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Abstract

HYPERBOLICITY IN A CLASS
OF ONE-DIMENSIONAL MAPS

GREGORY J . DAVIs

In this paper we provide a direct proof of hyperbolicity for a class of one-
dimensional maps on the unit interval . The maps studied are degenerate
forms of the standard quadratic map on the interval . These maps are
important in understanding the Newhouse theory of infinitely many sinks
due to homoclinic tangencies in two dimensions .

Introduction

In the theory of infinitely many sinks, two-dimensional invariant sets are
formed when homoclinic tangencies between stable and unstable manifolds of
a hyperbolic periodic point are formed . In order to show that infinitely many
sinks occur in this situation, we must show that these invariant sets are hyper-
bolic ([1], [4], or [6]), which is a major undertaking .
When the homoclinic tangency is quadratic in nature, the two-dimensional

problem has been thought of as a perturbation of the one-dimensional map ([3],
[5]) . In [5], a more complete and elegant proof was obtained by conjucating the
hyperbolic invariant set for the quadratic map fb(x) = bx(1 - x) to the two-
dimensional invariant set in the two-dimensional infinitely many sinks problem .
In the case where the homoclinic tangency is degenerate (Le ., of order r, r =
4,6 . . . . ), the present proof is very long and involved [1] . If a conjucacy between
the one and two-dimensional degenerate problems can be determined, then it
may be possible to treat the higher order tangencies in two dimensions using
the same type of ideas as presented in [5] .
With the above motivation, we will examine the hyperbolicity of the following

family of one-dimensional maps on the unit interval . The one-dimensional
maps that we are concerned with are of the form

r

fb(x) = b[2r - Cx
- 2) 1, b>2r, r=4,6,8, . . .

where b is a real parameter and r is a fixed positive even integer . By studying
these one-dimensional maps we will gain insight as to how the hyperbolicity
of an invariant set near a degenerate homoclinic tangency in two-dimensions
is justified . We will restrict our attention to the cases where r > 2, due to
the fact that when r = 2 we obtain the well known and studied quadratic map
fb(x) = bx(1 - x) ; see [2], [3] or [5] for more information about this map .
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Statements of results

It is easily seen that fb(x) = 0 for x = 0,1 and that fb(x) achieves its
maximum value of b/2'r when x = 1/2 . In order for I = [0,1] to be covered by
itself under the map fb(x), b must be larger than 2' . We are interested in the
set A contained in I that is invariant for fb(x) ; Le ., fb(A) = A. Explicitly, the
invariant set which we are interested in for this máp is given by A = (1°_° o fb 2(I).
(The set A is the analogue of A � (t) in the two-dimensional problem [1]) . It is
our goal to show that A is a hyperbolic set for fb(x).

A hyperbolic set for fb is a closed, bounded, invariant set A for which there
exists anK> 0 such that for all x E A we have j(fb)'(x)j > 1 for all k > K. If
b is large enough, the hyperbolicity of A is relatively easy to establish .

Set fb1(I) = I1 U 12, where I1

	

= [0, c], c E [0,1/2], and 12 = [d, l], d E
[1/2,1], so that fb(Ii) = I, i = 1, 2. Then we have

Proposition 1 .
Leí fb(x)=b[2 -(x-2)rJ, b>2r, r=4,6,8, . . . thenforb>_2''(3),

fb'(x)1 > 1 for al' x E fn1 (I) .

The proof of proposition 1 and the remaining propositions in this section will
be deferred to the next section .

Continuing with our discussion of the hyperbolicity of fb(x), if

2r <b<2r C
3r+2 1

3r '

then not all points in the pre-image of I, fn 1(I), have 1fb(x) 1 > 1 . Fortunately,
the absolute value of fb(p) is greater than one where p is the fixed point of fb
which is an element of 12 . (See Figure 1) .

