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COHOMOLOGY OF LIE GROUPS MADE DISCRETE

PERE PascuaL GAINZA*

Abstract

We give a survey of the work of Milnor, Friedlander, Mislin, Sus!in, and
other authors on the Friediander-Milnor conjecture on the homolegy of
Lic groups made discrete and its relation to the algebraic K-theory of
fields.

Let G be a Lie group and let G denote the same group with the discrete
topology. The natural homomorphism G — @ induces a continuous map
between classifying spaces

n:BG* —— BG.

E.Friedlander and J. Milnor have conjectured that n induces isomorphisms of
homology and cohomology with finite coefficients. The homology of BG? is the
Eilenberg-McLane homology of the group G% , hard to compute, and one of the
interests of the conjecture is that it permits the computation of these groups
with finite coefficients through the computation {much better understood} of
the homology and cchomology of BG.

The Eilenberg-McLane homology groups of a topological group G are of
interest in a variety of contexts such as the theory of {oliations [3], [11], the
scissors congruence [6] and algebraic K-theory [26]. For example, the Haefliger
classifying space of the theory of foliations is closely related to the group of
homeomorphisms of a topological manifold, for which one can prove analogous
results of the Friedlander-Milnor conjecture with entire coefficients, <f. [20],
[32].

These notes are an exposition of the context of the conjecture, some known
results mainly due to Milnor, Friedlander, Mislin and Suslin, and its application
to the study of the groups K{{C), > 9.

We thank F. Guillén, V. Navarro Aznar and A. Roig for many helpful con-
versations about this theme.

*Partially supported by CICYT n. 0348-86
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1. Classifying spaces

(1.1) Let G be a topological group. Rcrﬁember that a principal G-bundle
consists of a continuous map

p:E —— B
with fiber &7, and a right G-action

ExG —— E
such that there is an open covering {U,} of B and homeomorphisms
Yo Uag x G ——— p~HUy)
satisfying

PPa =P v,
alb g) = walb,e)g.

The notion of equivalence of principal G-bundles is the obvious one,
Definition. A classifying space for G is a topological space BG with a
principal G-bundie
BEG —— BG

such that EG is contractible and is universal in the following sense: if p :
E — B is any principal G-bundle then there is a continuous map B — BG
such that p is the fiber product

EFE —— EG

I l

B — BG.

The existence of classifying spaces may be proved by Brown's representation
theorem (for CW-complexes [38] {11.33}) or by giving a specific construction.
In the following paragraphs we present Segal’s construction, [30], for which we
have Lo assume that G is an ANR , as verified by Lie groups. This construction
corresponds to the nonhomogeneous normalized bar construction for discrete
groups. The analogous of nonnormalized bar constructions would be the Milnor
classifying space (c.f. [15]) and that of Dold-Lashof (c.f. [4]), see [33].

{1.2) Let € be a topological category (i.e. ObC and Mor € are topological
spaces and the structural maps are continuous), Segal defines the simplicial
topological space NC, called the nerve of C , whose n-simplexes are the elements
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(f1,..., fa} of (Mor C}** for which it is defined the compositions fiy; o f; |
with boundary and degeneracy maps as usual.

Definition. BC :=|| NC|.

(Observe that we take the thick geometric realisation identifying only bound-
ary maps [31]) .

To 2 topological group G we can associate the categories:

- G: it has only one object, ¢ € G, and MorG = G,
-G:0bG =G and Mor G = Gx{,

so we obtain the classifying spaces BG and B G. Observe that if ¢,,¢2 are
objects of G there is one and only one morphism from g; to g; that is an
isomorphism, so it follows that G is equivalent to the trivial category with one
object and one morphism and from the general theory of classifying spaces
we can deduce that B G is contractible. The functor G — G sending the
morphism (g1, g2) of G to the morphism a7 gz of G, gives rise to a continuous
map
BG —— BG.

Observe also that B G is a G-free space and that B G/G = BG. We write
EG=BG.

Proposition. If(G,e) is an ANR, then EG — BG is a principal G-bundle.

