THE LIONS'S PROBLEM FOR GUSTAVSSON-PEETRE FUNCTOR

E.I. BEREZNOĬ AND M. MASTYLO

Abstract ____

The problem of coincidence of the interpolation spaces obtained by use of the interpolation method of Gustavsson-Peetre generated by (parameters) quasi-concave functions is investigated. It is shown that a restriction of this method to the class of all non-trivial Banach couples gives different interpolation spaces whenever two different parameters satisfying some conditions are used.

1. Introduction

Let $\bar{X} = (X_0, X_1)$ be a compatible couple of Banach spaces (see [1] for fundamental definitions) and let \mathcal{F}_{α} be an *interpolation functor* depending on a parameter. In the theory of interpolation spaces is well-known the problem of Lions: whether an interpolation family $\{\mathcal{F}_{\alpha}\}$ depends effectively on its parameter. In the complex case, i.e. $\mathcal{F}_{\alpha}(\bar{X}) = [\bar{X}]_{\alpha}, 0 < \alpha < 1$, Stafney [8] proved that (under certain auxiliary density assumptions on the couple \bar{X}) if $[\bar{X}]_{\alpha_0} = [\bar{X}]_{\alpha_1}$ for some $\alpha_0 \neq \alpha_1$, then $X_0 = X_1$.

The complete answer to the Lions's problem for the real interpolation method was given in [4].

In this paper we consider the Lions's problem for interpolation spaces generated by the functor of Gustavsson-Peetre.

2. Results

Throughout this section \mathcal{P} denotes the set of all quasi-concave functions $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ (φ is quasi-concave if $0 < \varphi(s) \leq \max(1, s/t)\varphi(t)$ for all s, t > 0). By \mathcal{P}_0 we denote the subset of \mathcal{P} consisting of all φ with $\varphi(t) \to 0$ as $t \to 0$ and $\varphi(t)/t \to 0$ as $t \to \infty$. For a Banach couple $\bar{X} = (X_0, X_1)$ and $\varphi \in \mathcal{P}_0$ the space $\langle \bar{X}, \varphi \rangle := G_{\varphi}(\bar{X})$ introduced in [2] consists of all $x \in X_0 + X_1$ such that

$$x = \sum_{
u \equiv -\infty}^{\infty} x_{
u}$$
 (convergence in $X_0 + X_1$), $x_{
u} \in X_0 \cap X_1$

and for every finite subset $F \subset \mathbb{Z}$ and every $\xi = \{\xi_{\nu}\}_{\nu \in \mathbb{Z}}$ with $|\xi_{\nu}| \leq 1$, we have

(*)
$$||\sum_{\nu \in F} \xi_{\nu} \frac{2^{j\nu}}{\varphi(2^{\nu})} x_{\nu}||_{X_{j}} \le C \qquad (j = 0, 1)$$

with C independent of F and ξ . It is well-known that $G_{\varphi}(\bar{X})$ is a Banach space with the norm $||x||_{\varphi} = \inf C$. Moreover G_{φ} is an exact interpolation functor (see [2], [3], [6]). For the other interesting descriptions of the functor G_{φ} and its properties (see [3], [5], [6]). If $\varphi(t) = t^{\alpha}$, $0 < \alpha < 1$, then we write $G_{\alpha}(\bar{X})$ instead of $G_{\varphi}(\bar{X})$.

In this section we will show that under some conditions on φ_0 and φ_1 , $G_{\varphi_0}(\bar{X}) \neq G_{\varphi_1}(\bar{X})$ provided \bar{X} is a non-trivial couple of Banach spaces, i.e. $X_0 \cap X_1$ is non-closed subspace of $X_0 + X_1$.

First we give auxiliary results. In what follows B_X denotes the closed unit ball of a Banach space X. The following lemma is a modification of Lemma 1 of [8] (for completeness sake we give a proof).