Figure 1



Proposition 2 .
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The fixed point p of fb(x) which líes in ¡he interval 12 is a repellor, that is

l fb(P)1 > 1 .
Let xi be the poinis such that jfb(ij j = 1; 2i E Ii, i = 1,2.

	

Define JI =
[0,¡,) and J2 = (i2,1] . Clearly all x E JI U J2 have ¡he property lfb(x)1 > 1 .

Proposition 3 .
If xo E A(1[(h UI2 )-(JI U J2 )], then there is a positive integer k = k(xo) > 1

such that j(ftiy(xo )j > 1.

The idea behind Proposition 3 is that the values of xo that do not Nave
j(fb)'(xo)j > 1 are mapped close to one and then near zero . When a point
is mapped near zero, the point stays in the interval Jl , where the derivative
is greater than one, for its next few iterates . The accumulative result is that
the iterates for which the derivative is greater than one overcome the initial
contraction of the point xo .
We now have, by Propositions 1-3, the following result :

Main result .
Let fb(x) = b [2 - (x - 2)1-

	

, b > 21- , r = 4, 6, 8 . . . . fixed .

	

The invariant
set A = fl°_=o fn'(I) is a hyperbolic set for fb(x) .

Proof of Proposition 1 :
Set a=331-2, and b1 =21- ( 3 ) =21-«.

It is sufFicient to show Jfb,(x)j > 1 since Jfb(x)j > Jfb,(x)j for b > bl . Consider
the function

Differentiating fb,(x) with respect to x, we obtain

fb, (x) = -2ra(2x - 1)1--1 .

Therefore, Jfbl (x)j = I2ra(2x - 1)''-1 .
Let xi E I, where i = 1, 2, be the points such that fb,(xi) = 1 ; Le .,

a[1 - (2xi - 1) 1- ] = 1 .

Solving for xi we obtain,

Proofs of results

fb,(x) - b [21- -
(x

-
2/

1-J

= a[1 - (2x - 1)1-] .

1_(2xi_1)r-
1
a

(2xi _ 1)
1- = 1 -

1
a
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or

and

For all x E f~,i(I),

xi =
2 [±.(l-

1)

	

+ll .

1fbi(x)1 ~ 1fbi(xi)1,

l fb,(xi)l = I2ra

Define the function lab(z) to be

= 2r

= 2r

2rf
(112 ) -11__

IL
3r 2
3r

-
3r4+2 (3r+2~ -

Therefore Jfb l (x)j > 3r+2 ( 3 )' > 1 .
Thus Jfb l (x)1 > 1 for all x E f¿l l (I), and Proposition 1 is proven . ."
Proof of Proposition 2 :
The idea of this proof is to show that la < p < 1 which implies jb(p)j > 1 .

Consider gb(x) = fb(x) - x, and note that gb(p) = 0.
Set z = (x - 1/2), then

96(x) _ .fb
Cz

+
~)

-
(z + 2/

= b (2r - zr) - (z +
2/

r i
_ -b (Zr +

b
+

2
2rb

b l .

ri
hb(z) = zr +

b
+

2
2rb

b
.



and

Evaluating hb(z) at z = (p - 1/2) and z = 0 yields the following:

since b > 2r . Because hb(y) has only one variation in sign, Descartes's rule
of signs implies that hb(y) has at most one positive real root ; however, we
already know that z = (p - 1/2) is a positive root of hb(z) . Therefore, to
prove that x2 < p, that is p E J2 , it is sufficient to show that hb(z) < 0 where
z = (xl - 1/2) . First it is necessary to calculate z . Recall that

and

The point x2 satisfies the relation fb(-¡2) = -1; that is
1)r-1

_ -1 .