(1.3) We will give now an approximation to the universality of this princi-
pal G-bundle. Remember that to a principal G-bundle p : E —» B there are
associated transition functions

Gap U Uy —— G,

satisfying the usual cocicle condition defined in the following way:
The maps

Yop =95 00p : (UaNUg) x @ —— (Ug NU) x G
are compatible with the projection p, so they define maps
hap : (UaNUg) x G —— G
and as the ¢, are G-equivariant, we have

Pald, hap(b, 9)) = ps(b, )
= pplb, e)g
= wal(b, hap(b, €)}g
= palb, hap(d,e)g)
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hoap(b 9) = hap(b,e)g

so we can define
gap(b) = hap(b,e} € G

It is well known that the equivalence classes of principal G-bundles are deter-
mined by the transition functions (cf. by example [38] (11.16)}. The informa-
tion given by these functions may be interpreted in the context of classifying
spaces in the following way:

Let p : E — X be a principal G-bundle and let &/ = (Uy) be an open
cover of X with associated transition functions gog . To the couple (X, U}
we associate the following topological category Xy @ the objects are the pairs
(z,Uq), with z € Uy , and there is a unique morphism (z,U,) — {(y,Up)} iff
z=y,le.

ObXy =[]V« ,

Mor Xy = [ UanUs
{e,8)

Observe that
(NXpla= ][] Vs NUa, ,

{ag e}

the sum being over all (n + 1)-uples with
Ugo N NUq, # 8
Lenmuma. The iransition funclions define a continuous functor
g: Xy — €
hence there s @ cafztz'nuous map
Bg:BXy —— BG
Similarly, if V = {V, =p~}{U,)} , the trivializations (@,) define a functor
Ey —— G

and we obtain a continuous map

BEy —— EG.
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Finally, the projection p gives rise to a functor Ey — Xy so that the
following diagram commutes

BEy ——— EG

! !

BXy —— BG

The inclusion U — X defines a morphism between simplicial spaces N Xy —
X, and we obtain the commutative diagram

BEy —— E
BXy — X.
Proposition. (cf.[30, 4.1]) IfiY is a numerable covering, then the natural

map
BXy — X

t¢ a homotopy equivalence.
For a paracompact space each covering is numerable so we deduce
Corollary. EG — BG is a classifying space of G for paracompact spaces.
If X is not paracompact we still have a relation between X and Xy :
Proposition. (cf. |5, p. 85]) The induce.d morphism
HYX,Z2) —— H*(BXy,Z)
18 an isomorphism,

(1.4) If we denote by Kg(X) the set of equivalence classes of principal
G-bundles with base X , remember that a characteristic class is a natural
transformation of functors

e Kg(—) —— H* (-, 2).

The results above give:
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Proposition. The map that sends a characieristic class ¢ fo the element
(EGY of H*(BG, Z) is a bijective correspondence.

In fact, if ¢ is a characteristic class and £ — X is a principal G-bundle we
have {notations as {1.3)}

e (e(B)) = §"((EG)),

but e}, is an isomorphism, so ¢(E) and this identity determine ¢(EG) com-
pletely.

Reciprocally, i ¢¢ € H*{BG,Z) and E — X is 2 principal G-bundle, we
can define the characteristic class ¢(E) by

ep{e(£)) = g7(co)-

The proof that the class so defined is independent of the trivializations and
the covering U may be seen in {5], pp.86-88.

{1.5) Remark that for some groups & it is possible to compute the coho-
mology of BG by Borel's theorem on the spectral sequence of the fibration
EG — BG (. [38], 15.62).

2. The Weil homomorphism: The case of rational coefficients

In this and the following § we denote by & a Lie group. In this paragraph
we show that the isomorphsim conjecture has not sense if we consider rational
coeflicients.

(2.1) Let M be a differentiable manifold, p : £ — M a differentiable
principal G-bundle and z € E . The map

G— E

induces an injection
veig=T.G —T.E,

such that the sequence
¥ dpz
0 — B — TIE —_— Tp(:)ﬁf —+ 0

is exact. :
Definition. A connection on E is a g-valued 1-form 8§ € AY(E,g) such
that:
1) Byov, =id,

i} B8 = Ad(g~*)o#6 , where R; : E — E denotes the actionof gon E .
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By example, in the trivial bundle M x G — M one has the Maurer-Cartan
connection defined by
82,0y = (Lg1 0 m2)s,

where 7 : M x G —> M is the projection, and Ly-r : G — G is the
traslation by the left defined by the inverse of g. Using this connection and an
argument of partitions of unity over triviallizing open sets one can prove easily
that any (differentiable) principal G-bundle over a paracompact manifold has
a connection ,

The curvature £ of a connection 6 is the g-valued 2-form defined by
Q(‘Ul,‘l.’z) = dﬂ(hvl, hvg),

where h is the horizontal component of v . Q is invariant by the G-action.
(2.2) @ acts on the symmetric algebra of g* , S'(g*) by

(gP) o1y son} = P(Ad(g™ )vr, -+, Ad(g™ Juy).

