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HYPERBOLICITY IN A CLASS
OF ONE-DIMENSIONAL MAPS

GREGORY J. Davis

Abstract

In this paper we provide a direct proof of hyperbolicity for a class of one-
dimensional maps on the unit interval. The maps studied are degenerate
forms of the standard quadratic map on the interval. These maps are
important in understanding the Newhouse theory of infinitely many sinks
due to homoclinic tangencies in two dimensions.

Introduction

In the theory of infinitely many sinks, two-dimensional invariant sets are
formed when homoclinic tangencies between stable and unstable manifolds of
a hyperbolic periodic point are formed. In order to show that infinitely many
sinks occur in this situation, we must show that these invariant sets are hyper-
bolic ([1}, {4], or [6]), which is a major undertaking.

When the homoclinic tangency is quadratic in nature, the two-dimensional
problem has been thought of as a perturbation of the one-dimensional map ({3],
[8])- In [5], a more complete and elegant proof was obtained by conjucating the
hyperbolic invariant set for the quadratic map fy(z) = bz{l — 2) to the two—
dimensional invariant set in the two-dimensional infinitely many sinks problem.
In the case where the homoclinic tangency is degenerate (i.e., of order r, r =
4,6,...), the present proof is very long and involved [1}. If a conjucacy between
the one and two-dimensional degenerate problems can be determined, then it
may be possible to treat the higher order tangencies in two dimensions using
the same type of ideas as presented in [5).

With the above motivation, we will examine the hyperbolicity of the following
family of one-dimensional maps on the unit interval. The one- dimensional
maps that we are concerned with are of the form

fb(m)Zb[g—lr— (x—%) ], b>2" r=4,68,. ..

where b is a real parameter and r is a fixed positive even integer. By studying
these one~dimensional maps we will gain insight as to how the hyperbolicity
of an invariant set near a degenerate homoclinic tangency in two—dimensions
is justified. We will restrict our attention to the cases where r > 2, due to
the fact that when r = 2 we obtain the well known and studied quadratic map
fe(z) = bz(l — z); see [2], [3] or [5] for more information about this map.
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Statements of results

It is easily seen that fy{z) = 0 for z = 0,1 and that fz(x) achieves its
maximum value of /2" when ¢ = 1/2. In order for I = [0,1] to be covered by
itself under the map f3(x), b must be larger than 2". We are interested in the
set A contained in I that is invariant for fo(z}); i.e., fy(A} = A. Explicitly, the
invariant set which we are interested in for this map is given by A = N2y £, (1)
{The set A is the analogue of A,(t) in the two-dimensional problem [1]). It is
our goal to show that A is a hyperbolic set for fy(z).

A hyperbolic set for fy is a closed, bounded, invariant set A for which there
exists an K > 0 such that for all z € A we have [(fF)(z)] > 1forallk > K. If
b is large enough, the hyperbolicity of A is relatively easy to establish.

Set fi'(I) = Iy U I, where It = [0,¢], ¢ € [0,1/2], and I; = id,1], d €
(1/2,1], so that fi{L;) = I, i =1,2. Then we have

Proposition 1.
Let fm) = b[& —(z—1)7], 8> 2", r =4,6,8,... then forb > 2" (3512},
[fiz)| > 1 for all z € fi (I

The proof of proposition 1 and the remaining propositions in this section will
be deferred to the next section.

Continuing with our discussion of the hyperbolicity of fi(x}, if

2‘”<bc2’(3r+2>,

3r

then not all points in the pre-image of I, fa”l(l'), have | f;{z}] > 1. Fortunately,
the absolute value of fj{p) is greater than one where p is the fixed point of f}
which is an element of I;. (See Figure 1).

0 1/2 P {1

Figure 1
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Proposition 2.

The fized point p of fe{z) which les in the interval Iy s a repellor, that is
£}l > 1.

Let &; be the points such thet |fi(E)| = 1; & € I, 1 = 1,2. Define J; =
[0,%,) and Jy = (£2,1). Clearly ell @ € J; U J, have the properiy [fy(z)] > 1.

Proposition 3.
Ifzo € AN[(LVL)—{J1UJ)], then there is a positive inleger k = k{zo) > 1
such that [(f§)(zo)] > 1.

The idea behind Proposition 3 is that the values of z¢ that do not have
[{fsY(zo}| > 1 are mapped close to one and then near zero. When a point
is mapped near zero, the point stays in the interval Jy, where the derivative
is greater than one, for its next few iterates. The accumulative result is that
the iterates for which the derivative is greater than one overcome the initial
contraction of the point xg.

