a left module over a ring $R . M$ is called a Zelmanowitz-regular module if for each $x \in M$ there exists a homomorphism $f: M \rightarrow R$ such that $f(x) x=x$. Let Q be a left R-module and $h: Q \rightarrow M$ a homomorphism. We call h locally split if for each $x \in M$ there exists a homomorphism $g: M \rightarrow Q$ such that $h(g(x))=x . M$ is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent: (1) M is Zelmanowitz-regular. (2) every homomorphism into M is locally split. (3) M is locally projective and every cyclic submodule of M is a direct summand of M.

As generalizations of the concept of Von Neumann's regular rings to the module case, there have been considered three types of modules by Fieldhouse [1], Ware [4] and Zelmanowitz [5], each called regular. The Fieldhouse-regular module was defined to be a module whose submodules are pure submodules and the Ware-regular module was defined as a projective module in which every cyclic submodule is a direct summand, while a left module M over a ring R is called a Zelmanowitz-regular module if for each $x \in M$ there exists a homomorphism $f: M \rightarrow R$ such that $f(x) x=x$. Now we introduce a notion of locally split homomorphisms to show that a module is Zelmanowitzregular if and only if every homomorphism into the module is locally split, and by making use of this we prove that Zelmanowitz-regular modules are characterized as locally projective modules whose cyclic submodules are direct summands. For convenience (but at the risk of confusion), we call a module regular if every cyclic submodule of it is a direct summand. Thus, in this terminology, a module is Ware-regular or Zelmanowitz-regular if and only if it is projective regular or locally projective regular respectively. Moreover we shall see that every regular module is Fieldhouse-regular and that Ware-regular and Zeimanowitz-regular modules are also characterized as projective Fieldhouseregular and locally projective Fieldhouse-regular modules respectively.
Let R be a ring with identity element. By a module we shall throughout mean a unital left R-module, unless otherwise specified. Let Q and M be modules, and let $h: Q \rightarrow M$ be a $(R-)$ homomorphism. h is called locally split if for any $x_{0} \in h(Q)$ there exists a homomorphism $q: M \rightarrow Q$ such that $h\left(q\left(x_{0}\right)\right)=x_{\theta}$.

Proposition 1. Let $h: Q \rightarrow M$ be a locally split homomorphism. Then, for any fnite number of $x_{1}, x_{2}, \ldots, x_{n} \in h(Q)$, there exists a homomorphism $q: M \rightarrow Q$ such that $h\left(q\left(x_{i}\right)\right)=x_{i}$ for $i=1,2, \ldots, n$.

Proof: In order to prove by induction, suppose that $n>1$ and our assertion is truc for $n-1$ (instead of n). Then there exists a $q_{1}: M \rightarrow Q$ such that $h\left(q_{1}\left(x_{i}\right)\right)=x_{i}$ for $i=1,2, \ldots, n-1$. Since $x_{n}-h\left(q_{1}\left(x_{n}\right)\right)$ is in $h(Q)$, there is a $q_{2}: M \rightarrow Q$ such that $h\left(q_{2}\left(x_{n}-h\left(q_{1}\left(x_{n}\right)\right)\right)\right)=x_{n}-h\left(q_{1}\left(x_{n}\right)\right)$. Let $q=q_{1}+q_{2}-q_{2}$ oho $q_{1}: M \rightarrow Q$. Then $h\left(q\left(x_{n}\right)\right)=h\left(q_{1}\left(x_{n}\right)\right)+h\left(q_{2}\left(x_{n}\right)\right)-$ $h\left(q_{2}\left(h\left(q_{1}\left(x_{n}\right)\right)\right)\right)=h\left(q_{1}\left(x_{n}\right)\right)+h\left(q_{2}\left(x_{n}-h\left(q_{1}\left(x_{n}\right)\right)\right)\right)=x_{n}$, and $h\left(q\left(x_{i}\right)\right)=$ $h\left(q_{1}\left(x_{i}\right)\right)+h\left(q_{2}\left(x_{i}\right)\right)-h\left(q_{2}\left(h\left(q_{1}\left(x_{i}\right)\right)\right)\right)=x_{i}+h\left(q_{2}\left(x_{i}\right)\right)-h\left(q_{2}\left(x_{i}\right)\right)=x_{i}$ for $i=1,2, \ldots, n-1$. Thus q is a desired homomorphism.