Let I*(G) be the G-invariant subset of $*(g*). The product on 5{g*) in-
duces an algebra structure on I*(G) .

Let 8 be a connection on E with curvature form £ | then Qf ¢ A% (E, g®F),
and as {2 is invariant and horizontal, P(2*} is an invariant horizontal 2k-form
so there is a 2k-form on M which maps to P(Q¥) | we will denote it by the
same symbol. We have the classical result (cf. [18], cap XII):

Theorem (Weil homomorphism).  P(Q*) € A%(M) is a closed form,
Let wg(P) be the corresponding de Rham cohomology class. Then:
i) we(P) is independent of the connection , it only depends on the isomor
phism class of E.
i) wg : I*"(G) — Hip(M) is an algebra homomorphism.
) i f: N — M is a differenticble map between manifolds then

Lu‘f*g = f‘wg.

(2.3) Although BG is not in general a differentiable manifold it is possible
to define a Weil homomorphism

I(G) —— H*(BG).

For that one observes that NG is a simplicial differentiable manifold and that
one can extend the notions above to this more general context: a principal
G-bundle over a simplicial manifold M is a simplicial G-manifold E and a
morphism E — M such that it is a principal G-bundle in each degree, B, —
M,. A connection on E is a connection on Ap x E, , for all n , compatible
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with the morphisms of A and E (see [5], 6.2, for more details) and one defines
the curvature form € as in (2.2) . If P € I*(G), P(Q¥) is a closed 2k-form on
M and defines 2 cohomology class

we(Py€ H*( M ||, R),

verifying 1)-iii} of the above theorem.

On the fiber bundle NG — NG we can define the following connection:
Let 6, be the Maurer-Cartan connection of the fiber bundle G — pt , and
g : An x NG, — G the i-th projection of G"*! into G; we define the
canonical connection by

8 =150 + -+ t,8,.

Now we have:

Theorem. (cf.[5,6.13]) There is a canonical homomorphism
w: I*"(G) — H*(BG,R)
such that if P € I"(G), w(P) is the 2k-form on NG represenied by P08,
where ) is the curvature of the canonical conneclion. w salisfies:
1) W(PYE) = wg(P), where wg 1s the morphism defined in (2.2) and
w(P)E) is the characteristic class corresponding to w(PY by (1.4}
i) w: I*(G) — H*(BG,R) is an algebra homomorphism.
i) if H — G is o morphism of Lie groups, the diagram

G —— I'(H)

(&) ! |
H*(BG) —— H"(BH)

is commulalive.

Remark. Sec [2] for another presentation of the Weil homomorphism in
this general context.

(2.4) Remember that a connection # on a principal G-bundle £ — M is
said to be flat if its curvature form vanishes. A principal G-bundle admiting 2
fat connection will be called flat. The flat bundles are characterized in terms
of transition functions by the following result

Proposition. {cf.[5,3.22]) A principel G-dbundle E — M is flut if and
only if there is a triviallizing open cover U = {Ua} of M such that the iransition
functions gop : Us MUz — G wre constent.

Corollary. A principal G-bundle is flat if and only if edmats a G®-reduction.

In terms of the Weil homomorphism and using the commutative diagram

{&), we deduce
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Corollary. The composition
I*G) - HY(BG,R) — H*(BG’ R)
18 tdentically zero.

