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SUBSETS OF HARDY-CLASS ZERO IN THE BALL

PascaL J. THOMAS

Abstract
We consider the prablem of whether a union of complex hyperplanes can
be a subset of a zero variety for the Hardy classes of the ball. A sufficient
condition is found, consisting in a strong geometric separatedness require-
ment, together with a quantitative requirement slightly stronger than the
necessary condition for Nevanlinna class zero varieties,

1. Introduction

Context. This paper came out of conversations with Eric Amar on the
subject of trying to find uniqueness sets for Hardy classes in the unit ball of C*
made up of complex hyperplanes. A uniqueness set for H?(B™), V C B",isa
set such that if f € H?(B") and f = 0 on V, then f = 0. Mathematics being a
devious game, what I actually found are large classes of examples of sets which
are not uniqueness sets, that is to say that they are subsets of zero-sets, which

are sets of the form V' = {f =0} C B", with f € H?(B") and V' # B".

Notations. For z, w, € C™,

L]
Z W= E FRTE
i=1

B*"={zeC": |zl =2z-2< 1}
ForaEB“,a#O,a*:]%[.
We let V = [ J; V; where the V; are hyperplanes defined by:

Vi:={z€B":z.8; = |}

The point a; is the point in V; closest to the origin. This notation excludes the
exceptional case of a hyperplane through the origin.

Finally HP(B"} is the space of functions f holomorphic in B"® such that
[ FlB := sup,<; fogn F(r{)IPda({) < o0, where o is the 2n — 1-real-dimensional
normalised Lebesgue measure on 9B™.



138 P.J. THOMAS

Previous results. The only necessary and sufficient condition as far as
zerc-sets are concerned is due to Henkin and Skoda [6] and states that V is a
zero-set for a function in the Nevanlinna class (which contains all the Hardy
classes) if and only if V verifies the Blaschke cendition, i.e. the integral of
the distance to the boundary with respect to surface measure on V is finite.
Specialized to the case of a union of hyperplanes, this says

> 1 -lal’) < oo

Hakim and Sibony [2] proved that this is quantitatively sharp in the sense that
given any decreasing function {z) defined onr (0,1] and tending to infinity
as r tends to 0, there exists a bounded holomorphic function f such that on
V = {f = 0}, 8¢(8)} has infinite integral, where § stands for the distance to the
boundary. That set V' is not a union of hyperplanes.

In the same direction, Berndtsson {1] found, given ¢ > 0, examples of zero-
sets for bounded functions made up of a union of hyperplanes verifying

S0 =) = oo

The hyperplanes in Berndtsson's example verify in particular the following
separatedness properiy: given a positive constant A > 1, if we call Tent arcund
ay (and around the corresponding hyperplane) the set

Ta(ax):={z € B": |1 — z-ax| < M1 —[a]})}

then for j # &, Ta{a;)NTx(ax) = 8. Berndtsson’s result can be obtained in the
following way: for any € > 0, set

Ti(ar) = {z € 7 : |1 — 2+ ax| < M1 — fai®)* 7}

Then a union of hyperplanes verifying for 7 # k, Ti{a;)NT5{az) = & is included
in a zere set for a bounded function [7].
An obviocus sufficient condition for V to be a zero-set for a bounded function

is
Z(l - Iaklz) < oo,

for one then can build a several dimensional analogue of a Blaschke product.
Rudin, using a result of Shapiro and Shields {4, p. 135}, [5], exhibited examples
proving that no weaker quantitative condition can be sufficient: if the ay are
all on the same real line and

D (l-laf’) =

then V is a uniqueness set for a class containing all the Hardy classes. Note
that HP-zero-sets are different for different values of p in a very strong sense;
see [4, pp. 133-145) for this and many more details on the subject.
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The case where all the o are on the same complex line corresponds to a
family of parallel hyperplanes. To avoid this, we need to add some geometric
separatedness condition to the quantitative condition to obtain a sufficient con-
dition for a zero-set (or a subset of one). Varopoulos [8] gave a uniform version
of the Blaschke condition which is sufficient to get a zero-set for HP for some
p > 0. For unions of hyperplanes, the Uniform Blaschke condition translates
into

(1) p is a Carleson measure, where 4 := 2.1 =]a; |2)“6aj , and

(2} there are constants ) and €, such that

{i -V € Te,n(2)} < Ca.

(1} is equivalent to

Yo (=l e -y,

Fio; €Ta(a)

and (see [3] } to

w3 (A laP) =l D\
ap;< e ) <

In particular we see that the requirement that tents for different hyperplanes
be digjoint is much stronger than the Uniform Blaschke condition, although
both are quantitatively close to the Blaschke condition.