Let N be a submodule of a module $M . N$ is called locally split in M if the inclusion $\operatorname{map} N \rightarrow M$ is locally split, i.e., for any $x_{0} \in N$ therc exists a homomorphism $s: M \rightarrow N$ such that $s\left(x_{0}\right)=x_{0}$.

Proposition 2. Let $h: Q \rightarrow M$ be a homomorphism. Denote by h^{\prime} the epimorphism $Q \rightarrow h(Q)$ regarded h as a map onto $h(Q)$. Then h is locally split if and only if h^{\prime} is locally split and $h(Q)$ is locally split in M.

Proof: Let x_{0} be any element of $h(Q)$. Suppose that h is locally split. Then there exists a homomorphism $q: M \rightarrow Q$ such that $h\left(q\left(x_{0}\right)\right)=x_{0}$. This implies that the homomorphism $s=h \circ q: M \rightarrow h(Q)$ satisfies $s\left(x_{0}\right)=x_{0}$, and thus $h(Q)$ is locally split in M. On the other hand, if we denote by $q^{\prime}: h(Q) \rightarrow Q$ the restriction of q to $h(Q)$ then we have $h^{\prime}\left(q^{\prime}\left(x_{0}\right)\right)=h\left(q\left(x_{0}\right)\right)=x_{0}$, which shows that h^{\prime} is locally split. Suppose conversely that $h(Q)$ is locally split in M and h^{\prime} is also locally split. This means that there exist homomorphisms $s: M \rightarrow h(Q)$ and $q^{\prime}: h(Q) \rightarrow Q$ such that $s\left(x_{0}\right)=x_{0}$ and $h^{\prime}\left(q^{\prime}\left(x_{0}\right)\right)=x_{0}$. Let $q=q^{\prime} \circ s: M \rightarrow Q$. Then we have $h\left(q\left(x_{0}\right)\right)=h^{\prime}\left(q^{\prime}\left(s\left(x_{0}\right)\right)\right)=h^{\prime}\left(q^{\prime}\left(x_{0}\right)\right)=x_{0}$. Thus h is locally split.

Proposition 3. Let M be a module. Then every locally split submodule of M is pure in M, while every locally split epimorphism from M is pure, i.e., the kernel of the epimorphism is pure in M.

Proof: Let N be a locally sphit submodule of M. Let $x_{1}, x_{2}, \ldots, x_{n} \in M$ satisfy the system of linear equations $r_{i 1} x_{1}+r_{i 2} x_{2}+\cdots+r_{i n} x_{n}=v_{i}(i=$ $1,2, \ldots, m)$, where each $r_{i j} \in R$ and $v_{i} \in N$. Then, by applying Proposition 1 to $v_{1}, v_{2}, \ldots, v_{m}$ and the inclusion map $N \rightarrow M$ (instead of $x_{1}, x_{2}, \ldots, x_{n}$ and $h: Q \rightarrow M)$, we can find a homomorphism $s: M \rightarrow N$ such that $s\left(v_{i}\right)=v_{i}$ for $i=1,2, \ldots, m$. We have then $r_{i 1} s\left(x_{1}\right)+r_{i 2} s\left(x_{2}\right)+\cdots+r_{i n} s\left(x_{n}\right)=s\left(v_{i}\right)=$ $v_{i}(i=1,2, \ldots, m)$. Since each $s\left(x_{i}\right)$ is in N, this shows that N is pure in M by Cohn's theorem.