{2.5) TIf G is a compact Lie group we have the following result of Cartan

Theorem. (cf. [5, 8.1)}) Let G be a compact Lie group, then the Weil ho-
momarphism

w: Gy —— H*{BG,R)

18 an womerphism,
Hence from (2.4} it follows
Corollary. Let G be a compact Lic group, then the morphism
H*(BG,Q) —— H*(BG*,Q)
13 Zevo.
(2.8) If G is a complex Lie group, there is a Chern-Weil homomorphism
WGy —— H*(BG,C)

similar to the Weil homomorphism. If & is semisimple with finitely many
connected components then this homomorphism is bijective as onc can prove
by using (2.5) applied to a maximal compact subgroup K of G {cf. [22], lemma
12), so we have: '

Proposition. If G is o complez semisimple Lie group with finitely many
connected components, then the morphism

H*(BG,Q) —— H'(BG% Q)
13 zero,

In the appendix of [22], the reader can see some other cases where n* with
rationnal coecfficients Is zero and providing evidence of the importance of the
finite coefficients in the Friedlander-Milnor conjecture.
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3. General results

In this paragraph we describe some general results of Milnor [22] on the
isomorphism conjecture.

(3.1) First of all observe that we can reduce the study of the conjecture to
the case where the coefficients are of the form Z/pZ , p a prime number, as may
be seen by using the exact sequence of homology associated to the coefficient
sequence of an abelian finite group A

0 ——s Af ' A AJA! b0,

where A’ is a nontrivial proper subgroup.
{3.2) Let F'y (or Frg if it is necessary to specify G) be the homotopy fiber
of 5 over € € G, 1Le,,

Fp={(s,f) € G' x PG/ f(0) = ¢, f(1) = g}

with the induced topology from the product G* x PG .  Fp is also a topological
group so we can take its classifying space

Bg = BFy.

The notation Bg is justified because BFn only depends on the Lie algebra g
of G. Infact, if Gy is the connected component of the identity element of G and
I/ — Gy is the universal cover, the natural morphisms induce isomorphisms

~ ~

Fny » Fg, Fre

If

0 } v g s g/n - 0

is an exact sequence of Lie algebras we have a fibration
Bn —— Bg —— B(g/n)

(3.3) From the homotopy fibration

Fy y G » &
we deduce the fibration

Bg » BG® » BG

and so by a Serre spectral sequence argument we deduce:
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Proposition. The isomorphism conjecture is true for G if and only if Bg
has the Z/p- homology of & point, for every prime p .

As Bg only depends on g, it foliows

Corollary. The isomorphism conjecture is true if it is true for the simply
connected groups.

(3.4) Theorem. Let G be a Lie group with solvable connecied component
of the idenlily, then the isomorphism conjecture is true for G .

Proof:  We use induction on the dimension of G . By (3.3) we can assume
that G is simply connected, and so the first case, dim G = 1, reduces to G = R.
But we can compute explicitely the homology of BR and BRY; it suffices to
remark that BR is contractible and that the Eilenberg-McLane homology with
finite coefficients of R? vanishes because it is 2 Q-vector space, so the result
foliows in this case.

IfdimG > 1, we can take a surjective morphism G — R with kernel N,
and apply induction on the fbration

Bn — Bg » Br . W

Remark. From the above result it follows that it suffices to prove the
conjecture for the simple groups because if n is the solvable radical of g there
is a fibration

Bn + Dg » B{g/n) = Bs; x -+~ x Bs,

where s1,...8,, are the simple algebras splitting g/n.
{3.5) In the general case, if G has finitely many connected components
Milnor proves:

Theorem. {[22, §3]). The morphism
.+ H; (BGY, Z/p) —— H{(BG,Z/p)
i3 split surjective. Similarly, 5" is a split injection in cohomology.
Idea of proof Milnor uses the Becker-Gottlieb transfer (cf. by example
(19]). Let K C G be a maximal compact subgroup of & , then G/K is con-

tractible (cf. [13] XV 3.1), and hence the map

BK — . BG
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is a homotopical equivalence. Let N be the normalizer of 2 maximal torus in
K and consider the fibration

#:BN —— BK
with fibre K /N. If ¢r denotes the transfer morphism, then the composition
H{BK) —— Hi(BN) —— Hi(BK)
equals the product by x(K/N), but x(K/N) =1 {cf. [14]} so we deduce that

7. is a split surjection. Now it suffices to look at the commutative diagram
{finite coefficients)

H,(BN% »  H{BG%)

lz ' l.;.

H{(BN) ——— H{BK) —— H{(BG) |

and to observe that the isomorphism conjecture is true for N (because there is
a fibration _ :
BT —— BN —— BW |

where W is the Weil group, hence we can apply (3.4) } to conclude the proof
of the theorem. W oo

Corollary 1. There is a direct summand of H{(BG®,Z[p) that n. maps
isomorphicelly onto H;(BG,Z/[p) . .