Varopoulos also proved in [8] that the Uniform Blaschke condition alone is
not sufficient to get high values of p: for any pg > 0, there exists a union ¥
of hyperplanes verifying the Uniform Blaschke condition which is a uniqueness
set for HP°. In fact he points out that his theorem gives poor control on the
value of p.

2. Results and open questions
We proceed to give sufficient conditions exploiting the disjointness of tents.

Theorem 1. If V wverifies that there ezists o decreasing function p from
{0,1] to Ry™ and A > 0 such that for 0 < z < xo, p{z) > {logz|4 and

(@) D= faa) (1 — fasf?) < oo

k

and that there ezists Ay > 9§ such that

{51} Tao(2;}NTDag(ar) =8 for all 5 # k
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then there exists F € [, ., HP(B"), with po = C(ho)}A, such that F =0 on
V and F is not édenﬁmﬁy zero,

Corollary 2. If assumption (Q; ) i3 replaced by
(Q2) > (1 — eyt < o0
k
for some ¢ > 0, then V is a subset of a zevo set for ﬂwo H?(B").

Proof of Corollary 2: In the above, set p{z) = z7°. The constuction of F
(sce below) does not depend on p, and F € [, H?(B"). B

Open Questions. One would like to obtain a bounded function instead of
the intersection of the Hardy classes. Also it would be nice if V' could be shown
to be exactly a zero set — the vanishing function F being given by an infinite
product, we can figure out {F = 0} explicitly. If is a union of hyperplanes too,
much larger than ¥ even though it has roughly the same volume growth.

Proof of Theorem 1: We index {a;} so that |ai| £ |agsi}, and set

1— |aic |2 )N““icf)

l—z-ak

Fi(z) = (

where N{r) is a positive increasing function of r, with N(0} > n. Fj is holo-
morphic on B™ since Re(l — z -a,) > 0 for z € B™.

SR = Y (1 —lax VP < o0
k
therefore the following infinite product
Fz)i= [[ (0 - Fu(2))
k=1
converges at least for z = 0. In fact for |2| € 4 < 1, then

MN{|a
(l kl) < l_laklz " }
== 1_7_

so we also have convergence on any compact subset of B®, and F # 0. Clearly
if z €V, then Fy(z) = 1 for some k, thus F{z) = 0.

Now we have to bound

1 - |ak|2

1—2z-a;

/ \F(rQ)Pdo(()
agn

forr < 1. Set s = /¢ —1 > 2. For simplicity, we shall write T{a;) for T,(e;).
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Lemma 1. Under asaumption (S, ), if the funciion N is chosen so that

- -2
o= ZS—QN(l—a ) <« oo ,
m>n

then for any z € B™\ UjeA T(a;),
[I-Fp| < e
J€A
where A is an indez sel. (For ezample the complement of a singleton.)

The proofs of all lemmas are deferred until the end of the paper.
Using Lemma 1,

[, IFopde@
FiroYde r Pdo
[Cgujwl (rOPdo(() +2/ (rC)Pda(C)

CET(M)

1A

IA

rea(@s™) + 3 | RGP0
k

r{€ET{a,

c. i1 Fr(r)|Pde
< ,,( +3 Lem}l K(rO)l (o)
<¢, (1 +3 L. |Fk(roi'*da(o) ,

where (), is & constant depending on n, «, and p, and we have used the fact
that the tents are disjoint. We can bound each integral in the last sum by
faB“ |F|P since Fy is holomorphic in a ball of radius |ax[~! > 1. So we just
have to estimate

1~ lax|? pN{lax(}
Ly (1 —c-ak) 4(0)

i— Iakr pN{jax])
< o9pN(axh / el 8
- aBr \1—(-a do(¢)

and since the integrand is less than one and N(Jax|) > n, this last integral is
bounded by C2PN¥{aeD(1 —|a;|?)". The proof of the theorem will be concluded
with:
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Lemma 2. Forp < p; = 24logs/log2, one can choose ¢ funciion N(r) as
above so thail
Z s—-ZN(l—a'""z) < o0
m>0

and 2pN{arl) < o(1 = |ag|?) for k large enough. M

The method presented here does not allow us to weaken the separatedness
condition to a Carleson-measure hypothesis, nor to render the value of Ay ar-
bitrarily small. However we can prove:

Proposition 3. Theorem I still helds with pg replaced with po /M, and there-
fore Corollary 2 holds unchanged, if we replace assumpiion (5 ] with the weaker

(S2)  There is an integer M such thet for all ( € OB", Z xS M
7

where X 1= XT(a;) 18 the indicalor funciion of T{a;).

Proof: If A is an index set, let Pa = ;¢4 T(a;) N (1;44 T(a;)°. These
sets are disjoint for different index sets. Under hypothesis (52), we need only
consider P, for #4 < M (otherwise P4 = §#) . Lemma 1 still holds under {5;),
only a constant is changed in the estimation of #A?,.