Let next $h: M \rightarrow M^{\prime}$ be an epimorphism and N the kernel of h. Let $x_{1}, x_{2}, \ldots, x_{n} \in M$ satisfy the system of linear equations $r_{i 1} x_{1}+r_{i 2} x_{2}+\cdots+$
$r_{i n} x_{n}=v_{i}(i=1,2, \ldots, m)$, where $r_{i j} \in R$ and $v_{i} \in N$. Then we have $r_{i 1} h\left(x_{1}\right)+r_{i 2} h\left(x_{2}\right)+\cdots+r_{i n} h\left(x_{n}\right)=h\left(v_{i}\right)=0(i=1,2, \ldots, m)$. Suppose that h is locally split. Then since each $h\left(x_{j}\right)$ is in $h(M)=M^{\prime}$, by applying Proposition 1 to $h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{n}\right)$ and $h: M \rightarrow M^{\prime}$ (instead of $x_{1}, x_{2}, \ldots, x_{n}$ and $h: Q \rightarrow M)$, we find a homomorphism $q: M^{\prime} \rightarrow M$ such that $h\left(q\left(h\left(x_{j}\right)\right)\right)=$ $h\left(x_{j}\right)$, i.e., $x_{j}-q\left(h\left(x_{j}\right)\right) \in N$ for $j=1,2, \ldots, n$. From the above equalities it follows now $r_{i 1} q\left(h\left(x_{1}\right)\right)+r_{i 2} q\left(h\left(x_{2}\right)\right)+\cdots+r_{i n} q\left(h\left(x_{n}\right)\right)=0$ and therefore $r_{i 1}\left(x_{1}-q\left(h\left(x_{1}\right)\right)\right)+r_{i 2}\left(x_{2}-q\left(h\left(x_{2}\right)\right)+\cdots+r_{i n}\left(x_{n}-q\left(h\left(x_{n}\right)\right)=v_{i}(i=\right.\right.$ $1,2, \ldots, m$). This implies that N is pure in M again by Cohn's theorem.

Remark. The notion of locally split submodules was introduced by Ramamurthi and Rangaswamy [2] by the name of strongly pure submodules, and they actually obtained the first half of the preceding proposition.

Theorem 4. Let M be a left R-module. Then the following conditions are equivalent:
(1) M is a Zelmanowitz-regular module.
(2) Every homomorphism into M (from any module) is locally split.
(3) Every homomorphism $R \rightarrow M$ is locally split.

Proof: (1) $\Rightarrow(2)$: Let Q be a module and $h: Q \rightarrow M$ a homomorphism. Let x_{0} be any element of $h(Q)$. Choose a $z_{0} \in Q$ such that $h\left(z_{0}\right)=x_{0}$. Since M is Zelmanowitz-regular, there exists a homomorphism $f: M \rightarrow R$ such that $f\left(x_{0}\right) x_{0}=x_{0}$. Define a homomorphism $q: M \rightarrow Q$ by $q(x)=f(x) z_{0}$ for $x \in M$. Then we have $h\left(q\left(x_{0}\right)\right)=f\left(x_{0}\right) h\left(z_{0}\right)=f\left(x_{0}\right) x_{0}=x_{0}$, which shows that h is locally split.
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (1) : Let x_{0} be any element of M. Let $g: R \rightarrow M$ be the homomorphism defined by $g(r)=r x_{0}$ for $r \in R$. Then g is locally split, so that there exists a homomorphism $f: M \rightarrow R$ such that $x_{0}=g\left(f\left(x_{0}\right)\right)=f\left(x_{0}\right) x_{0}$. This shows that M is Zelmanowitz-regular.

Now we call a module M a regular module if every submodule of M is locally split in M.

Proposition 5. Let M be a module. Then the following conditions are equivalent:
(1) M is a regular module.
(2) Every finitely generated submodule of M is a direct summand of M.
(3) Every cyclic submodule of M is a direct summand of M.