Lemma 1. Let $\bar{X} = (X_0, X_1)$ be a couple of Banach spaces such that $X_0 \cap X_1 \neq \{0\}$. If there exist 0 < q < 1 and c > 0 such that

(1)
$$\sup_{z \in B_{X_0}} \inf_{y \in X_0 \cap cB_{X_1}} ||x-y||_{X_0} < q,$$

then $X_0 \subset X_1$ with continuous embedding.

Proof: Let $0 \neq x_0 \in B_{X_0}$, then there exists $y_1 \in X_0 \cap cB_{X_1}$ such that $r_1 = ||x_0 - y_1||_{X_0} \leq q$ by (1). Now put $x_1 = r_1^{-1}(x_0 - y_1)$, provided $r_1 > 0$, then $||x_1||_{X_0} = 1$. Similarly, we get that $r_2 = ||x_1 - y_2||_{X_0} \leq q$ for some $y_2 \in X_0 \cap cB_{X_1}$ and $||x_2||_{X_0} = 1$ for $x_2 = r_2^{-1}(x_1 - y_2)$, provided $r_2 > 0$.

Since $r_1 \leq q$, so $||x_0 - y_1 - r_1 y_2||_{X_0} \leq r_1 q \leq q^2$.

Proceeding by induction we see that there exists a sequence $\{y_k\} \subset X_0 \cap cB_{X_1}$ such that

$$||x_0 - y_1 - \sum_{k=1}^n a_k y_{k+1}||_{X_0} \le q^{n+1}$$

holds for $r_n = ||x_{n-1} - y_n||_{X_0} \le q$, $x_n = r_n^{-1}(x_{n-1} - y_n)$, where $a_n = r_1 \dots r_n$ for $n \in N$ (without loss of generality we assume that $r_n > 0$). This implies that $x_0 = y_1 + \sum_{n=1}^{\infty} a_n y_{n+1}$ (convergence in X_0). Further $y_1 + \sum_{n=1}^{\infty} a_n y_{n+1} \in X_1$ by $||a_n y_{n+1}||_{X_1} \le cq^{n+1}$. Since \bar{X} is a Banach couple, $x_0 \in X_1$ and thus $X_0 \subset X_1$ with continuous embedding.

Lemma 2. Let $\bar{X} = (X_0, X_1)$ be a Banach couple and let $\varphi \in \mathcal{P}_0$. Suppose that $x = \sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $X_0 + X_1$) satisfies the condition (*). Then for each positive integer N the following hold:

(a) The series $\sum_{\nu=-\infty}^{N} x_{\nu}$ is convergent in X_0 and $||\sum_{\nu=-\infty}^{N} x_{\nu}||_{X_0} \leq C\varphi(2^N)$. (b) The series $\sum_{\nu=N}^{\infty} x_{\nu}$ is convergent in X_1 and $||\sum_{\nu=N}^{\infty} x_{\nu}||_{X_1} \leq C\varphi(2^N)/2^N$.

Proof: (a) Fix positive integer N and put $S_k = \sum_{\nu=-k}^{N} x_{\nu}$ for $k \in \mathbb{N}$. Then for m > k, we have

$$||S_m - S_k||_{X_0} = ||\sum_{\nu = -m}^{-k-1} x_\nu||_{X_0} = ||\sum_{\nu = -m}^{-k-1} \varphi(2^\nu)(\frac{1}{\varphi(2^\nu)})x_\nu||_{X_0}$$

$$\leq C\varphi(2^{-k-1}) \to 0 \quad \text{as} \ k \to \infty$$

by (*) and $\varphi \in \mathcal{P}_0$. This shows that $\{S_k\}$ converges in X_0 . Since

 $||S_k||_{X_0} \le C\varphi(2^N)$

for every $k \in \mathbb{N}$, it follows that $||\sum_{\nu=-\infty}^{N} x_{\nu}||_{X_0} \leq C\varphi(2^N)$. In the similar way we get the proof of (b).

In the sequel for given two functions $\varphi_0, \varphi_1 \in \mathcal{P}$ we write $\varphi_{01}(t) = \varphi_0(t)/\varphi_1(t)$ for t > 0.