> ] ., [FEOP(0)
eCay ] I - Bt OP dotc)
A ko

$EPA jea

] IF(rQ)Pdo(C)
dgn

Fa)

For A = §, we just integrate a constant over a subset of 3B™, For A # @, let
ja = max A. For all j and z, |[Fy{z)] < 2V0=N,

[[-Ferol € L-F@ol [ +2M0=h)
jes EAGA)
S 2M—12(M—1)N(|3j4|) |1 _ F;A(?‘{)]

Thus

> [ TIn-5eorde

A TCEPA jea

Citp 3 2H-Mad [ 1= B (O do(()

A#D r¢ePa

Cagp 32 MDD [ R do(()

1> r{eT,

1A

I
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where T'; := | pnax 4=t Pa = T(ai)\ U5 T(ak). Since z € T{a;) if and only
if [Fifz)] = Xo™Y, we have

[ r-Reorao < g [ 1R doo)
red rEeET",

EA

& [ 1BQP det0)
agn
G201 )"

A

Finally we have to bound 37, 2PMNUaiD(1 _ |g;|2)*, which is done by applying
Lemma 2 with p' = Mp, whence the value po /M. B

3. Proof of the Lemmas

Proof of Lemma 1:
We shall fix 2 € B™ and estimate F(2). Let k € A, so that z ¢ T(ax). By
the triangle inequality for |1 — z - w|*/? ([4, p. 66]):

1=z @M 2 VAol = )~ (1 - Jox])"/?
= (1 - |ag|)}’? (\/E(l + Jax |72 - 1)

> (1 — |ag))/?

e |1 -z a3 > s%(1 - Jax|)

Forme Z,, let
Am = Ap(z) = {ak 8T l—-2a < s_m'H}
Note that A; > 9 = s> 2 and 4,, would be empty for m < —1. For a; € Am,
1—[ax> < s7H1 - z-a}| < s~™H?

We must estimate

kl;[i (1 ~ (11_;__%) N(Iatl))

Let us bound the inner sum. We always have

o0 Nllax |}
l—jakfz
< E E PR Sl
= P (|1—z'ék|

m=0ayEAm,

e 11 _
T=z-af = %  (Gt+12 ="
Set
Af’n = Am N {a :1-1a] € (s—f‘—m—l‘s—f—m]}
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Then Am = sy AL, and if az € A,

1— [axf? < 1 —laxf?
-z @ ~ (51_2,5251;2_(1_|ak|2)1;2)?
< 2 1 — [a] < Ot

A-1sili—zay

thus for all a; € AL, N{jar]) € N{1—s~'"™"1} and

1 Ialftl2 : -2 21
—_— e <
11 - _k; mm(s 45 )

Since the tents associated to different a; are disjoint,

3 o(T(a)) S o{(€8B™:|1-¢ g} < sTmH) g lomthn
ﬂkeﬁt“

Since o (T{ai)) > eado™s (mHFD® e have #AL < Cy5.8™. Finally

N
i Z 1 - |ak|2 {lax|}
|1 — - &ki

m=0ay€Ednm
o — Cp a_juN(i—aTiom=Y)
< CZZSIR [min(s z st I)]
m=0 [=1
< - [ —2N(1—s-"‘-=)+ 3ist(n—N(1—s-‘-m-=)}}
C 4s 5
mz=0 i=3

Since N is increasing we can bound the inner series by a geometric one

o e 3n—N{1—s ™%
S s, E (S—ZN(I—.Q 7y + 13 - s-mv"))
— gn—N(-

m={

Note that s > 2 and N(1 — s~ ™%} > N{1 — s™*); so, checosing NV so that
N{1 - s7*) > 3n, we finally majorize by

[+ =]
Po; Z 5—2N(1—s'“"°)

m=0

a convergent sum by assumption.

Proof of Lemma 2:
For any given k, choose m = my so that

1-s™ 2 Cjaeff <1 -7
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Set
logm + 2loglogm

2log s

N(1-5s"mY= ,
and extend it as an increasing function on [0,1). Then §TEN(I=aTTTH)
1/m(log m)%, and the convergence of the first series is ensured.

On the other hand,

1

W= —
N{lai) < N{(1-s ) STog s

{log(m + 1) + 2loglog{m + 1)} ,

So 22MUexD < (1 4 1)5RET (log(m + 1)) oss

and for m large enough
(1~ 1ax[?) 2 o(s7™2) > (m + 2)(log )"

For p < po = 2Alogs/log2, the second ineguality in the Lemma 2 will be
vertfied for m = my large enough, thus for k large enough.
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