Proof: (1) \Rightarrow (2) : Let $N=R x_{1}+R x_{2}+\cdots+R x_{n}$ be a finitely generated submodule of M. Since M is regular, N is locally split and therefore, by applying Proposition 1 to the inclusion map $N \rightarrow M$ (instead of $h: Q \rightarrow$ M), we can find a homomorphism $s: M \rightarrow N$ such that $s\left(x_{i}\right)=x_{i}$ for $i=$
$1,2, \ldots, n$, or equivalently, $s(x)=x$ for all $x \in N$. This implies that N is a direct summand of M.
(2) \Rightarrow (3) is trivial.
(3) \Rightarrow (1) : Let N be a submodule of M. Let x_{0} be any element of N. Then the cyclic submodule $R x_{0}$ is a direct summand of M, which means that there is a homomorphism $s: M \rightarrow R x_{0}(\subset N)$ such that $s\left(x_{0}\right)=x_{0}$. Thus N is locally split in M.

It is to be pointed out that every submodule of a regular module is regular too, and every regular module is Fieldhouse-regular, i.e., every submodule is a pure submodule.

A module M is called locally projective if every epimorphism onto M (from any module) is locally split. It follows from Proposition 3 that every locally projective module is flat, since a flat module is characterized as a module onto which every epimorphism is pure. The notion of locally projective modules was introduced by Zimmermann-Huisgen [6] and also by Raynaud and Gruson [3] under the name of flat strict Mittag-Leffier modules. Their definitions are apparently different from the above one. But the following proposition implies that all the definitions coincide (if compared with [6], Theorem 2.1 and [3], Proposition 2.3.4), and we will give a proof to the proposition for completeness:

Proposition 6. Let M be a left R-module. Then the following conditions are equivalent:
(1) M is locally projective.
(2) For any finitely generated submodule M_{0} of M, there exist a finitely generated free left R-module F aend homomorphisms $f: M \rightarrow F$ and $g: F \rightarrow$ M such that $g(f(x))=x$ for all $x \in M_{0}$.
(9) For any $x_{0} \in M$, there exist a finite number of homomorphisms f_{i} : $M \rightarrow R(i=1,2, \ldots, n)$ and elements $y_{i} \in M(i=1,2, \ldots, n)$ such that $f_{1}\left(x_{0}\right) y_{1}+f_{2}\left(x_{0}\right) y_{2}+\cdots+f_{n}\left(x_{0}\right) y_{n}=x_{0}$.

Proof: (1) \Rightarrow (2): Let Q be a free R-module having an epimorphism h : $Q \rightarrow M$. Then h is locally split, so that, by applying Proposition 1 to the finite number of generators of M_{0}, we can find a homomorphism $q: M \rightarrow Q$ such that $h(q(x))=x$ for all $x \in M_{0}$. Since the image $q\left(M_{0}\right)$ of M_{0} is a finitely generated submodule of Q, there exists a finite subset $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of the free basis of Q such that $q\left(M_{0}\right)$ is contained in the finitely generated free submodule $F=R u_{1}+R u_{2}+\cdots+R u_{n}$ of Q. Since F is a direct summand of Q, there exists a homomorphism $p: Q \rightarrow F$ such that $p(z)=z$ for all $z \in F$. Let $f=p \circ q: M \rightarrow F$, and let $g: F \rightarrow M$ be the restriction of h to F. Then they clearly satisfy $g(f(x))=x$ for all $x \in M_{0}$.
(2) \Rightarrow (3): Let $x_{0} \in M$. Since $R x_{0}$ is finitely generated, there exist a finitely generated free R-module F and homomorphisms $f: M \rightarrow F, g: F \rightarrow M$ such that $g\left(f\left(x_{0}\right)\right)=x_{0}$. Let $u_{1}, u_{2}, \ldots, u_{\mathrm{n}}$ be a free basis of F. Then we can, for
each i, define a homomorphism $f_{1}: M \rightarrow R$ by $f(x)=f_{1}(x) u_{1}+f_{2}(x) u_{2}+$ $\cdots+f_{n}(x) u_{n}$ for $x \in M$. Let $y_{i}=g\left(u_{i}\right) \in M$ for $i=1,2, \ldots, n$. Then we have $x_{0}=g\left(f\left(x_{0}\right)\right)=f_{1}\left(x_{0}\right) y_{1}+f_{2}\left(x_{0}\right) y_{2}+\cdots+f_{n}\left(x_{0}\right) y_{n}$.
(3) \Rightarrow (1): Let Q be any R-module having an epimorphism $h: Q \rightarrow M$. Let $x_{0} \in M$, and let $f_{i}: M \rightarrow R$ and $y_{i} \in M(i=1,2, \ldots, n)$ be as in (3). Let $z_{j} \in Q$ be such that $h\left(z_{i}\right)=y_{i}$ for each i, and define a homomorphism $q: M \rightarrow Q$ by $q(x)=f_{1}(x) z_{1}+f_{2}(x) z_{2}+\cdots+f_{n}(x) z_{n}$ for $x \in M$. Then we have that $h\left(q\left(x_{0}\right)\right)=f_{1}\left(x_{0}\right) y_{1}+f_{2}\left(x_{0}\right) y_{2}+\cdots+f_{n}\left(x_{0}\right) y_{n}=x_{0}$. Thus h is locally split, so that M is locally projective.