We now have, by Propositions 1-3, the following resnlt:

Main result.
Let fo(z) = b[% ~ (¢ - %)r] , b= 2" r =4,68,... fixed. The invariant
set A = N, f,°(I) is a hyperbolic set for fi(z).

Proofs of results
Proof of Proposition 1:

Set o = %3, and b, =27 (3—’;“:—2) =2"a.

It is sufficient to show {f; {z)| > 1since |f{(z)] 2 |f;,(z)| for & > ;. Consider
the function

1 1\ ,
fbl(:c):b[g—-(z—~§> ] = afl — (22 — 1)7L
Differentiating fs, {z) with respect to z, we obtain
fo ()= —2ra(2z — 1)1

Therefore, |f] ()| = |2ra(22 — 1)1
Let z; € I, where : = 1,2, be the points such that f, {z;) = 1; i,

afl - (22, - 1)7] = 1.

Selving for x; we obtain,

1 (22 — 1) =

RlIrmR |~

(22, 1) =1-
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i(l_g)il]v

|5, (2] 2 1fs, (3},

or

1
Ti==

For all z € f;-(I),

and
—1

1\
2ro (1 ——)
a

[f5,{zi}f =

Therefore {f;, ()] 2 5255 {
Thus {f§, (z)| > Lforall z € fb1 (I), and Proposition 1 is proven. Ml

Proof of Proposition 2:

The idea of this proof is to show that #, < p < 1 which implies | f}{p)| > 1.
Consider g;(z) = fo{z) — z, and note that g{p) = 0.
Set z = (xz — 1/2), then

1= i (s +3) - (- 1)
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Evaluating hy(z) at z = (p — 1/2) and z = 0 yields the following:

hy(p —1/2} =0,
and o1 _p
hb{g) = Tb_ <0

since & > 27. Because hs{y) has only one variation in sign, Descartes’s rule
of signs implies that hy(y) has at most one positive real root; however, we
already know that z = (p — 1/2) is a positive root of h;(2). Therefore, to
prove that 2; < p, that is p € J;, it is sufficient to show that hy(2) < 0 where
Z = (&1 —1/2). First it is necessary to calculate 5. Recall that

wo-ifp=(-2)]

f@=-r(=-1)".

The point &, satisfies the relation fj{#;) = —1; that is

r—1
fi(32) = —rb (m _ %) _

Replacing (£, — 1/2) with 7 we obtain
—rb3™1 = 1, or £ = {rb)FI.

We now proceed to show that h(2) < 0.

ho(Z)= 2"+ 5/b+ (2b)" — 27"
= (rb)7T + b (rb) T +(2b) — 277

1\™ 1 /1\™ 1 L
<(;—2—r) +-2—r(r2r) +ﬁ—2 ; since b > 2

/1 ,+1+1 1\ 1
T 2r \r2" 2r+!

i

1y f—iTJr 11
T2r |\ rroF r2r 2

147 —271p7T

2r(2r) 7T
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Set A = L then

2r(2ry¥-T

ma(8) < A{L+r —r(2r)7T)

< A 1+f‘—r{1+r111n(2r}}) (%)

r 11n(2?‘))

(
(

= A (1 - (1 + r%) 1?1(2?‘))
(

1n(2r)) , since 1n{2r} > 1 for r > 2

Thus, we will have shown that £;{2) < 0 as soon as equation {*) is verified;
however, equation {*) is true due to the fact that

(21')*_‘—1' = 7T In{2r)

: 1In{2r) + (higher order terms)
T —

<14

p— 1n(2r)

where (higher order terms) > 0 since Z71n(2r} > 0forr > 2.

Therefore, hy(2) < 0, which itmplies p € J; or |fi(p)| > 1, and the proof of
Proposition 2 is complete, W

Proof of Proposition 3:

Let 1 + ¢ be the maximum value obtained by fi(z) where = € I; ie., let
1+g = fi{1/2). Chooseany 25 € AN[LUL)—{J;UJ3)]. Define &6 = 6(zg) > 0
so that the distance between fy(zg) and 1+ g is b6, and define v = v{zo) > 0
to be the distance between fi(z¢) and 1. Then fi{zo) = b6, and ¥ < bé".
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{See Figure 2).

