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COHOMOLOGY OF LIE GROUPS MADE DISCRETE

Abstract

PERE PASCUAL GAINZA

We give a survey of the work of Milnor, Friedlander, Mislin, Suslin, and
other authors on the Friedlander-Milnor conjecture on the homology of
Lie groups made discrete and its relation to the algebraic K-theory of
fields .

Let G be a Lie group and let G6 denote the same group with the discrete
topology . The natural homomorphism G6 -+ G induces a continuous map
between classifying spaces

E.Friedlander and J . Milnor have conjectured that rl induces isomorphisms of
homology and cohomology with finite coefficients . The homology of BG6 is the
Eilenberg-McLane homology of the group G6 , hard to compute, and one of the
interests of the conjecture is that it permits the computation of these groups
with finite coefficients through the computation (much better understood) of
the homology and cohomology of BG.
The Eilenberg-McLane homology groups of a topological group G are of

interest in a variety of contexts such as the theory of foliations [3], [11], the
scissors congruence [6] and algebraic K-theory [26] . For example, the Haefliger
classifying space of the theory of foliations is closely related to the group of
homeomorphisms of a topological manifold, for which one can prove analogous
results of the Friedlander-Milnor conjecture with entire coefFicients, cf. [20],
[32] .
These notes are an exposition of the context of the conjecture, some known

results mainly due to Milnor, Friedlander, Mislin and Suslin, and its application
to the study of the groups K;(C),

	

i > 0.
We thank F . Guillén, V . Navarro Aznar and A . Roig for many helpful con-

versations about this theme .

*Partially supported by CICYT n . 0348-86

rt : BG6 -----> BG .
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with fiber G, and a right G-action

satisfying

1 . C1assifying spaces

(1.1)

	

Let G be a topological group . Remember that a principal G-bundle
consists of a continuous map

p : E -' B

E x G

such that there is an open covering {Uj of B and homeomorphisms

cpa : Ua x G - ) p-1(U.)

psP«
= p ¡u.

,P.(b, 9) - coa(b, e)g .

The notion of equivalence of principal G-bundles is the obvious one .
Deflnition . A classifying space for G is a topological space BG with a

principal G-bundle
EG

	

) BG

such that EG is contractible and is universal in the following sense: if p
E -+ B is any principal G-bundle then there is a continuous map B -~ BG
such that p is. the fiber product

E ------------ EG

B

	

; BG.

The existence of classifying spaces may be proved by Brown's representation
theorem (for CW-complexes [38] (11.33)) or by giving a specific construction .
In the following paragraphs we present Segal's construction, [30], for which we
have to assume that G is an ANR, as verified by Lie groups . This construction
corresponds to the nonhomogeneous normalized bar construction for discreto
groups . The analogous of nonnormalized bar constructions would be the Milnor
classifying space (c .f. [15]) and that of Dold-Lashof (c.f . [4]), see [33] .

(1.2)

	

Let C be a topological category (Le. Ob C and Mor C are topological
spaces and the structural maps are continuous), Segal defines the simplicial
topological space NC, called the nerve of C , whose n-simplexes are the elements
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(f1, . . ., f.) of (Mor C) "' for which it is defined the compositions f;+1 o f; ,
with boundary and degeneracy maps as usual .

Deflnition .

	

BC :=11 NC ¡l .
(Observe that we take the thick geometric realisation identifying only bound-

ary maps [31]) .
To a topological group G we can associate the categories :

- G : it has only one object, e E G, and MorG = G,
- G :ObC=GandMorC=GxG,

so we obtain the classifying spaces BG and B G.

	

Observe that_

	

if 91, 92 are
objects of G there is one and _only one morphism from g1 to 92 that is an
isomorphism, so it follows that G is equivalent to the trivial category with one
object and one morphism and from the general theory of classifying spaces
we can deduce that B G is contractible . The functor G --+ G sending the
morphism (91 ,9 2 ) of

_
to the morphism 9, 1 92 of G, gives rise to a continuous

map
B G , BG.

Observe also that B G is a G-free space and that B GIG = BG. We write
EG = B G.

Proposition . If (G, e) is an ANR, then EG --+ BG is a principal G-bundle.