Proposition 7. Let M be a locally projective module, and let N be a pure submodule of M. Then N is locally projective and is locally split in M.

Proof: Let x_{0} be any element of N. By the preceding proposition, there exist homomorphisms $f_{i}: M \rightarrow R$ and elements $y_{i} \in M(i=1,2, \ldots, n)$ such that $f_{1}\left(x_{0}\right) y_{1}+f_{2}\left(x_{0}\right) y_{2}+\cdots+f_{n}\left(x_{0}\right) y_{n}=x_{0}$. Since N is pure in M, we can find elements $v_{1}, v_{2}, \ldots, v_{n}$ in N such that $f_{1}\left(x_{0}\right) v_{1}+f_{2}\left(x_{0}\right) v_{2}+\cdots+f_{n}\left(x_{0}\right) v_{n}=x_{0}$ according to Cohn's criterion. Now we define a homomorphism $s: M \rightarrow N$ by $s(x)=f_{1}(x) v_{1}+f_{2}(x) v_{2}+\cdots+f_{n}(x) v_{n}$ for $x \in M$. Then we have that $s\left(x_{0}\right)=x_{0}$. Thus N is locally split in M. On the other hand, if we denote by g_{i} the restriction of f_{i} to N then clearly we have that $g_{1}\left(x_{0}\right) v_{1}+g_{2}\left(x_{0}\right) v_{2}+$ $\cdots+g_{n}\left(x_{0}\right) v_{n}=x_{0}$, which shows that N is locally projective.

Remark. That N is locally projective in Proposition 7 was mentioned in [6, p. 236].

Theorem 8. Let M be a module. Then the following conditions are equivalent:
(1) M is a Zelmanowitz-regular module.
(2) M is a locally projective regular module.
(3) M is locally projective and Fieldhouse-regular (i.e., every submodule of M is pure in M).

Proof: (1) \Rightarrow (2): If M is Zelmanowitz-regular, it follows from Theorem 4 that every epimorphism onto M is locally split and every monomorphism into M is locally split, which mean that M is locally projective and regular respectively. (Another proof for the local projectivity of M can be obtained directly from Proposition 6, for that for any $x_{0} \in M$ there exists an homomorphism $f: M \rightarrow R$ such that $f\left(x_{0}\right) x_{0}=x_{0}$ implies that M satisfies the condition (3) in Proposition 6 with $n=1, f_{1}=f$ and $y_{1}=x_{0}$. That a Zelmanowitzregular module is regular, i.e., every cyclic submodule of the module is a direct summand, is also proved in [5, Theorem 1.6].
$(2) \Rightarrow(3)$ is a consequence of the fact, due to Proposition 3, that every locally split submodule is a pure submodule.
(3) \Rightarrow (1) : Let Q be a module and $h: Q \rightarrow M$ a homomorphism. Since $h(Q)$ is a pure submodule of M by assumption, it follows from Proposition 7 that $h(Q)$ is locally projective and is locally split in M. Regarding h as a map onto $h(Q)$ we have an epimorphism $h^{\prime}: M \rightarrow h(Q)$, but the local projectivity of $h(Q)$ implies that h^{\prime} is locally split. Therefore, by Proposition 2, h is locally split. Thus, M is Zelmanowitz-regular according to Theorem 4.

