THE LIONS'S PROBLEM FOR GUSTAVSSON-PEETRE FUNCTOR

E.I. BereznoĬ and M. Mastylo

Abstract
The problem of coincidence of the interpolation spaces obtained by use of the interpolation method of Gustavsson-Peetre generated by (parameters) quasi-concave functions is investigated. It is shown that a restriction of this method to the class of all non-trivial Banach couples gives different interpolation spaces whenever two different parameters satisfying some conditions are used.

1. Introduction

Let $\bar{X}=\left(X_{0}, X_{1}\right)$ be a compatible couple of Banach spaces (see [1] for fundamental definitions) and let \mathcal{F}_{α} be an interpolation functor depending on a parameter. In the theory of interpolation spaces is well-known the problem of Lions: whether an interpolation family $\left\{\mathcal{F}_{\alpha}\right\}$ depends effectively on its parameter. In the complex case, i.e. $\mathcal{F}_{\alpha}(\bar{X})=[\bar{X}]_{\alpha}, 0<\alpha<1$, Stafney [8] proved that (under certain auxiliary density assumptions on the couple \bar{X}) if $[\bar{X}]_{\alpha_{0}}=[\bar{X}]_{\alpha_{1}}$ for some $\alpha_{0} \neq \alpha_{1}$, then $X_{0}=X_{1}$.

The complete answer to the Lions's problem for the real interpolation method was given in [4].

In this paper we consider the Lions's problem for interpolation spaces generated by the functor of Gustavsson-Peetre.

2. Results

Throughout this section \mathcal{P} denotes the set of all quasi-concave functions $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}(\varphi$ is quasi-concave if $0<\varphi(s) \leq \max (1, s / t) \varphi(t)$ for all $s, t>0)$. By \mathcal{P}_{0} we denote the subset of \mathcal{P} consisting of all φ with $\varphi(t) \rightarrow 0$ as $t \rightarrow 0$ and $\varphi(t) / t \rightarrow 0$ as $t \rightarrow \infty$. For a Banach couple $\bar{X}=\left(X_{0}, X_{1}\right)$ and $\varphi \in \mathcal{P}_{0}$ the space $\langle\bar{X}, \varphi\rangle:=G_{\varphi}(\bar{X})$ introduced in [2] consists of all $x \in X_{0}+X_{1}$ such that

$$
x=\sum_{\nu=-\infty}^{\infty} x_{\nu} \text { (convergence in } X_{0}+X_{1} \text {), } x_{\nu} \in X_{0} \cap X_{1}
$$

and for every finite subset $F \subset \mathbf{Z}$ and every $\xi=\left\{\xi_{\nu}\right\}_{\nu \in \mathbf{Z}}$ with $\left|\xi_{\nu}\right| \leq 1$, we have

$$
\begin{equation*}
\left\|\sum_{\nu \in F} \xi_{\nu} \frac{2^{j \nu}}{\varphi\left(2^{\nu}\right)} x_{\nu}\right\|_{x_{j}} \leq C \quad(j=0,1) \tag{*}
\end{equation*}
$$

with C independent of F and ξ. It is well-known that $G_{\varphi}(\bar{X})$ is a Banach space with the norm $\|x\|_{\varphi}=\inf C$. Moreover G_{φ} is an exact interpolation functor (see [2], [3], [6]). For the other interesting descriptions of the functor G_{φ} and its properties (see [3], [5], [6]). If $\varphi(t)=t^{\alpha}, 0<\alpha<I$, then we write $G_{\alpha}(\bar{X})$ instead of $G_{\varphi}(\bar{X})$.

In this section we will show that under some conditions on φ_{0} and φ_{1}, $G_{\varphi_{0}}(\bar{X}) \neq G_{\varphi_{1}}(\bar{X})$ provided \bar{X} is a non-trivial couple of Banach spaces, i.e. $X_{0} \cap X_{1}$ is non-closed subspace of $X_{0}+X_{1}$.

First we give auxiliary results. In what follows B_{X} denotes the closed unit ball of a Banach space X. The following lemma is a modification of Lemma 1 of $[8]$ (for completeness sake we give a proof).