Corollary 2. The homomorphism
" y*: H(BG,Z) —— HY(BG’Z)
is fnjective,
Proof: Consider the commutative diagram

Hi(BG,Z) —— HY(BG,Z) —— H'(BG,Z/n)

! |

HY(BG,Z) —— H(BG* Z/n)

The right hand vertical arrow is injective by the theorem and the intersection
of all the subgroups nH*(BG,Z) is zero, H*(BG,Z) being finitely generated,
so the corollary foliows.
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This result is in contrast with the effect of n on homology. In fact, if G is
compact and H;(BG,Z) is free, e.g. G = U(n), then

Ma ! H;(BG6,Z) —— H,(BG,Z)

is zero by (2.5).
{3.6) The isomorphism conjecture is always true for H,(7), as can be
proved easily. Some authors have studied H(n) and Hs(n) :

Theorem. ILet G be a simple Lie group whose Lie algebra is not one of the
ien excepiionals, then Ha(n) is an isomorphism.

If G is a complex semisimple Lie group, Hz(Bg,Z) is isomorphic to K>(C)
» [29], hence uniquely divisible [1]. In general, H,(G, Z) may be identified via
complexification with K>(C)* , i.e. the conjugation stable part of K,(C), (see
[27, 4.1] for the non-compact case and [6, 3.1] for the compact case), and hence
the theorem follows too.

Theorem. ([24], [28]). If G = SL(2,F), with F = R,Cor H , then Hy(n)

13 on 1somorphism.

For the real case of this theorem see [24]. The general case is treated in [28].
As in the Hy case the proof of this theorem results of the comprehension of the
group K3(F). In this case Sah identifies H3(SL(2, F), Z) with the group of the
indescomposables K3{F)"! defined by

Ks(F)™¢ = Ky(F) | K}(F)
where K (F) denotes the Milnor X-theory of F.

4. Algebraic groups

(4.1) Let G be a complex algebraic group. By the comparison theorem
with étale cohomology ([2]) there is an isomorphism

H;, (BGo,Z/p) = H* (BG(C)?.2/p)

where BGc is the simplicial classifying group scheme of Gg . n and this
isomorphism induce a morphism

H; (BGe,Z/p) —— H*(BG(C),Z/p) |,

where G(C) is the discrete group of C-rational points of G . In fact this map
is induced by the natural map of group schemes (cf. [9])

G(Cle —— Go

Now we can state the following conjecture:
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GENERALIZED ISOMORPHISM CONJECTURE (GIC). Let k
be an algebraically closed field, n an integer invertible in k and Gy an algebraic
group over k. The naturel map G{(k)r — G induces tsomorphisms

H:, (BGy,Z/n) —— H*(BG(k),Z/n)

(4.2) Asin (3.2), Friedlander-Mislin prove that it suffices to consider GIC
for reductive groups {[8, 2.2]} and stablish a result similar to (3.4}, this time
without use of a Becker-Gottlieb transfer. Using the Lang cartesian square
they prove

Proposition.  {[9, 2.3]). Let p be ¢ prime number and T, the algebraic
- clogure of the finite field with p elements. If G-fp is o connecied algebraic group

over fp then GIC is true for Gy
P

This result is an intermiediate step in the proof of the analogous result of

(3.5}

Theorem. ([9, 2.5)). Let Gi be a connected algebraic group over k and
Ny C Gy the normalizer of a mazimal torus of Gy . Then the generalized
isomorphism conjecture i3 true for Ny and the composiiion

H2 (BGy,Zfn) ——— Hp(BNi,Z/n) —— H*(BN(k),Z/n)

is an injection whose image is the group of stable elements H* (BN(k), Z/n}s
by the N(k}-action.