Remark 1. Although we throughout assume that R has an identity element, the paper [5] deals with modules over rings without identity element.

Remark 2. It is pointed out in [6] that over a regular ring a module is locally projective if and only if it is Zelmanowitz-regular. But this can be regarded as a particular case of Theorem 8, because over a regular ring every module is flat and hence is Fieldhouse-regular.

In this connection, we would like to mention of some properties of regular modules and locally projective modules:

1. If M is a regular R-module then its Jacobson tadical $J(M)$ is zero, and if M is a faithful regular R-module then the Jacobson radical $J(R)$ of R is zero.

The proof is actually given in [4], though regular modules in [4] mean projective regular modules in the present paper. Namely, if x_{0} is in $J(M)$ then $R x_{0}$ is a direct summand small submodule of M and therefore $x_{0}=0$, which implies $J(M)=0$. Since $J(R) M \subset J(M)$, it follows $J(R)=0$ if M is faithful and regular.
2. If M is a locally projective R-module then $J(R) M=f(M)$.

For, let x_{0} be in $J(M)$; then by Proposition 6 there exist a finite number of homomorphisms $f_{i}: M \rightarrow R$ and elements y_{i} in $M(i=1,2, \ldots, n)$ such that $f_{1}\left(x_{0}\right) y_{1}+f_{2}\left(x_{0}\right) y_{2}+\cdots+f_{n}\left(x_{0}\right) y_{n}=x_{0}$. Let L be a maximal left ideal of R. Then its inverse image by f_{i} is either equal to M or a maximal submodule of M and therefore contains $J(M)$, or equivalently, $f_{i}(J(M)) \subset L$. Since this is true for every maximal left ideal L, it follows $f_{i}(J(M)) \subset J(R)$ and in particular $f_{i}\left(x_{0}\right) \in J(R)$. This is true for each $i=1,2, \ldots, n$, so that we have $x_{0} \in J(R) M$. Thus we know that $J(M) \subset J(R) M$.
3. A module M is Fieldhouse-regular if (and only if) every finitely generated submodule of M is pure in M.

This is because Cohn's criterion for purity is concerned only with finite number of elements.

Proposition 9. Let M be a Zelmanowitz-regular module, and let S be the endomorphism ring of M. Then, as an S-module, M is Zelmanowitz-regular too, and the Jacobson radical $J(S)$ of S is zero.

Proof: We consider M a right S-module and hence a two-sided R - S-module; thus st $=t \circ s$ for all $s, t \in S$. Let x_{0} be an element of M. Then there exists a homomorphism $f: M \rightarrow R$ such that $f\left(x_{0}\right) x_{0}=x_{0}$. Let $y \in M$. Then the mapping $x \mapsto f(x) y$ for $x \in M$ is an endomorphism of M, which we denote by $\bar{y} \in S$. If $s \in S$, we have $f(x)(y s)=(f(x) y) s$ for all $x \in M$, i.e., $\overline{y s}=\bar{y} s$.

This implies that the mapping $y \mapsto \bar{y}$ for $y \in M$ is a homomorphism $M \rightarrow S$ as S-modules. If we denote this by g then we have $f(x) y=x g(y)$ for all x, $y \in M$. (In the notation in $[5], g(y)=[f, y]$ for all $y \in M$.) It follows in particular that $x_{0}=f\left(x_{0}\right) x_{0}=x_{0} g\left(x_{0}\right)$. This shows that the S-module M is Zelmanowitz-regular. Since M is a faithful S-module, we have $J(S)=0$ according to the above mentioned property 1.

Now, clearly a locally projective module is projective if it is finitcly generated, but this is true even if it is countably generated:

Proposition 10. Every countably generated locally projective module is projective.