(1 .3)

	

We will give now an approximation to the universality of this princi-
pal G-bundle . Remember that to a principal G-bundle p : E -3 B there are
associated transition functions

gap :u.nup% G,

satisfying the usual cocicle condition defined in the following way :
The maps

~p = w«1 °wp :(u.nu#)xC (Ua nup)xC

are compatible with the projection p, so they define maps

h~p :(U,,nup)xC -: G

and as the Wa are G-equivariant, we have

W.(b, h.,i(b, g)) = Sp#(b, g)

= (Po(b, e)g

= `o.(b, h«p(b, e))g
=,p.(b, hap(b, e)g)
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Le.

so we can define

Observe that

h.p(b, g) = h.p(b, e)g

	

,

9.p(b) = h«p(b,e) E G

It is well known that the equivalence classes of principal G-bundles are deter-
mined by the transition functions (cf . by example [381 (11.16)) . The informa-
tion given by these functions may be interpreted in the context of classifying
spaces in the following way :

Let p : E -4 X be a principal G-bundle and let U = (U,,) be an open
cover of X with associated transition functions g,,p . To the couple (X, Lf)
we associate the following topological category XU : the objects are the pairs
(x, U,,), with x E Ua , and there is a unique morphism (x, U,,) -~ (y, Up) iff
x = y, i .e . ,

ObXU=LjU.. ,

MorXU = Ll Ua n Up
(a,p)

(NXu)n =

	

Ll

	

Uao n . . . n UQ�
(Cro . . . a.)

Bg : BXU ;BG

the sum being over all (n + 1)-uples with

Uaon . . .nU,,,

Lemma. The transition functions define a continuous functor

9 . XU

	

G

hence there is a continuous map

Similarly, if V = {V, = p-1 (U,,)} , the trivializations (pa) define a functor

EV:G ,

and we obtain a continuous map

BEV EG.



Finally, the projection p gives rise to a functor Ev ---+ XU so that the
following diagram commutes

The inclusion U -> X defines a morphism between simplicial spaces NXU
X, and we obtain the commutative diagram

is a homotopy equivalence .

is an isomorphism.

The results above give :

COHOMOLOGY OF LIE GROUPS MADE DISCRETE

	

155

BEv -; EG

BEv )E

BXU
EU
--, X.

Proposition . (cf.[30, 4.1])

	

If U is a numerable covering, then the natural
map

BXUiX

For a paracompact space each covering is numerable so we deduce

Corollary . EG -> BG is a classifying space of G for paracompact spaces .

If X is not paracompact we still have a relation between X and Xu

Proposition. (cf. [5, p . 85]) The induced morphism

H*(X, Z) ) H*(BXU, Z)

(1 .4)

	

If we denote by KG(X) the set of equivalence classes of principal
G-bundles with base X , remember that a characteristic class is a natural
transformation of functors

c : KG(-)

	

> H*(-, Z) .
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Proposition . The map that sends a characteristic class c to the element
c(EG) of H*(BG, Z) is a bijective correspondence .

In fact, if c is a characteristic class and E -i X is a principal G-bundle we
have (notations as (1 .3))

induces an injection

such that the sequence

e* (c(E)) = g*(c(EG)),

but ¿su is an isomorphism, so c(E) and this identity determine c(EG) com-
pletely.

Reciprocally, if co E H*(BG, Z) and E --> X is a principal G-bundle, we
can define the characteristic class c(E) by

,su* (c(E» = g*(co) .

The proof that the class so defined is independent of the trivializations and
the covering U may be seen in [51, pp.86-88 .

(1.5)

	

Remark that for some groups G it is possible to compute the coho-
mology of BG by Borel's theorem on the spectral sequence of the fibration
EG --+ BG (cf. [38], 15 .62) .

2 . The Weil homomorphism : The case of rational coefficients

In this and the following § we denote by G a Lie group . In this paragraph
we show that the isomorphsim conjecture has not sende if we consider rational
coefficients .

(2.1) Let M be a differentiable manifold, p : E --> M a differentiable
principal G-bundle and x E E . The map

G->E

vx : g = TeG -r .T., E,

TxE dp*+ Tp 1 x1M -> 0

is exact .
Deflnition .

	

A connection on E is a g-valued 1-form 8 E A1 (E,g) such
that :

i) B z o v, =ld,
ii) R*B = Ad(g-i ) o 0 , where Rg : E -i E denotes the action of g on E .
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By example, in the trivial bundle M x G --> M one has the Maurer-Cartan
connection defined by

B(x,g) = (Lg'i 0 7f2) * ,

where 7r2 : M x G -> M is the projection, and Lg-1 : G --> G is the
traslation by the left defined by the inverse of g . Using this connection and an
argument of partitions of unity over triviallizing open sets one can prove easily
that any (differentiable) principal G-bundle over a paracompact manifold has
a connection .
The curvature 2 of a connection B is the g-valued 2-form defined by

52(v1, v2) = d8(hv1, hv2),

where h is the horizontal component of v . 52 is invariant by the G-action .
(2.2)

	

G acts on the symmetric algebra of g* , S'(g*) by

(9P)(v1,- . . vk)=P(Ad(g-1)vl,- . .,Ad(g-1)vk) .