Using the base change theorem for étale cohomology Friedlander-Mislin re-
duce the verification of GIC for Ni to the cases k = F or Q. The first of the
cases follows by the proposition above. For & = C it is easy to prove the result
so to study the case k = Q they proceed in the following way: let R C C be

the strict henselianization at p of Z(,) = {%,p | n}. R has residue field F,

and Q as a field of fractions. There is a commutative diagram (cohomology
with Z/n-coefficients):

H~(BN(F,)) «——— H*(BN(R)) —— H*(BN(Q)) — = HY(BN(C)")

| I I [

Hi(BNg,) —— Hi(BNg) —— Hi(BNg) — H;(BNc)

whose horizontal morphisms are isomorphisms (by Hensel lemma in the top
arrows and base change in the bottom) | so the result for Q follows from the
result for f,_, and C .
The identification of H2,(BG, Z/n) with H*{BN(k), Z/n) is similar, though
now it is not necessary to know first the case C (see loc. cit. for the details).
(4.3) To finish this paragraph we remark that Friedlander-Mislin give the
following characterization of GIC:



COHOMOLOGY OF LIE GROUPS MADE DISCRETE 165

Theorem. ([9,3.2]). The generalized isomorphic conjecture is true Jor Gy
if and only if for any prime p ond enyx € H* (BG(k),Z/p) not zero, there
is o fintte subgroup x C G(k) sucht that the restriction of z to H* (Br,Z/p) is
different from zero,

As a consequence they obtain easily:

Corollary. Let k = Uk, , ko being algebraically closed fields. The gener-
alized 1somorphism conjecture is true for Gy if and only if it 13 frue for each
Gy, -

This last result reduces the study of GIC to algebraic groups over a "suffi-
ciently big” algebraically closed field for each characteristic.

5. Stable results

In many of the applications where one wants to know the Eilenberg-McLane
cohomology of a Lie group G made discrete this group G is one in the classical
series, GL(n, F), U(n, F'), etc. In such cases the study of H, (BG?, Z/p) may
be approached in a way inspired by algebraic K-theory: first of all one studies
stability results for the cohomology of the series and then stablishes the con-
Jecture for the stable groups. Suslin pointed out this strategy while working on
the Lichtenbaum-Quillen conjecture.

In this paragraph we relate some of Suslin’s results for GL(n, C) and similar
results for other series. The field k will be R or C if not specified.

(5.1) An essential result in Suslin’s work is the following theorem, proved
by him in a special case [35] and generalised by Gabber {unpublished) and
Gillet-Thomason [10],

Rigidity theorem. Let X be a smooth variety over o field k and z € X a
k-rational point. Let OF be the henselianization of the local ring Ogp. If mi ds
e neturel number relatively prime with the characteristic of k, then the natural
morphism

K. (O}Z/m) —— K, (k,Z/m)

2 an tsomorphism.
Another fundamental result in Suslin’s work is his stability theorem:

Stability theorem. (cf. [34]).

1) The merphisms
Hi(SLa(k),2) —— H:(5L(k),Z)

ere isomorphisms for i < (n -~ 1)/2.
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i) If k is an infinite field, the morphisms
H(GL.k),Z) —— Hi(GL{k),Z)
are isomorphisms for 0 < i < n. Moreover, the morphisms
Ho{GLa(k),Z) —— Hn(GLnss(k),Z) —— ... —— Ho(GL{k), )
are isomorphisms and the homology product
P ®...QF = H (GL(E),Z)®" —— Ha(GLa(F),Z)
induces an z‘somorpha;sms
KM(k) —— HL{GL(k))/ Ha1 (GLa(k)),
where KM denotes Milnor K-theory.

In the following paragraph we will only use i) for £ = R, C whose proof is
much more elementary as Suslin remarks.

{5.2) Suslin realizes Bg in the following way: fix a left invariant riemannian
metric on & and let G, be the ball of radius € centered at ¢ € G. Let BG, be
the geometric realisation of the simplicial set whose p-simplexes are the p-uples
[g1,- . ,9p) such that

Ge(Ng:1Ge[ V[ Ng1--- G #0
with the usual face and degeneracy operators. Then
BG. —— BG* —— BG

is a homotopy fibration (cf. [36, 4.1]). With this presentation of Bg Sushn
proves: '

Theorem. ({36, 4.3]). Let k = R or C. For & sufficiently small, the

incluston

BGLa(k)y —— BGLg(k)) —— BGL{k)’

induces the zero morphism in H. (—,Zfm).
Idea of proof. By the rigidity theorem
*y H; (GL(O,m}),Z/m)=0 iz1,

where m, is the maximal ideal of O,.
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Consider the simplicial scheme BGL,/k , and let X ,ﬁ“.- be the henselianization
of its i-th component (BGL,); = (GL,)** in the unit section and O} ; be the
corresponding coordinate ring. For fixed 2 , the schemes X ;’:J- make a simplicial
scheme and the maps

