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SUBSETS OF HARDY-CLASS ZERO IN THE BALL

Abstract

PASCAL J . THOMAS

We consider the problexri of whether a union of complex hyperplanes can
be a subset of a zero variety for the Hardy classes of the ball . A sufficient
condition is found, consisting in a strong geometric separatedness require-
ment, together with a quantitative requirement slightly stronger than the
necessary condition for Nevanlinna class zero varieties .

Notations . For z, w, E Cn ,

1. Introduction

Context . This paper came out of conversations with Eric Amar on the
subject of trying to find uniqueness sets for Hardy classes in the unit ball of Cn
made up of complex hyperplanes . A uniqueness set for HP(B'), V C Bn, is a
set such that if f E HP(B") and f = 0 on V, then f - 0 . Mathematics being a
devious game, what 1 actually found are large classes of examples of sets which
are not uniqueness sets, that is to say that they are subsets of zero-sets, which
are sets of the form V' = {f = 0} C Bn, with f E HP(Bn) and V' :~ Bn .

n
z - iv =

	

zi47i

i

LL

=~~1

Bn ={zECn :IZ1 2 =z . x<1}

For aEBn,a :~ 0,a*- a

We let V = U; V; where the Vj are hyperplanes defined by :

.= {zEBn :z-iaj =lai12}

The point aj is the point in Vj closest to the origin . This notation excludes the
exceptional case of a hyperplane through the origin .

Finally HP(Bn) is the space of functions f holomorphic in Bn such that
lifHP := supr<l faB^ l f (ro) j P

dQ«) < oo, where o is the 2n -1-real-dimensional
normalised Lebesgue measure on OBn .
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Previous results . The only necessary and sufficient condition as far as
zero-sets are concerned is due to Henkin and Skoda [6] and states that V is a
zero-set for a function in the Nevanlinna class (which contains all the Hardy
classes) if and only if V verifies the Blaschke condition, Le . the integral of
the distance to the boundary with respect to surface measure on V is finite .
Specialized to the case of a union of hyperplanes, this says

E(1 - lakl2)" < oo

Hakim and Sibony [2] proved that this is quantitatively sharp in the sense that
given any decreasing function ~o(x) defined on (0,1] and tending to infinity
as x tends to 0, there exists a bounded holomorphic function f such that on
V = {f = 0}, bep(b) has infinite integral, where 6 stands for the distance to the
boundary. That set V is not a union of hyperplanes .

In the same direction, Berndtsson [1] found, given e > 0, examples of zero-
sets for bounded functions made up of a union of hyperplanes verifying

E(1 - lakl2)"-E = eo

The hyperplanes in Berndtsson's example verify in particular the following
separatedness property : given a positive constant A > 1, if we call Tent around
ak (and around the corresponding hyperplane) the set

TA(ak) := {z E Bn :11- z - ak 1 <- a(1- lakl 2)}

	

,

then for j 7É k, Ta(a j ) fl T\(ak) = 0 . Berndtsson's result can be obtained in the
following way : for any e > 0, set

Tá(ak) := {z E Bñ : 11- z - ák l < A(1- lakl2)1-E}

Then a union of hyperplanes verifying for j :~ k, Tá(a.i)nTÁ(ak) _ 0 is included
in a zero set for a bounded function [7] .
An obvious sufficient condition for V to be a zero-set for a bounded function

is
y~(1 - 1ak12) < oo

	

,

for one then can build a several dimensional analogue of a Blaschke product .
Rudin, using a result of Shapiro and Shields [4, p . 135], [5], exhibited examples
proving that no wealcer quantitative condition can be sufficient : if the ak are
all on the same real line and

E(1 - lak12) = °°

then V is a uniqueness set for a class containing all the Hardy classes . Note
that HP-zero-sets are different for different values of p in a very strong sense ;
see [4, pp . 133-145] .for this and many more details on the subject .