Lemma 1. Let $\bar{X}=\left(X_{0}, X_{1}\right)$ be a couple of Banach spaces such that $X_{0} \cap$ $X_{1} \neq\{0\}$. If there exist $0<q<1$ and $c>0$ such that

$$
\begin{equation*}
\sup _{\tau \in B_{X_{0}} y \in X_{0} \cap \inf _{X_{1}}}\|x-y\|_{X_{0}}<q \tag{1}
\end{equation*}
$$

then $X_{0} \subset X_{1}$ with continuous embedding.
Proof: Let $0 \neq x_{0} \in B_{X_{0}}$, then there exists $y_{1} \in X_{0} \cap c B_{X_{1}}$ such that $r_{1}=\left\|x_{0}-y_{1}\right\|_{x_{0}} \leq q$ by (1). Now put $x_{1}=r_{1}^{-1}\left(x_{0}-y_{1}\right)$, provided $r_{1}>0$, then $\left\|x_{1}\right\| x_{0}=1$. Similarly, we get that $r_{2}=\left\|x_{1}-y_{2}\right\| x_{0} \leq q$ for some $y_{2} \in X_{0} \cap c B_{X_{1}}$ and $\left\|x_{2}\right\|_{X_{0}}=1$ for $x_{2}=r_{2}^{-1}\left(x_{1}-y_{2}\right)$, provided $r_{2}>0$.

Since $r_{1} \leq q$, so $\left\|x_{0}-y_{1}-r_{1} y_{2}\right\| x_{0} \leq r_{1} q \leq q^{2}$.
Proceeding by induction we see that there exists a sequence $\left\{y_{k}\right\} \subset X_{0} \cap c B_{X_{1}}$ such that

$$
\left\|x_{0}-y_{1}-\sum_{k=1}^{n} a_{k} y_{k+1}\right\| X_{0} \leq q^{n+1}
$$

holds for $r_{n}=\left\|x_{n-1}-y_{n}\right\| x_{0} \leq q, x_{n}=r_{n}^{-1}\left(x_{n-1}-y_{n}\right)$, where $a_{n}=r_{1} \ldots r_{n}$ for $n \in N$ (without loss of generality we assume that $r_{n}>0$). This implies that $x_{0}=y_{1}+\sum_{n=1}^{\infty} a_{n} y_{n+1}$ (convergence in X_{0}). Further $y_{1}+\sum_{n=1}^{\infty} a_{n} y_{n+1} \in X_{1}$ by $\left\|a_{n} y_{n+1}\right\|_{X_{2}} \leq c q^{n+1}$. Since \bar{X} is a Banach couple, $x_{0} \in X_{1}$ and thus $X_{0} \subset X_{1}$ with continuous embedding.

Lemma 2. Let $\bar{X}=\left(X_{0}, X_{1}\right)$ be a Banach couple and let $\varphi \in \mathcal{P}_{0}$. Suppose that $x=\sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $X_{0}+X_{1}$) satisfies the condition (*). Then for each positive integer N the following hold:
(a) The series $\sum_{\nu=-\infty}^{N} x_{\nu}$ is convergent in X_{0} and $\left\|\sum_{\nu=-\infty}^{N} x_{\nu}\right\|_{X_{0}}$ $\leq C \varphi\left(2^{N}\right)$.
(b) The series $\sum_{\nu=N}^{\infty} x_{\nu}$ is convergent in X_{1} and $\left\|\sum_{\nu=N}^{\infty} x_{\nu}\right\|_{X_{1}}$ $\leq C \varphi\left(2^{N}\right) / 2^{N}$.

Proof: (a) Fix positive integer N and put $S_{k}=\sum_{\nu=-k}^{N} x_{\nu}$ for $k \in \mathbf{N}$. Then for $m>k$, we have

$$
\begin{aligned}
& \left\|S_{m}-S_{k}\right\|_{X_{0}}=\left\|\sum_{\nu=-m}^{-k-1} x_{\nu}\right\|_{X_{0}}=\left\|\sum_{\nu=-m}^{-k-1} \varphi\left(2^{\nu}\right)\left(\frac{1}{\varphi\left(2^{\nu}\right)}\right) x_{\nu}\right\|_{X_{0}} \\
& \leq C \varphi\left(2^{-k-1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

by $(*)$ and $\varphi \in \mathcal{P}_{0}$. This shows that $\left\{S_{k}\right\}$ converges in X_{0}. Since

$$
\left\|S_{k}\right\|_{X_{0}} \leq C \varphi\left(2^{N}\right)
$$

for every $k \in \mathbb{N}$, it follows that $\left\|\sum_{\nu=-\infty}^{N} x_{\nu}\right\|_{X_{0}} \leq C \varphi\left(2^{N}\right)$. In the similar way we get the proof of (b).