Xp; — (GL.)" — GIL,
define matrices ¢; € GL, (02'5). Let g ; be the chain
[as,-..,ai) € Ci{GL, (OF ), Z/m)

where C.{—,Z/m) is the standard complex.
By induction on ¢ and {*) for Oﬁ,i, we may prove the existence of chains

Ca,i € Cign (GL (02,5) ) Z/m)
such that )
deni = Upi — Z(_I)j(dj)*(ch,i—l)
=0

The ring of continuous functions O3 of GL,(k)** is henselian hence there
is a canonical map OF , — oprt. Let ;2™ be the images corresponding
to €q,i. The group GL (O““‘) may be identified to the group of germs of

continuous maps {GLq{k))"" — GL(k), hence, for fixed N > 0 so that the
cient are defined in {(GL(k),)*, i < N, and for sufficiently small & , we will

N,
have morphisms

Ci(BGLp(k}e,Zfm) —— Cip1 {GL(k),Z/m)

that define a homotopy te zero by the construction of the Cni . B

Corollary. The map

BGL(kY —— BGL(k)

induces isomorphism in homology with finite coefficients.

Idea of proof. As we have the fibration

BSL(k} —— BGL(k} —— Bk*

and the one corresponding to GL(k)?, it suffices to see that

BSL(ky® —— BSL{k)
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is an H,(—, Z/p)-isomorphism and so it suffices to prove that H.(BSL(K).,Z/p)
=40. :
By the Serre spectral sequence of the fibration

BSL,(k), — BSL.(k)) —— BSL.(k}
and using the fact that
H, (BSLa(k)’,Z/p) —— H.(BSLu(k),Z/p)
is surjective {cf. (3.5)), we can deduce that if i, is the least integer with
Hi, (BSLa(k)e, Z/p) # 9

then
) H;, (BSLn(k)z,Z/p) — Hio (BSL“(k)a,Z/p) :

is injective. But if ¢ £ (n — 1)/2, we have
H, (BSLu(k)’,Z/m) = H: (BSL{k)*,Z/p)

by the stability theorem, hence iy > {n — 1)/2 by the theorem above. Now the
result follows by passing to the limit. B

Using now the second statment of the stability theorem we cen deduce the
isomorphism conjecture for the groups GLn(k) in degrees < n :

Corollary. The natural map
BGL,(k)® ~——— BGL,(k)

induces 1somorphismas
Hi (BGLa(k)® 2jp) —— Hi(BGL.(k),Zfp) i<n

Making use of an adequate version of the above techniques Suslin and Juffr-
jakov prove :

Theorem. ([37, §3]). Let H be the quaternion algebra; then the natural
morphtam :

BGL(H)YY —— BGL(H)
snduces an isomorphism in homology with fintie coefficients,
{5.3) In[16] Jardine gives another proof of the isomerphism conjecture for

BGL(C). This new proof, of an algebraic flavor, also makes essential use of
the rigidity theorem, although in this case he has not used the stability results.
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We scketch Jardine's idea: Jardine considers BGL, as a sheaf of simpli-
cial sets on the category of smooth C-schemes and defines the sheaf BGL =
lim BGLy. The global section functor T has a left adjoint, hence there is an

adjunction map
¢ :*BGL(C)=I"T"\BGL —— BGL

corresponding to 7 in the previous notations, and passing to homology there is
a map

£.: H ("BGL(C),Z/p) —— H.(BGL,Z/p)

The fiber of £, in a rationnal point = of a smooth variety X is the map
H.(BGL(C),Z/p) —— H,.(BGL{O}),Z/p}) ,

and this map is an isomorphism by the rigidity theorem, hence e, and ¢* are
sheaf isomorphisms, and so we obtain group isomorphisms

¢*: H*(BGLg,Z/p) —— H*(T*BGL(C),%/p)

Finally he proves that H* (I'* BGL(C), Z/p) is isomorphic to H* (BGL(C), Z/p),
concluding the proof.

One of the objectives of Jardine’s paper is to develop the methods of sim-
plicial sheaves on a Grothendieck topos to make sense of the program just
sketched. As these are general methods he can apply them to the situation
described in §4, so if k is an algebraically closed field and p is a prime number
different from the characteristic of k, he obtains:

Theorem. The map
Hy (BGLy,Z/p) —— H*(BGL(k),Z/p)
s an somorphism.