(1) p is a Carleson measure, where p := Ej (1 - lajl2)nóai, and
(2) there are constants C1 and C2 such that

{7 :Vj91TC~h(z)} <C2 .

(1) is equivalent to

and (see [3] ) to

HARDY CLASS ZEROES
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The case where all the ak are on the same complex line corresponds to a
family of paxallel hyperplanes . To avoid this, we need to add some geometric
separatedness condition to the quantitative condition to obtain a sufFicient con-
dition for a zero-set (or a subset of one) . Vaxopoulos [8] gave a uniform version
of the Blaschke condition which is sufiicient to get a zero-set for HP for some
p > 0 . For unions of hyperplanes, the Uniform Blaschke condition translates
into

( 1 - lajl?)n

	

< CAn(1 - Ial2)n

	

,
j:ai CETA (a)

sup ~
«l -IakI2)(1-Iajj2) ln .<00

k

	

I1-ak .~~12 J

In particular we see that the requirement that tents for different hyperplanes
be disjoint is much stronger than the Uniform Blaschke condition, although
both are quantitatively close to the Blaschke condition .

Varopoulos also proved in [8] that the Uniform Blaschke condition alone is
not sufilcient to get high values of p : for any po > 0, there exists a union V
of hyperplanes verifying the Uniform Blaschke condition which is a uniqueness
set for HP° . In fact he points out that his theorem gives poor control on the
value of p .

2 . Results and open questions

We proceed to give sufflcient conditions exploiting the disjointness of tents .

Theorem 1. If V verifies that there exists a decreasing function cp from
(0,1] to R+` and A >-0 such that for 0 < x < xo, W(x) > I logxlA and

(Q1)

	

j:(1 - ja kl 2 )nc,( 1 - Iak1 2 ) < 00

k

and that there exists Ao > 9 such that

(s1 ) Tao (aj) n Tau(ak) = 0 for addj :~ k
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then there exists F E nP<Po HP(Bn), with po = C(Ao)A, such that F - 0 on

V and F is not identically zero .

Corollary 2 . If assumption (Q 1) is replaced by

(Q2)

	

r(1 - lak1 2 )n-E < 00

k

for some e > 0, then V is a subset of a zero set for nP>o HP(Bn) .

Proof of Corollary 2: In the above, set W(x) = x-E . The constuction of F
(see below) does not depend on p, and F E nP>o HP(Bn) .

Open Questions . One would like to obtain a bounded function instead of
the intersection of the Hardy classes . Also it would be nice if V could be shown
to be exact1y a zero set - the vanishing function F being given by an infinite
product, we can figure out {F = 0} explicitly. It is a union of hyperplanes too,
much larger than V even though it has roughly the same volume growth .

Proof of Theorem 1 : We index {ak} so that lak1 < jak+l 1, and set

2 Nfmmi)

FA (z) _ C
1 -la'k ¿
1-zák

where N(r) is a positive increasing function of r, with N(0) > n . Fk is holo-
morphic on Bn since Re(1 - z - ák) > 0 for z E B n .

IFk(0)j = j:(1 - lak12)N(lak1) < o0

k

therefore the following infinite product
00

F(z) :_ Il (1 - Fk(z))

k=1

converges at least for z = 0 . In fact for Izi < y < 1, then

1 -,IakI2
N(laki)

	

1 - I ak I2

	

n

1-z .ák
,
l	( 1- .y

laBn I F(rC)IPda(C)

so we also have convergence on any compact subset of Bn, and F 5-1 0 . Clearly
if z E V, then Fk(z) = 1 for some k, thus F(z) = 0.

Now we have to bound

for r < 1. Set s = V50- -1 > 2. For simplicity, we shall write T(al) for Tao (al) .



Lemma 1. Under assumption (SI), if ¡he function N is chosen so that

then for any z E Bn\ UjEA T(aj),

laBn IF(r()Ipdo(C)

<Cp (1+

<CP (1+

HARDY CLASS ZEROES

I: S-
2N(1-',---2) < o0

rn>o

fl(1 - Fj(z»I < eCa

jEA

where A is an index set . (For example the complement of a singleton .)