In the sequel for given two functions $\varphi_{0}, \varphi_{1} \in \mathcal{P}$ we write $\varphi_{01}(t)=\varphi_{0}(t) / \varphi_{1}(t)$ for $t>0$.

Theorem 1. Let $\bar{X}=\left(X_{0}, X_{1}\right)$ be a couple of Banach spaces and let φ_{0}, φ_{1} $\in \mathcal{P}_{0}$. Then $G_{\varphi_{0}}(\bar{X}) \neq G_{\varphi_{1}}(\bar{X})$ provided one of the following conditions holds
(a) $X_{0} \cap X_{1}$ is non-closed subspace in X_{1} and $\varphi_{01}\left(2^{\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$.
(b) $X_{0} \cap X_{1}$ is non-closed subspace in X_{0} and $\varphi_{01}\left(2^{-\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$.

Proof: Let $\varphi_{01}\left(2^{\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$. First we show that if $G_{\varphi_{0}}(\bar{X})=G_{\varphi_{1}}(\bar{X})$, ther
(**)

$$
G_{\varphi_{0}}(\bar{X}) \subset X_{0}
$$

To see this take $0<\varepsilon<1$ and $N \in \mathbf{N}$ such that

$$
\begin{equation*}
\varphi_{01}\left(2^{\nu}\right)<\varepsilon / 2 C \tag{2}
\end{equation*}
$$

for $\nu \geq N$, where C is a constant of embedding $G_{\varphi_{1}}(\bar{X})$ into $G_{\varphi_{0}}(\bar{X})$.
Now let $x \in G_{\varphi_{0}}(\bar{X})$ with $\|x\|_{\varphi_{0}} \leq 1$. Then $x=\sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $X_{0}+X_{1}$) for some $x_{\nu} \in X_{0} \cap X_{1}$ and

$$
\begin{equation*}
\left\|\sum_{\nu \in F} \xi_{\nu} \frac{2^{j \nu}}{\varphi_{0}\left(2^{\nu}\right)} x_{\nu}\right\| x_{j} \leq 2\|\xi\|_{e_{\infty}}, \quad j=0,1 \tag{3}
\end{equation*}
$$

for every finite subset $F \subset \mathbb{Z}$ and each $\xi=\left\{\xi_{\nu}\right\} \in \ell_{\infty}$.

Put $y=\sum_{\nu=-\infty}^{N-1} x_{\nu}$ and $c=2 \varphi_{0}\left(2^{N-1}\right)$, then $y \in G_{\varphi_{0}}(\bar{X}) \cap c B_{X_{0}}$ by Lemma 2(a). Define $\left\{u_{\nu}\right\} \subset X_{0} \cap X_{1}$ by $u_{\nu}=x_{\nu}$ for $\nu \in A=\{\nu \in \mathbf{Z}: \nu \geq N\}$ and $u_{\nu}=0$ for $\nu \in \mathbf{Z} \backslash A$. Then $x-y=\sum_{\nu=-\infty}^{\infty} u_{\nu}$ (convergence in X_{1}) by Lemma 2. Moreover

$$
\begin{aligned}
& \left\|\sum_{\nu \in F} \xi_{\nu} \frac{2^{j \nu}}{\varphi_{1}\left(2^{\nu}\right)} u_{\nu}\right\| x_{i}=\left\|\sum_{\nu \in F \cap A} \xi_{\nu} \varphi_{01}\left(2^{\nu}\right) \frac{2^{j \nu}}{\varphi_{0}\left(2^{\nu}\right)} x_{\nu}\right\| x_{j} \\
& \leq \varepsilon C^{-1}\|\xi\| \|_{\infty}, \quad j=0,1
\end{aligned}
$$

holds for every finite subset $F \subset \mathbf{Z}$ and each $\xi=\left\{\xi_{\nu}\right\} \in \ell_{\infty}$, by (2) and (3). Hence $\|x-y\|_{\varphi_{0}} \leq C\|x-y\|_{\varphi_{1}} \leq \varepsilon$, so (**) holds by Lemma 1 .
It is easy to see that for every $0 \neq x \in X_{0} \cap X_{1}$ and $\varphi \in \mathcal{P}_{0}$ we have

$$
\begin{equation*}
\|x\|_{\varphi} \leq 2\|x\| \|_{X_{0}} / \varphi\left(\|x\|_{X_{0}} /\|x\|_{X_{1}}\right) . \tag{4}
\end{equation*}
$$