Let Ik (G) be the G-invariant subset of S k(g*) . The product on S'(g*) in-
duces an algebra structure on I*(G) .

Let 9 be a connection on E with curvature form 52 , then S2k E A2k (E,g®k),
and as 2 is invariant and horizontal, P(S2k) is an invariant horizontal 2k-form
so there is a 2k-form on M which maps to P(S2k) , we will denote it by the
same symbol . We have the classical result (cf. [18], cap XII) :

Theorem (Weil homomorphism) .

	

P(52k ) E A2k(M) is a closed form .
LetWE(P) be the corresponding de Rham cohomology class. Then:

i) WE(P) is independent of ¡he connection , it only depends on the isomor-
phism class of E.

ii) wE : I*(G) ---> HdR(M) is an algebra homomorphism .
iii) if f : N -> M is a differentiable map between manifolds then

wf*E = f*-E .

(2 .3)

	

Although BG is not in general a differentiable manifold it is possible
to define a Weil homomorphism

I*(G)

	

> H*(BG) .

For that one observes that NG is a simplicial differentiable manifold and that
one can extend the notions above to this more general context : a principal
G-bundle over a simplicial manifold M is a simplicial G-manifold E and a
morphism E -->M such that it is a principal G-bundle in each degree, En ->
M, . A connection on E is a connection on On x & , for all n , compatible
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with the morphsm of 0 and E (sea [5], 6.2, for more details) and one defines
the curvatura form 9 as in (2.2) . If P E I*(G), P(Qk) is a closed 2k-form on
M and defines a cohomology class

verifying i)-iii) of the above theorem .
On the fiber bundle NG -> NG we can define the following connection :

Let Bo be the Maurer-Cartan connection of the fiber bundle G -+ pt , and

q; : A,, x NGn --> G the i-th projection of Gn+1 into G; we define the
canonical connection by

Now we have :

WE(P) E H2k (II M II, R),

B = tollo + - - - + tnOn .

Theorem.

	

(cf.[5, 6.13])

	

There is a canonical homomorphism

w : I*(G) %H*(BG,R)

such thai if P E I*(G), w(P) is the 2k-form on NG represented by P(SZ k),
where 52 is the curvatura of ¡he canonical connection .

	

w satisfies :
i) w(P)(E) = WE(P), where wE is the morphism defined in (2.2) and

w(P)(E) is the characteristic class corresponding to w(P) by (1.4).
ii) w : I*(G) ---, H*(BG,R) is an algebra homomorphism .

iii) if H ---> G is a morphism of Lie groups, ¡he diagram

is cominutative .

I*(G) > I*(H)

H*(BG) H*(BH)

Remark.

	

See [2] for another presentation of the Weil homomorphism in
this general context .

(2.4)

	

Remember that a connection B on a principal G-bundle E ---> M is
said to be flat if its curvatura form vanishes . A principal G-bundle admiting a
flat connection will be callad flat . Thé flat bundles are characterized in termS
of transition functions by the following result

Proposition .

	

(cf.[5, 3.22])

	

A principal G-bundle E --) M is flai if and
only if there is a triviallizing open coverU = {Ua } ofM such that ¡he transition
functions gap : Ua n Up -> G are constant .

Corollary. A principal G-bundle is flat if and only if admits a G6 -reduction .

In terms of the Weil homomorphism and using the commutative diagram
(&), we deduce
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Corollary . The composition

I*(G) _w_+ H*(BG,R) --> H*(BG6,R)

is identically zero .

(2 .5)

	

If G is a compact Lie group we have the following result of Cartan

Theorem . (cf . [5, 8 .1]) Let G be a compact Líe group, then the Weil ho-
momorphism

w : I*(G)

	

H*(BG, R)

is an isomorphism.

Hence from (2.4) it follows

Corollary . Let G be a compact Lie group, then the morphism

H*(BG, Q)

	

H*(BG6 , Q)

is zero .