Theorem 1. Let $\bar{X} = (X_0, X_1)$ be a couple of Banach spaces and let $\varphi_0, \varphi_1 \in \mathcal{P}_0$. Then $G_{\varphi_0}(\bar{X}) \neq G_{\varphi_1}(\bar{X})$ provided one of the following conditions holds (a) $X_0 \cap X_1$ is non-closed subspace in X_1 and $\varphi_{01}(2^{\nu}) \to 0$ as $\nu \to \infty$. (b) $X_0 \cap X_1$ is non-closed subspace in X_0 and $\varphi_{01}(2^{-\nu}) \to 0$ as $\nu \to \infty$.

Proof: Let $\varphi_{01}(2^{\nu}) \to 0$ as $\nu \to \infty$. First we show that if $G_{\varphi_0}(\bar{X}) = G_{\varphi_1}(\bar{X})$, then

 $(**) G_{\varphi_0}(\bar{X}) \subset X_0.$

To see this take $0 < \varepsilon < 1$ and $N \in \mathbb{N}$ such that

(2)
$$\varphi_{01}(2^{\nu}) < \varepsilon/2C$$

for $\nu \geq N$, where C is a constant of embedding $G_{\varphi_1}(\bar{X})$ into $G_{\varphi_0}(\bar{X})$.

Now let $x \in G_{\varphi_0}(\bar{X})$ with $||x||_{\varphi_0} \leq 1$. Then $x = \sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $X_0 + X_1$) for some $x_{\nu} \in X_0 \cap X_1$ and

(3)
$$|| \sum_{\nu \in F} \xi_{\nu} \frac{2^{j\nu}}{\varphi_0(2^{\nu})} x_{\nu} ||_{X_j} \le 2 ||\xi||_{\ell_{\infty}}, \qquad j = 0, 1$$

for every finite subset $F \subset \mathbb{Z}$ and each $\xi = \{\xi_{\nu}\} \in \ell_{\infty}$.

Put $y = \sum_{\nu=-\infty}^{N-1} x_{\nu}$ and $c = 2\varphi_0(2^{N-1})$, then $y \in G_{\varphi_0}(\bar{X}) \cap cB_{X_0}$ by Lemma 2(a). Define $\{u_{\nu}\} \subset X_0 \cap X_1$ by $u_{\nu} = x_{\nu}$ for $\nu \in A = \{\nu \in \mathbb{Z} : \nu \geq N\}$ and $u_{\nu} = 0$ for $\nu \in \mathbb{Z} \setminus A$. Then $x - y = \sum_{\nu=-\infty}^{\infty} u_{\nu}$ (convergence in X_1) by Lemma 2. Moreover

$$\begin{aligned} \|\sum_{\nu \in F} \xi_{\nu} \frac{2^{j\nu}}{\varphi_{1}(2^{\nu})} u_{\nu} \|_{X_{j}} &= \|\sum_{\nu \in F \cap A} \xi_{\nu} \varphi_{01}(2^{\nu}) \frac{2^{j\nu}}{\varphi_{0}(2^{\nu})} x_{\nu} \|_{X_{j}} \\ &\leq \varepsilon C^{-1} \|\xi\|_{\ell_{\infty}}, \qquad j = 0, 1 \end{aligned}$$

holds for every finite subset $F \subset \mathbb{Z}$ and each $\xi = \{\xi_{\nu}\} \in \ell_{\infty}$, by (2) and (3). Hence $||x - y||_{\varphi_0} \leq C ||x - y||_{\varphi_1} \leq \varepsilon$, so (**) holds by Lemma 1.