The proofs of all lemmas are deferred until the end of the paper.
Using Lemma 1,

<- J

	

IF(r()Ipdo,(() + 1: f

	

IF(r()Ipd,(()
r(qu¡T(ai)

	

k rCET(ak)

< ecpaa(aB') + ecp-1:
J

	

(1 + jFk(r()l)pdQ(()
k +'SET(ak)

¡ jFk(r()l--do,((»
J CET(ak)

1: f Bn
IFk(r()Ipdo,(() J

	

,

1 - jak l2

	

pN(Iakl)
~ ) do,(()
jaan C 1 - ( . 4

< 2pN(IakD %

	

( 1 - jal
oPN(iaku

du(()faBn

	

1 - ('ak
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where Cp is a constant depending on n, a, and p, and we have used the fact
that the tents are disjoint . We can bound each integral in the last sum by
faBn IFk lp lince Fk is holomorphic in a ball of radius jaki -1 > 1 . So we just
have to estimate

and since the integrand is less than one and N(jakI) > n, this last integral is
bounded by C2pN(Iak1)(1- Iakl 2 ) n . The proof of the theorem will be concluded
with :



140

	

P.J . THOMAS

Lemma 2. For p < po = 2A log sl log 2, one can choose a function N(r) as
abone so ¡ha¡ E s -2N(1-9 m-z) < 00

m>0

and 2PN(IakU < cp(1 - Iak12) for k large enough .

The method presented here does not allow us to weaken the separatedness
condition to a Carleson-measure hypothesis, non to render the value of Ao ar-
bitrarily small . However we can prove :

Proposition 3. Theorem 1 still holds with po replaced with pOIM, and there-
fore Corollary 2 holds unchanged, if we replace assumption (S1) with ¡he weaken

(S2)

where Xj := XT(a i ) is the indicator function of T(aj) .

Thus

There is an integer M such that for all ( E OBn ,

	

~XO < M
j

Proof. If A is an index set, let P;1 = niCA T(aj) (1 nj¢A T(aj)° .

	

These
sets are disjoint for different index sets . Under hypothesis (S2), we need only
consider PA for #A <_ M (otherwise PA = 0) . Lemma 1 still holds under (S2 ),
only a constant is changed in the estimation of #Am .

J

	

n IF(rC)IPda(C) _

	

J

	

IF(,C)IPda(C)
óB

	

A rCEPA

< eca 1:

	

1111 - Fj(ro)I
P du«)

A

	

SEPA jEA

For A = 0, we just integrate a constant over a subset of DBn . For A 7É 0, let
jA =maxA. For all j and z, IFj(z)I < 2N(Iail) .

U 11 - Fj(ro)I < 11 - FjA(ro)I

	

fl

	

(1+2 N(Iai U)

jEA

	

jEA\{jAl

< 2M-12(M-1)N(Ia¡A l) 11 - FiA(rC)I

~

	

I1- Fj(ro)Ip da(S)
A~0 JrCEPA jEA

< Cm,p 1, 2P(M-1)N(IaiA 1)

	

11 - FiA(r()IP da«)
A~0

	

r~EPA

CM,P I: 2P(M-1)N(Iaj l)

	

11 - Fi(rQP do«)
l>1 £ET'¿



where T't := UA:max A=t PA = T(at)\ Uk>t T(ak). Since z E T(al ) if and only
if IFI(z)I > A0 -1 , we have

Finally we have to bound j:i 2PMN(jalD(1 - Ial1
2
)
�

, which is done by applying
Lemma 2 with p' = Mp, whence the value po1M.