(2 .6)

	

If G is a complex Lie group, there is a Chern-Weil homomorphism

I¿(G) --+ H*(BG, C)

similar to the Weil homomorphism . If G is semisimple with finitely many
connected components then this homomorphism is bijective as one can prove
by using (2.5) applied to a maximal compact subgroup K of G (c .f . [22], lemma
12), so we have :

Proposition . If G is a complex semisimple Líe group with finitely many
connected components, then ¡he morphism

as zero .

H*(BG, Q) --> H*(BG6 , Q)

In the appendix of [22], the reader can see some other cases where 77 * with
rationnal coefficients is zero and providing evidence of the importance of the
finite coefficients in the Friedlander-NIilnor conjecture .
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If

we deduce the fibration

3 . General results

In this paragraph we describe some general results of Milnor [22] on the
isomorphism conjecture .

(3.1)

	

First of all observe that we can reduce the study of the conjecture to
the case where the coefficients are of the form Z/pZ , p a prime number, as may
be seen by using the exact sequence of homology associated to the coefficient
sequence of an abelian finite group A

0

	

A': A% A/A'

	

) 0 ,

where A' is a nontrivial proper subgroup .
(3.2)

	

Let Fi7 (or FlIG if it is necessary to specify G) be the homotopy fiber
of 17 over e E G, Le .,

Fi? = l(9, f) E Ga x PG / f(0) = e, f( 1 ) = 9}

with the induced topology from the product G6 x PG .

	

F7j is also a topological
group so we can take its classifying space

Bg := BF71.

The notation Bg is justified because BFil only depends on the Lie algebra g
of G . In fact, if Go is the connected component of the identity element of G and
U -> Go is the universal cover, the natural morphisms induce isomorphisms

Frlu

	

F77Go --; Fr7G

0 ----+ n : g

	

) g/n : 0

is an exact sequence of Lie algebras we have a fibration

Bn

	

) Bg -% B(g/n)

(3.3)

	

From the homotopy fibration

Bg

	

) BG6

	

) BG ,

and so by a Serre spectral sequence argument we deduce :
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Proposition . The isomorphism conjecture is irue for G if and only if Bg
has the Z/p- homology of a poini, for every prime p

As Bg only depends on g, it follows

Corollary. The isomorphism conjecture is true if it is true for the simply
connected groups.

(3.4)

	

Theorem . Let G be a Líe group with solvable connected component
of ¡he identity, then the isomorphism conjecture is true for G .

Proof..

	

We use induction on the dimension of G . By (3 .3) we can assume
that G is simply connected, and so the first case, dim G = 1 , reduces to G = R.
But we can compute explicitely the homology of BR and BR6 ; it suffices to
remark that BR is contractible and that the Eilenberg-McLane homology with
finite coefficients of Ró vanishes because it is a Q-vector space, so the result
follows in this case .

If dimG > 1, we can take a surjective morphism G -> R with kernel N,
and apply induction on the fibration

Bn

	

~ Bg

	

-> Br . "

Remark. From the above result it follows that it suffices to prove the
conjecture for the simple groups because if n is the solvable radical of g there
is a fibration

Bn -

	

) Bg --) B(g/n) = Bsl x - - - x Bs�,

where s,....s�, are the simple algebras splitting g/n .
(3.5) In the general case, if G has finitely many connected components

Milnor proves :

Theorem . ([22, §3]) . The morphism

77 * : H; (BG6 , Z/p)

	

; H;(BG, Z/p)

is split surjective . Similarly, rl* is a split injection in cohomology .

Idea of proof.

	

Milnor uses the Becker-Gottlieb transfer (cf.

	

by example
[19]) . Let K C G be a maximal compact subgroup of G , then G/K is con-
tractible (cf. [13] XV 3.1), and hence the map

BK )BG
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is a homotopical equivalence . Let N be the normalizer of a maximal torus in
K and consider the fibration

7r : BN ;BK

with fibre K/N. If tr denotes the transfer morphism, then the composition

Hj(BK)

	

ir .
H;(BN)

	

"* ) Hj(BK)

equals the product by X(K/N), but X(K/N) = 1 (cf. [14]) so we deduce that
7r* is a split surjection . Now it suffices to look at the commutative diagram
(finite coefficients)

Hi(BN6 )

	

' Hi(BG6)

Hj(BN) - ~ ' H=(BK)

	

Hi(BG)

and to observe that the isomorphism conjecture is true for N (because there is
a fibration

BT -- ) BN - BW ,

where W is the Weil group, hence we can apply (3.4)) to conclude the proof
of the theorem .