Proof: If we observe the fact that every locally projective module is a MittagLeffer module, our proposition can be regarded as a particular case of [3], Corollaire 2.2.2. But we shall for completeness give a proof which is valid for our case. Let M be a locally projective R-module with countable generators $x_{1}, x_{2}, x_{3}, \ldots$ Let $M_{1}=R x_{1}$. By Proposition 6 there exist a finitely generated free R-module F_{1} and homomorphisms $f_{1}: M \rightarrow F_{1}, g_{1}: F_{1} \rightarrow M$ such that $g_{1}\left(f_{1}(x)\right)=x$ for all $x \in M_{1}$. Let next $M_{2}=g_{1}\left(F_{1}\right)+R x_{2}$. Since M_{2} is finitely generated, again by Proposition 6, there exist a finitely generated free R-module F_{2} and homomorphisms $f_{2}: M \rightarrow F_{2}, g_{2}: F_{2} \rightarrow M$ such that $g_{2}\left(f_{2}(x)\right)=x$ for all $x \in M_{2}$. In this way, for each $n>1$, we can find a finitely generated free R-module F_{n} and homomorphisms $f_{n}: M \rightarrow F_{n}, g_{n}: F_{n} \rightarrow M$ such that $g_{n}\left(f_{n}(x)\right)=x$ for all $x \in M_{n}=g_{n-1}\left(F_{n-1}\right)+R x_{n}$. But this is clearly equivalent to that $g_{n}\left(f_{n}\left(g_{n-1}(y)\right)\right)=g_{n-1}(y)$ for all $y \in F_{n-1}$ and $g_{n}\left(f_{n}\left(x_{n}\right)\right)=x_{n}$. From this follows then that $g_{n} \circ f_{n} \circ g_{n-1}=g_{n-1}$ whence $g_{n-1}\left(F_{n-1}\right) \subset g_{n}\left(F_{n}\right)$ and $x_{n} \in g_{n}\left(F_{n}\right)$. Thus we have an ascending chain $g_{1}\left(F_{1}\right) \subset g_{2}\left(F_{2}\right) \subset g_{3}\left(F_{3}\right) \subset \ldots$ of submodules of M whose union is equal to M. For simplicity, we put $s_{n}=g_{n} \circ f_{n}: M \rightarrow g_{n}\left(F_{n}\right)$ for each n. Then s is an endomorphism of M satisfying $s_{n} \circ g_{n-1}=g_{n-1}$ and hence $s_{n} \circ s_{n-1}=s_{n-1}$ for each $n>1$. Moreover we point out that $s_{n} \circ g_{r}=g_{r}$ and $s_{n} \circ s_{r}=s_{r}$ whenever $n>r$, because if $r<n$ then $g_{r}\left(F_{r}\right) \subset g_{n-1}\left(F_{n-1}\right)$ and so $s_{n}\left(g_{r}(y)\right)=g_{r}(y)$ for all $y \in F_{r}$.