Now suppose that $X_{0} \cap X_{1}$ is non-closed in X_{1}. Then there exists a sequence $\left\{x_{n}\right\} \subset X_{0} \cap X_{1}$ such that $\left\{\mid x_{n} \|_{X_{0} \cap X_{2}}=1\right.$ and $\left\|x_{n}\right\|_{X_{1}} \rightarrow 0$ as $n \rightarrow \infty$. Further, assume by way of contradiction that $G_{\varphi_{0}}(\bar{X})=G_{\varphi_{1}}(\bar{X})$. Thus by the above established inclusion ($* *$), it follows that $\|x\| x_{0} \leq K\|x\|_{\varphi_{1}}$ for some $K>0$ and every $x \in G_{\varphi_{t}}(\bar{X})$. This implies that $\varphi_{1}\left(\left\|x_{n}\right\|_{X_{1}}^{-1}\right) \leq 2 K$ for enough large $n \in \mathbb{N}$, by (4). A contradiction, since $\varphi_{1}(t) \rightarrow \infty$ as $t \rightarrow \infty$, by $\varphi_{01}\left(2^{\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$. Thus the proof is finished if (a) holds. If the condition (b) holds, the proof is similar.
Remark 1. For each Banach couple \bar{X} and each $\varphi \in \mathcal{P}_{0}$ the space $G_{\varphi}(\bar{X})$ is contained in the closure of $X_{0} \cap X_{1}$ in $X_{0}+X_{1}$. Thus $G_{\varphi}(\bar{X})=X_{0} \cap X_{1}$ provided \bar{X} is a trivial couple, i.e. $X_{0} \cap X_{1}$ is ciosed subspace in $X_{0}+X_{1}$.

Corollary 1. If $\bar{X}=\left(X_{0}, X_{1}\right)$ is a non-trivial Banach couple, then $G_{\alpha}(\bar{X})$ $\neq G_{\beta}(\bar{X})$ for each $\alpha, \beta \in(0,1), \alpha \neq \beta$.

Proof: It is easy to see that \bar{X} is non-trivial couple if and only if $X_{0} \cap X_{1}$ is a non-closed subspace in $X_{i}, i=0$ or 1 . Thus Theorem 1 applies.
Remark 2. Peetre [7] defined (for the case $\varphi(t)=t^{\theta}, 0<\theta<1$) the interpolation functor $\langle\bar{X}\rangle_{\varphi}$ as the space of all sums $\sum_{\nu=-\infty}^{\infty} x_{\nu}$ (convergence in $\left.X_{0}+X_{1}\right)$ such that $\left\{x_{\nu} / \varphi\left(2^{\nu}\right)\right\}$ and $\left\{2^{\nu} x_{\nu} / \varphi\left(2^{\nu}\right)\right\}$ are unconditionally convergent sequences in X_{0} and X_{1}, respectively. If we consider the Lions's problem for the functor $\left\rangle_{\varphi}\right.$, then by the same way we obtain that Theorem 1 holds for this functor.

References

1. J. Bergh and J. Löfsthöm, "Interpolation Spaces," Berlin-HeidelbergNew York, 1976.
2. J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), 33-59.
3. S. Janson, Minimal and maximal methods of interpolation, J. Functional Anal. 44 (1981), 50-73.
4. S. Janson, P. Nilsson and J. Peetre, Notes on Wolff's note on interpolation spaces, Proc. London Math. Soc. 48 (1984), 283-299.
5. P. NilsSon, Interpolation of Banach lattices, Studia Math. 82 (1985), 135-154.
6. V.I. Ovchinnikov, The Method of Orbits in Interpolation, Math. Reports 1 (1984), 349-515.
7. J. Peetre, Sur l'utilisation des suites inconditionellement sommable dans la theorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190.
8. J.D. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248.

E.I. Bereznoí :	Yaroslavl State University
	Kirova 8/10, 15000 Yaroslav1
	U.S.S.R.
M. Mastyto :	Institute of Mathernatics
	A. Mickiewicz University
	Matejki 48/49, 60-769 Poznan
	POLAND.

Rebat el 16 de Juny de 1989