Corollary 1 . There is a direct summand of Hi(BG6 , Z/p) that 11* maps
isomorphically opto Hi(BG, Z/p) .

Corollary 2. The homomorphism

H'(BG, Z) --; Hi(BG6, Z)

is injective .

Proof.	Consider the commutative diagram

H'(BG, Z)n-" H'.(BG, Z)

	

H'(BG, Z/n)

Hi(BG6 , Z)

	

) Hi(BG6 , Z/n)

The right hand vertical arrow is injective by the theorem and the intersection
of all the subgroups nH'(BG, Z) is zero, H`(BG, Z) being finitely generated,
so the corollary follows .



COHOMOLOGY OF LIE GROUPS MADE DISCRETE

	

163

This result is in contrast with the effect of y on homology. In fact, if G is
compact and H;(BG, Z) is free, e.g. G = U(n), then

97* : H;(BG6, Z) -

	

~ H;(BG, Z)

is zero by (2 .5) .
(3 .6) The isomorphism conjecture is always true for Hl(77), as can be

proved easily. Some authors have studied H2(i7) and H3(71)

Theorem . Let G be a simple Lie group whose Líe algebra is not one of ¡he
ten exceptionals, then H2(7l) is an isomorphism.

If G is a complex semisimple Lie group, H2(Bg, Z) is isomorphic to K2(C)
[29], hence uniquely divisible [1] . In general, H2 (G, Z) may be identified via

complexification with K2(C)+ , Le . the conjugation stable part of K2 (C), (see
[27, 4.1] for the non-compact case and [6, 3.1] for the compact case), and hence
the theorem follows too.

Theorem . ([24], [28]) . If G = SL(2, F), with F = R, C or H , then H3(i7)
is an isomorphism.

For the real case of this theorem see [24] . The general case is treated in [28] .
As in the H2 case the proof of this theorem results of the comprehension of the
group K3 (F) . In this case Sah identifies H3(SL(2, F),Z) with the group of the
indescomposables K3(F)Bnd defined by

K3 (F ) ind =K3 (F) / Ká(F)

	

,

where KM(F) denotes the Milnor K-theory of F .

4 . Algebraic groups

(4 .1)

	

Let Gc be a complex algebraic group . By the comparison theorem
with étale cohomology ([2]) there is an isomorphism

Hét (BGc, Z/p) = H* (BG(C)toP
Z/p)

	

,

where BGc is the simplicial classifying group scheme of Gc . 77 and this
isomorphism induce a morphism

Hét (BGC, Z/p) ----~ H* (BG(C),Z/p)

	

,

where G(C) is the discrete group of C-rational points of GC . In fact this map
is induced by the natural map of group schemes (cf . [9])

G(C)C 3Gc

Now we can state the following conjecture :
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GENERALIZED ISOMORPHISM CONJECTURE (GIC) . Let k
be an algebr¢ically closed field, n an integer invertible in k and Gk an algebraic
group over k. The natural map G(k)k -> Gk induces isomorphisms

Hét (BG,, Z/n) �11-, H* (BG(k), Z/n)

(4.2)

	

As in (3.2), Friedlander-Mislin prove that it suffices to consider GIC
for reductive groups ([9, 2.2]) and stablish a result similar to (3.4), this time
without use of a Becker-Gottlieb transfer . Using the Lang cartesian square
they prove

Proposition .

	

([9, 2.3]) . Le¡ p be a prime number and Fp the algebraic
closure of the finite field with p elements . If GFP is a connected algebraic group

over FP then GIC is true for GF. .

This result is an intermiediate step in the proof of the analogous result of
(3.5) :

Theorem.

	

([9, 2 .5]) . Let Gk be a connected algebraic group over k and

Nk C Gk the normalizer of a maximal torus of Gk .

	

Then the generalized
isomorphism conjecture is true for Nk and ¡he composition

Het (BGk, Z/n) -~ Het (BNk, Z/n)

	

- .> H* (BN(k), Z/n)

is an injection whose image is ¡he group of stable elements H* (BN(k), Z/n)S
by the N(k)-action.