Let F be the direct sum of all F_{n} 's. Then F is a countably generated free R module. The homomorphisms $g_{n}: F_{n} \rightarrow M$ for $n=1,2,3, \ldots$ together define a homomorphism $g: F \rightarrow M$ in the natural manner. The image $g(F)$ is the sum of all $g_{n}\left(F_{n}\right)^{\prime} s$ and hence is equal to M, because even their union is M. Thus g is an epimorphism. In order to prove that M is projective, it is therefore sufficient to show that g splits, i.e., there exists a homomorphism $f: M \rightarrow F$ such that $g \circ f=1$, the identity map of M. Let now $q_{n}: F_{n} \rightarrow F$ be the canonical embedding for $n=1,2,3, \ldots$ Then we have $g \circ q_{n}=g_{n}$ for each n. We shall construct a homomorphism $h_{n}: F_{n} \rightarrow F$ for each n such that $g \circ h_{n}=g_{n}$ and $h_{n} \circ f_{n} \circ g_{n-1}=h_{n+1} \circ f_{n+1} \circ g_{n-1}$ if $n>1$. For this purpose, let first $h_{1}=q_{1}$. Then $g \circ h_{1}=g_{1}$. Suppose $n>1$ and there is given an $h_{n}: F_{n} \rightarrow F$ such
that $g \circ h_{n}=g_{n}$. We define $h_{n+1}=\left(h_{n} \circ f_{n}+q_{n+2} \circ f_{n+2} \circ\left(1-s_{n}\right)\right) \circ g_{n+1}$. Then we have $g \circ h_{n+1}=\left(g \circ h_{n} \circ f_{n}+g \circ q_{n+2} \circ f_{n+2} \circ\left(1-s_{n}\right)\right) \circ g_{n+1}=$ $\left(g_{n} \circ f_{n}+g_{n+2} \circ f_{n-2} \circ\left(1-s_{n}\right)\right) \circ g_{n+1}=\left(s_{n}+s_{n+2} \circ\left(1-s_{n}\right)\right) \circ g_{n+1}=$ $\left(s_{n}+s_{n+2}-s_{n+2} \circ s_{n}\right) \circ g_{n+1}=s_{n+2} \circ g_{n+1}=g_{n+1}$. On the other hand, we have $h_{n+1} \circ f_{n+1} \circ g_{n-1}=\left(h_{n} \circ f_{n}+q_{n+2} \circ f_{n+2} \circ\left(1-s_{n}\right)\right) \circ s_{n+1} \circ g_{n-1}=$ $\left(h_{n} \circ f_{n}+q_{n+2} \circ f_{n+2} \circ\left(1-s_{n}\right)\right)_{\circ} g_{n} n-1=h_{n} \circ f_{n} \circ g_{n-1}+q_{n-2} \circ f_{n-2} \circ g_{n-1}-$ $q_{n-2} \circ f_{n-2} \circ s_{n} \circ g_{n-1}=h_{n} \circ f_{n} \circ g_{n-1}$. Thus by induction we get a desired sequence of homomorphisms $h_{n}(n=1,2,3, \ldots)$.

Let $x \in M$. Then there exists an $n>1$ such that $x \in g_{n-1}\left(F_{n-1}\right)$ i.e., $x=$ $g_{n-1}(y)$ for some $y \in F_{n-1}$. We have then that $h_{n}\left(f_{n}(x)\right)=h_{n}\left(f_{n}\left(g_{n-1}(y)\right)\right)=$ $h_{n+1}\left(f_{n+1}\left(g_{n-1}(y)\right)\right)=h_{n+1}\left(f_{n+1}(x)\right)$. Moreover, since $x \in g_{n}\left(F_{n}\right)$ in this case, by replacing n by $n+1$ we should have that $h_{n+1}\left(f_{n+1}(x)\right)=h_{n+2}\left(f_{n+2}(x)\right)$. Continuing in this way, we confirm that $h_{n}\left(f_{n}(x)\right)=h_{m}\left(f_{m}(x)\right)$ for every $m>n$. This shows that $h_{n}\left(f_{n}(x)\right)$ is independent of the choice of n so far as x is in $g_{n-1}\left(F_{n-1}\right)$. Thus by defining $f(x)=h_{n}\left(f_{n}(x)\right)$ for $x \in M$ we have a homomorphism $f: M \rightarrow F$, which satisfies $g(f(x))=g_{n}\left(f_{n}(x)\right)=x$ (since $\left.x \in g_{n-1}\left(F_{n-1}\right)\right)$. This completes our proof.

It is to be pointed out that the preceding proposition.can be regarded as a generalization of [5, Corollary 1.7.].

Acknowledgments. The author gratefully acknowledges the support from Institut d'Estudis Catalans of Barcelona.

References

1. D.J. Fieldhouse, Pure theories, Math. Ann 184 (1969), 1-18.
2. V.S. Ramamurthi and K.M. Rangaswamy, On finitely injective modules, J. Austral Math. Soc. 16 (1973), 239-248.
3. M. Raynaud and L. Gruson, Critères de platitude et de projective, Invent. Math. 13 (1971), 1-89.
4. R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233-259.
5. J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355.
6. B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233-245.
[^0]Rebut el 2 de Juny de 1989

[^0]: Department of Mathernatics
 Indiana University
 Bloomington, IN 47405
 U.S.A.