Replacing (i2 - 1/2) with z we obtain

We now proceed to show that hb(z) < 0 .

hb(z) = zr + z/b -f- (2b) -1 - 2-r

_ (rb) 11 + b-1(rb) 11 -}- (2b)-1 - 2-r

< (r2r) r-1 + 2r (r2r) r-1 + 2 12r - 2-r'

- (r2 r ) r-1 + 2r (r2r ) r-1

	

2+1

2r [(rr22r)

r11
+ (r2r)

r11
- 2
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hb(p - 1/2) = 0,

2r-1 - b
hb(0) =

	

2rb

	

<0

fb(x) = b (1-
(x - 1)r12r

	

2 '

r-1
fb(x) = -rb

(x
-
2)

-rbzr-1 = -1, or z = (rb) r=1 .

1+ r -2 -1 1 r -1

2r(2r)=1

since b > 2r
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Set A =

<0.

then

hb(2) < A (1 -}- r - r(2r)r11

< A
(1

-I- r - r [1 -f- r 1 l ln(2r)
J

= A
(1
-

r
r

1
ln(2r)1

-

= A
(1

-
(1
+ r 1 1 ) ln(2r) I

ln(2r) 1
< A

	

-

	

, since 1n(2r) > 1 for r >_ 2
r-1

Thus, we will have shown that hb(z) < 0 as soon as equation (*) is verified ;
however, equation (*) is true due to the fact that

(2r)~'r = e7'r ln(2r)

Proof of Proposition 3 :

where (higher order terms) > 0 since rlil ln(2r) > 0 for r > 2 .

Therefore, hb(2) < 0, which implies p E J2 or Jfb(p)j > 1, and the proof of
Proposition 2 is complete .

Let 1 + g be the maximum value obtained by fb(x) where x E I ; i .e ., let
1+g = fb(1/2) . Choose any xo E Afl[Il UI2)-(J, UJ2)] . Define 6 = S(xo) > 0
so that the distance between fb(xo) and 1 -f- g is b6', and define y = -y(X0) > 0
to be the distance between fb(xo) and 1 . Then fb(xo) = rb6r-i , and y < bbr .

= 1 + 1 ln(2r) + (higher order terms)
r-1

< 1 + 1r-1
ln(2r)



(See Figure 2) .

but
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Let ~max be the maximum value of f¿(x) where x E I ; that is, let

Define k = k(xo ) > 2 to be the integer such that

for j < k - 1 . We now have that

Then

Figure 2

Amax = fb(O) = rb(1/2)r-1 .

,xk-1
Y

	

1
max 21

~maxy
1
2

,
\max -

	

> 2bbr'y _

Define 0, where 0 < A < 1/2, to be the value of ó for which

bAr = 2 + 9

bA r =2+9=fb(1/2)=2 -2
.

Solving for Qr we find that

Or

	

___ __1 b

	

1 _ 1 b-2r 1
b (2r

	

2)

	

b2r(
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Therefore,

r
amex

From this relation we have that

Therefore,

for which y = y(xo ) has the property

G.J . DAvis

Let a,nin be the minimum value of fb(x) for x E [0,12 - 0l,

= fb(112 -,á) = rbár-1 .

Using our formula for Ar we see that Or-1 is given by

Qr-1 = (Or) r
-

i
=

,~ b2r
(b -

2r-1)1
-

Amin = rb
(b2r (b_

	

2r

Combining the formulas for An,ax and Amin we obtain the following ratio :

Amin

	

i 2-1-r
-1 - (b - 2r-1)--r rb-2- > 1 .

'/ r i \ k-1
,\ min 1 inrax

	

(b-2 r
r~b Zrr 2 l~r

We will now show that (fñ),(xo) > 1

(f6 )i(xo) i rbór-lñmin

(fb),(xo)
~: (_\max)rrl(b-2r-1)_rrirrb2-

.2ir_

	

r

> rbór-1 -1 11

	

(b-2r-1)rrl r :b rr2 lrr
2rr b= ar-1

2-2r 1+, 3 - r

	

-,
>2-r

	

b-(b-2r -1)=

2-2r

	

+i «b-2r-1)r-1 \
=2-r br_3

- r

	

C(b - 2r- 1 )r-1 \
r-1 br-34-

>1 .