Using the base change theorem for étale cohomolog_y Friedlander-Mislin re-
duce the verification of GIC for Nk to the cases k = FP or Q . The first of the
cases follows by the proposition above . For k = C it is easy to prove the result
so to study the case k = Q they proceed in the following way : let R C C be
the strict henselianization at p of Z(p ) _ { n ,p 1 n} . R has residue field FP

and Q as a field of fractions . There is a commutative diagram (cohomology
with Z/n-coefficients) :

H*(BN(Fp )) <-- H*(BN(R))%H*(BN(Q))

	

H*(BN(C)6)

H-t(BNFp ) Hét(BNR) H*t(BNq) Hét(BNC)

whose horizontal morphisms are isomorphisms (by Hensel lemma in the top
axrows and base change in the bottom) , so the result for Q follows from the
result for FP and C .
The identification of H*t(BGk,Z/n) with H*(BN(k), Z/n)S is similar, though

now it is not necessary to know first the case C (see loc . cita for the details) .
(4.3)

	

To finish this paragraph we remark that Friedlander-Mislin give the
following characterization of GIC :



Theorem .

	

([9, 3.2]) . The generalized isomorphic conjecture is true for Gk
if and only if for any prime p

	

and any x E H* (BG(k), Z/p) not zero, there
is a finite subgroup n C G(k) sucht that the restriction of x to H* (B7r, Z/p) is
different from zero .

As a consequence they obtain easily :

Corollary . Let k = Uka , ka being algebraically closed fields .

	

The gener-
alized isomorphism conjecture is írue for Gk if and only if it is true for each
Gka .

This last result reduces the study of GIC to algebraic groups over a "suffi-
ciently big" algebraically closed field for each characteristic .

In many of the applications where one wants to know the Eilenberg-McLane
cohomology of a Lie group G made discrete this group G is one in the classical
series, GL(n, F), U(n, F), etc . In such cases the study of H* (BG6, Z/p) may
be approached in a way. inspired by algebraic K-theory : first of all one studies
stability results for the cohomology of the series and then stablishes the con-
jecture for the stable groups . Suslin pointed out this strategy while working on
the Lichtenbaum-Quillen conjecture .

In this paragraph we relate some of Suslin's results for GL(n, C) and similar
results for other series . The field k will be R or C if not specified .

(5.1)

	

An essential result in Suslin's work is the following theorem, proved
by him in a special case [35] and generalised by Gabber (unpublished) and
Gillet-Thomason [10],

Rigidity theorem . Let X be a smooth variety oven a field k and x E X a
k-rational point. Let Oh be the henselianization of the local ring Ox . If m is
a natural number relatively prime with the characteristic of k, then the natural
morphism

is an isomorphism.
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5. Stable results

Ii* (Ox, Z/m) , K* (k, Z/m)

Another fundamental result in Suslin's work is his stability theorem:

Stability theorem.

	

(cf. [34]) .
i) The morphisms

H; (SL,, (k), Z)

	

H; (SL(k), Z)

are isomorphisms for i < (n - 1)/2 .



166

	

P.PASCUAL GAINZA

ii) If k is an ininite field, ¡he morphisms

Hi (GLn(k), Z) -, Hi (GL(k), Z)

are isomorphisms for 0 < i < n. Moreover, the morphisms

Hn(GLn (k), Z) --=, Hn (GLn+l (k), Z)

	

. . .

are isomorphisms and ¡he homology product

k* ®. . . ® k* =Hi (GLk(k), Z)
®n
% Hn (GLn(F) , Z)

induces an isomorphisms

KM(k)

	

Hn(GL(k)) l Hn-i (GLn(k)),

where KM denotes Milnor K-theory .

In the following paragraph we will only use ii) for k = R, C whose proof is
much more elementary as Suslin remarks .

(5.2)

	

Suslin realizes Bg in the following way : fix a left invariant riemannian
metric on G and let Ge be the ball of radius e centered at e E G. Let BG E be
the geometric realisation of the simplicial set whose p-simplexes are the p-uples

[gl, . . . , gp] such that

GE n glGEn . . . ng, . . . gpGE :~ 0

with the usual face and degeneracy operators . Then

BG E --; BGá

	

) BG

Hn (GL(k), Z)

is a homotopy fibration (cf. [36, 4.1]) . With this presentation of Bg Suslin
proves :

Theorem .

	

([36, 4.3]) . Let k ='R or C. For e suicienily small, the

inclusion
BGLn(k)f --% BGLn(k)6 --~ BGL(k)á

induces ¡he zero morphism in H* (-,Z/m) .

Idea of proof.

	

By the rigidity theorem

Hi (GL (Oi, mi) , Z/m) = 0

where mz is the maximal ideal of Ox .