In fact Jardine’s proof permits to assert that the GIC is true for an algebraic
group & over k if for every rationnal point x of every smooth variety X over &
the map

H,(BG(k),Z/p) —— H,(BG(0}),Z/p)
13 an isomorphism. One has to observe here that a so general result is unknown
even for k = F,, in which case the GIC is known to be true cf, (4.2).

{5.4) Karoubi [17] has proved the stable form of the isomorphism conjec-
ture for the groups Sp(2n, k) and SO{p, ¢; k) and SO(n, n, C}, using this time
Vogtmann stability results, cf. [27)].
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6. The Lichtenbaum-Quillen conjecture

(6.1) Let k be a field. Quillen [26] associates to the topological space
BGL(k)® a new space BGL(k)" and a map i : BGL(k)® — BGL(k)* such
that

i) m(BGL(k)®) — mi{BGL{k)")} corresponds to the projection GL(k} —
GL(k) [ [GL(k), GL(k)]
it) for any local coefficient system F on BGL(k)* the morphism

i H* (BGL(¥)*,F) —— H*(BGL(k)*,F)

is an isomorphism,

and then defines the J(-theory of the field & by

Ki(k)=m: (BGL{kY*) i21.

(6.2) If k is algebraically closed, Lichtenbaum and Quillen conjectured that
the groups K;(k} are divisible, with zero torsion for even 1 and equal to W(=)
, the Tate n — twist of the roots of unity of k* , for i = 2n — 1. The conjecture
was known to have a positive answer if £ = F, after the determination of the
groups K;(F,) by Quillen [25].

Suslin’s results explained in § 5 give a positive answer for £ = C:

Theorem. ¥ k = R,C and GL,(k) is the corresponding Lie group, the
naturel map

BGL(kY* —— BGL(k)

induces an isomerphism for homotopy with finile coefficients.

As was the case in (8.2) it suffices to prove the theorem for SL(k}, bul in
this case the map

BSL{k)* — BSL(k)

induces isomorphism in homology with finite coefficients by the resuits of §
5 and property ii) of the +-construction. Now BSL{(k)* and BSL{k} being
simply-connected the result follows {cf. [23]). ’

BGL(C) has the homotopy type of BU hence

Zjp i i odd

¢ if 7 even

K(C.2/p) = |

Using a result of Weibel, Suslin can deduce
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Theorem. Modulo uniquely divisible groups the K-theory of R and C is
displayed in the following table (i > 0):

tmod 8 0 1 2 3 4 5 4] 7

K{R) 0 Z/2 Z/2 Q/Z 0 0 0 Q/Z

L Q L 0 mult2 0 0 © il

K(C) 0 QZ 0 Q/Z 0 Q/Z 0 Q/Z

{6.2) Suslin also proves in [35] that these two cases of the conjecture per-
mits to resolve it in general:

Theorem. ([35]} The groups Ki(k, Z/n} and the n-torsion groups ,Ki(k),
only depend in the characteristic of the field.

In fact, if ky C k is an extension of algebraically closed fields we may write
k=lmA |,
—

where A runs over the finitelly generated ko-algebras in k. As ko is algebraically
closed there is 2 morphism

A — ky
of ko-algebras splitting the map
Kilko,Zfn) —— K {A,Z/n)
and hence the map
Ki{ky,Z/n}) —— K, (k,Z/n)
is injective. The ridigity theorem permits now assure that the morphism in-
duced by 4 < % is the same that the one induced by (cf. loc. cit.)
A—kyg—k

hence surjectivity follows.

Remark. As an easy corollary of the techniques above one may deduce
that the groups H; (GL.(k),Z/£€}, i < n,only depend on the characteristic of
k.

Suslin proves even more: any one of the cases F, , C implies the truth of
the conjecture, because using the rigidity theorem and the homotopy universal
constructions of (5.2}, he stablishes:

Theorem. {c<f. [36, 3.12]). Let k be an algebraically closed field of positive
characteristic p > 0 and L the algebraic closure of the quotient field Lo of the
ring of Witl vectors of k, W(k). If n is a prime different from p , there is o
cenonical isomorphisms

Ko {k,Z/n) = K, (L,Z/n)
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