It should be noted that the above argument is valid only for the values of xo

,
\max?' > 2,

but ñmaxy <
2



Retan that

that is, xi satisfies
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where j < k - 1 and k = k(xo) >_ 2.
In addition, the above argument is only legitimate in the case when a <

11/2 - fb1(1 - yma.)I, where -%,,,a>, is the value of y for which ñmaxymax = 1/2.
In Lemma 4 we will prove the existente of certain parameter values b for which
there exist values of x o that do not satisfy the above condition . These values
of b are shown to also have the property of J(fb)'(x o )j > 1, where k = 2, but
an argument different from the one above is required to show this fact . This
argument will be presented in Lemma 5 . However, before we prove Lemma 4
and Lemma 5, it will be necessary to provide additional notation .

Set
ama. = 1 1/2 - fb 1(1 - ymax)j

and define the intervals Ll and L2 to be

Ll = Il r1 [1/2 - amax, 1 /2]; L2 = 12 n [1/2, 1/2 + bmax] .

Lemma 4.
There exist intervals of parameter values M(r) C ( 2r , u2 r ] such that L; UJi

Ii , i = 1, 2, where a = (3r±2\ .
3Jr

Proof..
Define xi, where i = 1, 2, to be the values of x for which fb(~i) = 1 - ymax,

and define ii, where i = 1, 2, to be the values of x for which jfb( .¡ i )1 = 1 .
To prove Lemma 4 it is sufficient to show that there is an interval M(r) of

parameter values b for which 11/2 - x i l < 11/2 - .¡¡l .
Solving ñmaxymax = 1/2 for ymax we obtain

ymax =
2Amax

rb
Amax = 2r-1'

Therefore, ymax =

	

b , and hence, - ymax

	

4rb'
The above equation implies that the value xi satisfies

_ 2r
fb(xé) = 1

	

4rb'

1)r1
2 . .

7- 7z
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which implies that

and

Solving this equation for ~ ; we find that

r

2
_ ~i

1
=

(4b2 r _ b

+ 2r \ ~

/

Due to the fact that the values x ; of x satisfy Jfb(x ;)j = 1, we have

- rb(x ; - 1/2) r-i 1 = 1 .

Upon solving this equation for x;, we see that

Therefore,

Evaluating our formulas for X1/2 - ~;l and X1/2 - x;i when the parameter b

is equal to 2' yields

Hence when b = 2r, we have 11/2 - x;l < 11/2 - i ;i which is due to the fact
that

or equivalently,

2r 1 14b---b +2r)~

1 1 1

Crb~

r

	

+_2'

12 -
x°

I

	

b l r-1
.

2 - _
xi

-

((2r

	

21

+

2r)

.
-
C42rl

r
-
2 C4r)

12_xil=
r2r

~11 r11 =1(1)r ll .

1 r-1 1 r

(4r)

	

< (2r)

	

for r > 4,

4r Fr1 ) i < ( 1 )

	

1

Therefore ; when the parameter b is equal to 2r and r > 4, the intervals Li
are not void . As the value of the parameter b is increased, the distante between
the points i ; and 1/2 decreases and the distante between the points x ; and 1/2

increases . When the parameter b >_ lx2r , we have by Proposition 1 Jf6(x)j > 1
for all values of x E fe1 (I). Due to the continuity of fn(x) with respect to
the parámeter b, there is a parameter value b* where b* E (2r, a2'] for which
L; UJ; = I; whenever b >_ b* . Define M(r) to be the interval (2r, b*) C (2r, CY2r] .

Hence, if b E M(r) then L; U J, :~ I;, and the proof of Lemma 4 is complete .



when r = 4 and b = 24 yields

Proof.
It is enough to show that_

	

lfb(x2) " fb(fb(x2))I >
fb(fb(x0)) ~ fb(fb(x2)) for all xo E K¡ .