Xn~i

	

) (GLn)x' - 2

	

, GLn

define matrices aj E GLn (Ch ;) . Let un ,¡ be the chain

such that
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Consider the simplicial scheme BGLn/k , and let Xn ; be the hénselianization
of its i-th component (BGL,)i = (GLn)Xi in the unit section and Cn ; be the
corresponding coordinate ring . For fixed n , the schemes Xn ; make a simplicial
scheme and the maps

[al, . . . . a¡] E C; (GLn (an,i) , Z/m)

	

,

where C*(-, Z/m) is the standard complex .
By induction on i and (*) for Ch.i, we may prove the existente of chains

Cn,i E Ci-~1 (GL (On ;) , Z/m)

The ring of continuous functions 0n'

	

~°of GLn(k)` is henselian hence there
is a canonical map oh,;1 O;°; t . Let ces°¡t be the images corresponding
to cn, ; . The group GL(O;°!") may be identified to the group of germs of
continuous maps (GLn(k))x

' -> GL(k), hence, for fixed N > 0 so that the
c c°; t are defined in (GL(k)E).x',

	

i <_ N, and for sufficiently small e , we will
have morphisms

Ci (BGLn(k)E , Z/m) -~ Ci+i (GL(k), Z/m)

that define a homotopy to zero by the construction of the cn,i .

Corollary. The map

BGL(k)6 - BGL(k)

induces isomorphism in homology with finite coefcients .

Idea of proof.

	

As we have the fibration

BSL(k) ---> BGL(k) ---+ Bk*

and the one corresponding to GL(k)6 , it suffices to see that

BSL(k)6 --> BSL(k)
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is an H,(-, Z/p)-isomorphism and so it suffices to prove that H� (BSL(k)E , Z/p)

= o .
By the Serre spectral sequence of the fibration

BSLn(k)E BSLn(k)6 BSL,,(k)

and using the fact that

H* (BSLn(k)6 , Z/p) %H, (BSLn(k), Z/p)

is surjective (cf. (3.5)), we can deduce that if io is the least integer with

Hio (BSL �,(k)E, Z/p) 7É 6

then
H¡. (BSL.(k)E , Z/p) %Hio (BSL n (k) 6 , Z/p)

is injective . But if i < (n - 1)/2, we have

by the stability theorem, hence io > (n - 1)/2 by the theorem above . Now the
result follows by passing to the limit .

Using now the second statment of the stability theorem we can deduce the
isomorphism conjecture for the groups GLn (k) in degrees < n

Corollary . The natural map

induces isomorphisms

H; (BSLn(k)6 , Z/m) =H; (BSL(k)6, Z/p)

BGL � (k) 6

	

) BGLn(k)

Hi (BGLn(k)6 , Z/p)

	

-

	

Hi(BGLn (k), Zlp)

	

i < n .

Making use of an adequate version of the above techniques Suslin and Juffr-
jakov prove

Theorem.

	

([37, §3]) . Let H be ¡he quaternion algebra; then ¡he natural
morphism

BGL(H)6 )BGL(H)

induces an isomorphism in homology with finite coefcients .

(5 .3)

	

In [16] Jardine gives another proof of the isomorphism conjecture for
BGL(C). This new proof, of an algebraic flavor, also makes essential use of
the rigidity theorem, although in this case he has not used the stability results .



is an isomorphism.
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We scketch Jardine's idea : Jardine considers BGLn as a sheaf of simpli-
cial sets on the category of smooth C-schemes and defines the sheaf BGL =
limBGLn . The global section functor r* has a left adjoint, hence there is an
adjunction map

e, : r*BGL(C) = r*r*BGL -~ BGL

corresponding to 17 in the previous notations, and passing to homology there is
a map

e * : H* (r*BGL(C), Z/p) --~ H* (BGL, Z/p)

The fiber of e* in a rationnal point x of a smooth variety X is the map

H* (BGL(C), Z/p)

	

H* (BGL(Oh), Z/P)

	

,

and this map is an isomorphism by the rigidity theorem, hence e* and e* are
sheaf isomorphisms, and so we obtain group isomorphisms

e* : H* (BGLC, Z/p) --~ H* (r*BGL(C), Z/p)

Finally he proves that H* (r*BGL(C), Z/p) is isomorphic to H* (BGL(C), Z/p),
concluding the proof.
One of the objectives of Jardines paper is to develop the methods of sim-

plicial sheaves on a Grothendieck topos to make sense of the program just
sketched . As these are general methods he can apply them to the situation
described in §4, so if k is an algebraically closed field and p is a prime number
different from the characteristic of k, he obtains :

Theorem . The map

Hét (BGLk, Z/p)

	

+ H* (BGL(k), Z/p)

In fact Jardine's proof permits to assert that the GIC is true for an algebraic
group G over k if for every rationnal point x of every smooth variety X over k
the map

H* (BG(k), Z/p) --!-H* (BG(Oh), Z/p)

is an isomorphism . One has to observe here that a so general result is unknown
even for k = Fp , in which case the GIC is known to be true cf. (4.2) .