It is easy to see that for every $0 \neq x \in X_0 \cap X_1$ and $\varphi \in \mathcal{P}_0$ we have

(4)
$$||x||_{\varphi} \leq 2||x||_{X_0}/\varphi(||x||_{X_0}/||x||_{X_1}).$$

Now suppose that $X_0 \cap X_1$ is non-closed in X_1 . Then there exists a sequence $\{x_n\} \subset X_0 \cap X_1$ such that $||x_n||_{X_0 \cap X_1} = 1$ and $||x_n||_{X_1} \to 0$ as $n \to \infty$. Further, assume by way of contradiction that $G_{\varphi_0}(\bar{X}) = G_{\varphi_1}(\bar{X})$. Thus by the above established inclusion (**), it follows that $||x||_{X_0} \leq K ||x||_{\varphi_1}$ for some K > 0 and every $x \in G_{\varphi_1}(\bar{X})$. This implies that $\varphi_1(||x_n||_{X_1}^{-1}) \leq 2K$ for enough large $n \in \mathbb{N}$, by (4). A contradiction, since $\varphi_1(t) \to \infty$ as $t \to \infty$, by $\varphi_{01}(2^{\nu}) \to 0$ as $\nu \to \infty$. Thus the proof is finished if (a) holds. If the condition (b) holds, the proof is similar.

Remark 1. For each Banach couple \bar{X} and each $\varphi \in \mathcal{P}_0$ the space $G_{\varphi}(\bar{X})$ is contained in the closure of $X_0 \cap X_1$ in $X_0 + X_1$. Thus $G_{\varphi}(\bar{X}) = X_0 \cap X_1$ provided \bar{X} is a trivial couple, i.e. $X_0 \cap X_1$ is closed subspace in $X_0 + X_1$.

Corollary 1. If $\bar{X} = (X_0, X_1)$ is a non-trivial Banach couple, then $G_{\alpha}(\bar{X}) \neq G_{\beta}(\bar{X})$ for each $\alpha, \beta \in (0, 1), \alpha \neq \beta$.

Proof: It is easy to see that \bar{X} is non-trivial couple if and only if $X_0 \cap X_1$ is a non-closed subspace in X_i , i = 0 or 1. Thus Theorem 1 applies.

Remark 2. Peetre [7] defined (for the case $\varphi(t) = t^{\theta}$, $0 < \theta < 1$) the interpolation functor $\langle \bar{X} \rangle_{\varphi}$ as the space of all sums $\sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $X_0 + X_1$) such that $\{x_{\nu}/\varphi(2^{\nu})\}$ and $\{2^{\nu}x_{\nu}/\varphi(2^{\nu})\}$ are unconditionally convergent sequences in X_0 and X_1 , respectively. If we consider the Lions's problem for the functor $\langle \cdot \rangle_{\varphi}$, then by the same way we obtain that Theorem 1 holds for this functor.

References

- 1. J. BERGH AND J. LÖFSTRÖM, "Interpolation Spaces," Berlin-Heidelberg-New York, 1976.
- J. GUSTAVSSON AND J. PEETRE, Interpolation of Orlicz spaces, Studia Math. 60 (1977), 33-59.
- 3. S. JANSON, Minimal and maximal methods of interpolation, J. Functional Anal. 44 (1981), 50-73.
- 4. S. JANSON, P. NILSSON AND J. PEETRE, Notes on Wolff's note on interpolation spaces, *Proc. London Math. Soc.* 48 (1984), 283-299.
- 5. P. NILSSON, Interpolation of Banach lattices, Studia Math. 82 (1985), 135-154.
- 6. V.I. OVCHINNIKOV, The Method of Orbits in Interpolation, Math. Reports 1 (1984), 349-515.
- J. PEETRE, Sur l'utilisation des suites inconditionellement sommable dans la theorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190.
- J.D. STAFNEY, Analytic interpolation of certain multiplier spaces, *Pacific J. Math.* 32 (1970), 241-248.

E.I. Bereznoi :	Yaroslavl State University
	Kirova 8/10, 150000 Yaroslavl
	U.S.S.R.

M. Mastylo : Institute of Mathematics A. Mickiewicz University Matejki 48/49, 60–769 Poznań POLAND.

Rebut el 16 de Juny de 1989