Recall that

and

Corollary .
If r = 4, then M(r) _ ~ .

Proof.
Evaluating

Therefore, when r = 4, Li U Ji = fi, and M(r) = o.
Define Ki = I, - (L, U Ji), where i = 1, 2, for r > 6 and b E M(r) .

Lemma 5.
If b E M(r) and xa E K¡, then lfb(xo) - fb(fb(xo ))j > 1.

Since

we have
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_ r

	

_

I2-x`I=(4b2r

	

b - -2r ) " , and

2 -x`1

	

4

	

121 -x`I

_ 2r 1 1_

	

1 1 _ 1__ _

	

11 1
x2
- (4b2r

	

b + 2r)_

	

r

+ 2' x2 - (rb)

	

+ 2

r
fb(x) = b [2r -

(x - 2) 1

fb(x)
r-1

=-rb(x-
12)

r-1_

	

r
fb(x2) = -rb (42b2

+
2r

-
b

. -

1
jfb(x2) = b í2r - ( b)

r, , rj -1

-
2)

fb(fb(x2)1 = -rb
(b

12r -
(b)

1 as fb(x0) > fb(x2) and
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By substituting the above expressions for fb(x2) and fb(fb(x2)_ ptd lfb(x2)
fb(fb( :~2)I we obtain the following :

	

,

fb(x2) - fb(fb(x2))j =
1

r2b2

	

r

(4rb2 + 2r

	

b)

	

Cb
[2r - (rb)

	

]

	

2)
_r-1

	

r-1

> r22zr
(.42b2)

	

(2r [2T - (rb)

r-i,,

	

2)

-
r222r.42b2

( 42 b2 ) r

	

[1
-
2r

(b)

	

-11
- 2

)

r-1

r23r
>

	

(4r2T) ir

4

	

22r (1 +
.3r)'

	

°

r2r-1 r14-.1

[1
(1 + 3r)2

	

2

r2r-1

' (1+3)
2

>

	

2

	

2

	

fl _
'(1 +

r

3r)

e

.G.J :,DAvis . .,

1 T-1
1

2
_

.r (r2r)

r°~2r)

T
r

I'

-

Therefore, we have shown that whenever the parameter b is an element of
M(r) and x o is an element of K¡, then Jfb(xo) - fb(fb(xo)I > 1.

As we have now completed the proofs of Lemma 4 and Lemma 5, we have
also completed the proof of Proposition 3 .
Acknowledgement : The author wishes to thank the referee for carefully

reading the original manuscript and for the helpful comments .



HYPERBOLICITY IN ONE-DIMENSIONAL MAPS

	

105

References

1 .

	

DAvis, G.J ., Homoclinic tangencies and infinitely many sinks, AMS Trans-
actions, (1989) (to appear) .

2.

	

DEVANEY, R.L ., "An introduction to chaotic dynamical systems," the Ben-
jamin/Cummings Publishing Co., Inc ., 1986 .

3.

	

GUCKENHEIMER, J. AND HOLMES, P ., "Nonlinear oscillations dynamical
systems, and bifurcations of vector fields," Applied Mathematical Sciences
42, Springer-Verlag, New York, 1983.

4.

	

NEWHOUSE, S . E ., The abundante of wild hyperbolic sets and non-smooth
stable sets for diffeomorphisms, IHES Extrait des Publications Mathema-
tique 50 (1979), 101-151 .

5 .

	

PALIS, J. AND TAKENS, F., Homoclinic bifurcations and dynamical sys-
tems, Lecture notes IMPA (1988) .

6.

	

ROBINSON, C ., Bifurcation to infinitely many sinks, Communications in
Mathematical Physics 90 (1983), 433-459.

Department of Mathematics
University of Wisconsin-Green Bay
Green Bay, WI 54311
U .S.A .

Rebut el 9 de Febrer de 1989