(5.4)

	

Karoubi [171 has proved the stable form of the isomorphism conjec-
ture for the groups Sp(2n, k) and SO(p, q; k) and SO(n, n, C), using this time
Vogtmann stability results, cf . [27] .
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6. The Lichtenbaum-Quillen conjecture

(6.1) Let k be a field . Quillen [26] associates to the topological space
BGL(k)6 a new space BGL(k)+ and a map i : BGL(k)6 --i BGL(k)+ such
that

i) 7r l (BGL(k)6) -> 7r i(BGL(k)+) corresponda to the projection GL(k) -~
GL(k) / [GL(k), GL(k)]

ii) for any local coefficient system F on BGL(k)+ the morphism

i* : H* (BGL(k)6 , F)

	

a

	

- H* (BGL(k)+, F)

is an isomorphism,
and thén defines the K-theory of the field k by

K;(k) = 7r ; (BGL(k)+)

	

i > 1 .

(6.2)

	

If k is algebraically closed, Lichtenbaum and Quillen conjectured that
the groups K;(k) are divisible, with zero torsion for even i and equal to W(n)
the Tate n - twist of the roots of unity of k* , for i = 2n - 1 . The conjecture

was known to have a positive answer if k =Fp after the determination of the
groups K;(Fp ) by Quillen [25] .

Suslin's results explained in § 5 give a positive answer for k =C

Theorem . If k = R, C and GLn (k) is the corresponding Lie group, the
natural map

BGL(k)+

	

) BGL(k)

induces an isomorphism for homotopy with finite coefcients .

As was the case in (5.2) it suffices to prove the theorem for SL(k), but in
this case the map

BSL(k)+ :BSL(k)

induces isomorphism in homology with finite coefiicients by the results of §
5 and property ii) of the -f--construction. Now BSL(k)+ and BSL(k) being
simply-connected the result follows (cf . [23]) .
BGL(C) has the homotopy type of BU hence

Z/p if i odd
0 if i even

Using a result of Weibel, Suslin can deduce



Theorem. Modulo uniquely divisible groups the K-theory of R and C is
displayed in the following table (i > 0) :

(6.2)

	

Suslin also proves in [35] that these two cases of the conjecture per-
mits to resolve it in general :

Theorem . ([351) The groups Ki(k, Z/n) and the n-torsion groups nK;(k),
only depend in the characteristic of the field .

In fact, if ko C k is an extension of algebraically closed fields we may write

where A runs over the finitelly generated ko-algebras in k . As ko is algebraically
closed there is a morphism

of ko-algebras splitting the map
K¡ (ko , Z/n) -~ K; (A, Z/n)

and hence the map
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i mod 8

K;(R)

K;(C)

	

0

	

Q/Z

	

o

	

Q/Z

	

o

	

Q/Z

	

o

	

Q/Z

k=limA ,

A

	

) ko

Kt (k o , Z/n) -K; (k, Z/n)
is injective . The ridigity theorem permits now assure that the morphism in-
duced by A --> k is the same that the one induced by (cf. loc . cit .)

A

	

)ko �+ k

hence surjectivity follows .
Remark. As an easy corollary of the techniques above one may deduce

that the groups H; (GLn (k), Zf , i _< n, only depend on the characteristic of
k.

Suslin proves even more : any one of the cases Fp , C implies the truth of
the conjecture, because using the rigidity theorem and the homotopy universal
constructions of (5.2), he stablishes :

Theorem . (cf . [36, 3.12]) . Let k be an algebraically closed field of positive
characteristic p > 0 and L ¡he algebaic closure of the quotient field Lo of the
ring of Witt vectors of k, W(k) . If n is a prime diferent from p , there is a
canonical isomorphisms

K, (k, Z/n) - K, (L, Z/n)

0 1 2 3 4 5 6 7

0 Z/2 Z/2 Q/Z 0 0 0 Q/Z

0 J. 0 mult.2 0 0 0 11
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