For m E Z+ , let

We must estimate

Set

i
ii
k A
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rSET'rI1
- FI(ro)I` do,«) < CP f

	

IFI(ro)I P da(C)r

	

~ET'r

< Cp l
n
IFi(QP do,«)

as

< CP
2PN(IalU(1 _ ¡alj2)n

3 . Proof of the Lemmas

11
- z ' ¢k11/2 >

	

í\0( 1 - Iaki2 )1/2 - (1 - Iakl)1/2

_ (1 - Iakl)
1/2 (

	

A0 (1 + Iakl)1~2
- 1~

> s(1 - Iakj)1/2

	

,

i .e . 11 _ z . ¿ikl > s2 (1 - Iakl)

	

.

Am = Am(z) = {ak : S-m < 11 - z - Cikl < S-m+1}

1 _ IakI2

	

< s_2 11 _ z . ¢ k1 <
S_m+1

Proof of Lemma 1 :
We shall fix z E Bn and estimate F(z). Let k E A, so that z q T(ak) . By

the triangle inequality for 11 - z . i~V I1 1 2 ([4 , p . 66]) :

Note that AO > 9 => s > 2 and A,n would be empty for m < -1 . For ak E A,,,,

C1

- ( 1 - I ak I2 ) N(¡-k j)\

	

< ex

	

- IakI2

	

N(IakI)

1-z .a

	

p~ I klk

	

m=O akEA- (

1

1 _z .¢

Let us bound the inner sum . We always have

1 - IakI 2

	

< _1

	

_

	

1
I1-z . ak1 0 (s+1) 2

< s-2

t
Am = A», (1 {a : 1 - la¡ E (S -t-m-1 ,

s-t-ml l
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Then A,,, = U1>1 A;n , and if ak E Am,

1 -
lak12

	

<

	

1 - lak12

11 - Z " ak1

	

(11 - z . ak11/2 - (1 - lak12)1/2)2

2

	

1- lakl

	

< s
3-1

< (1 _ 1/S)2
11 _ x . ¢% 1	,

thus for all ak E A;n , N(lakl) < N(1 -s-'-'"-1 ) and

1 - lak 12

	

< min(S-2 , s2-1)
11_ x .41

Since the tents associated to different ak are disjoint,

a(T(ak)) < U« E 9Bn : 11 - S " (lk1 < S-m+1) < S(-m+l)n

akEA_

Since a(T(ak)) > cn Ao ns -("`+l+1)n , we have #A;� <_ Cn,~\oS1n. Finally

00
lak 1

2

	

) N(laki)

(11_z .¿c k 1m=0 ak EA �,

<

00 00
(,'
i:E S

In [min(S-2 S3-1 )] N(1-s
m=0 I=1

< 00

	

00C 1: [4s-2N(1-s-m-2) + S3
i:

S I(n-N(1-s- -m-1))

Since N is increasing we can bound the inner series by a geometric one

2 S3(n-N(1-s-m-4))

1 _ Sn-N(1-s-m-4)
m=0 (

Note that s >_ 2 and N(1 - s-' -4 ) >_ N(1 - s-4) ; so, choosing N so that
N(1 - s-4) > 3n, we Fnaly majorize by

C 1: S -2N(1-e-m-2 )

m=0

a convergent sum by assumption.

Proof of Lernma 2 :
For any given k, choose m = mk so that

1 - S -m-2 < lak 12 < 1 - S-rn-3



Set
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vn-2

	

log m + 21og log m
2 log s

and extend it as an increasing function on [0,1) .

	

Then 8-2N(1-8---2) _

l/m(log m) 2 , and the convergente of the first series is ensured .
On the other hand,

N(jak I) < N(1 - s-'-3) =

	

1

	

(log(m + 1) + 21og log(m + 1))
21oLs s

So 2nN(jak U < (m + 1)22 .. (log(m +
l))~~

and for m large enough

,P(1 - Iak1 2 ) > cP(s-m-2 ) > (m + 2)A(logs)A

For p < po = 2A log sl log 2, the second inequality in the Lemma 2 will be
verified for m = mk large enough, thus for k large enough .
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