T
1
gl
lr« 5—-01 ]1
xg 172 £{xg)
Figure 2

Let Amax be the maximum value of f;{z} where z € I; that is, let

Amax = f;(o) - T'b(l/2)r_1,

Define k = k(zo) = 2 to be the integer such that

_ 1
Akmmlc‘f 25:
but 1
A':ina.x'?' < '2’
for j < £ — 1. We now have that
am1 Loy

mAX T Oy T2B8T
Define A, where 0 € A €1/2, to be the value of § for which

. 1
A —2+g

Then

B =

1 5
VAT =5 g = fo(1/2) = o -

Solving for A" we find that

L1061y _ 1 1
A‘b(zr 2)_52r(b 2

83
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Let Agin be the minimum value of fi(z) for z € {0,1/2 — A],

Amin = fl(1/2 = A) = rbATY,

Using our formula for A" we see that A™! is given by

(o-r)”

rel

r—1

AT = (ANYF =

Therefore,

Amin = b hoort
’ (bzr( ))

Combining the formulas for Amax and Amin we obtain the following ratio:

;\ i r— 1 - _1—r
M (-2 T2 s 1

r—1
r
'\mnx

From this relation we have that

i—r

k-1 . .
AR=1 > (,\m,) (b—2r )1 0%

min =

We will now show that (ff){ze) > 1

(F5Y (zo) = rb6™ 10K !

min

Therefore,

(£ (z0) 2 (MY F (o~ 27y 7t
zrbéf“‘ 1

2rrlbrr15r 1(
i=2r 14r I=r
T or

N N (e

1]
2_2r ria (b_gr—l)r—d B
= 2 r T (T

rirl (b_2r-—l)r—l %
T gt -3

> 1

=1 P,2-—r 1—r
T rTh T 2T

>

It should be noted that the above argument is valid only for the values of z4
for which v = 4(xg) has the property

1 1
Aty > 5 but My < =

max 2
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where j < k—1 and k = k(zg) > 2.

In addition, the above argument is only legitimate in the case when § <
[1/2 — fb_l{l — Ymax )|, Where ymax is the value of v for which ApayYmax = 1/2,
In Lemma 4 we will prove the existence of certain parameter values b for which
there exist values of zy that do not satisfy the above condition. These values
of & are shown to also have the property of |{ff)(ze)| > 1, where & = 2, but
an argument different from the one above is required to show this fact. This
argument will be presented in Lemma 5. However, before we prove Lemma 4
and Lemma 5, it will be necessary to provide additional notation.

Set .
bmax = i1/2 - fb_l(l - ’Ymax)l

and define the intervals L, and L, to be

Li=5nn [1/2 - 5max> 1/2], Ly=5n [1/2, 1/2+ 6ma>(]-

Lemma 4,
There ezist intervals of parameter values M(r) C (27,027 such that L,UJ; #
L, 1 =1,2, where a = {322},

Proof:

Define E,—, where i = 1,2, to be the values of z for which f.:,(;,-) =1~ Ymax,
and define Z,, where i = 1,2, to be the values of z for which FHEDIEDY

To prove Lemma 4 it is sufficient to show that there is an interval Mr) of
parameter values b for which |1/2 ~ 7, < |1/2 — 2,1

Solving Anax¥max = 1/2 for 4max we obtain

i
Ymax = _2/\

TaaXx

Reeall that
rb

Amax = >

Therefore, yyae = ;Er—b, and hence, 1 — ypay = 1 — frb.

The above equation implies that the value 7, satisfies

~ ’ ar
fo(zi) =1~ o

that is, 7, satisfies
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Solving this equation for z; we find that

- 7 1.1 %+1
TLEF w3 2

e 1+l%
Th\ar b2 )

Due to the fact that the values #; of = satisfy |f;(2:)| = 1, we have
| - rb(d; - 1/2) 7 = 1.

which implies that

1 N.
g T *

Upon solving this equation for &;, we see that

e 71—f+1
i=F rh 27

_ 1\
BRC VA

Evaluating our formulas for |1/2 — ;] and |1/2 — &;| when the parameter b
is equal to 27 yields

(1,1 RN VEAY
TG 2 T2 \4r2r) T 2\4r
1 A
i 1 r—1 _1 1 r—1
CAr?T T2\ ‘

Hence when b= 27, we have |1/2 — Z,]| < |1/2 — ;| which is due to the fact

that -
1N\ 1N\
— — 4
(4r> <(2r> for r > 4,
1 1
137 < 1y T
4r 2r '

Therefore, when the parameter b is equal to 27 and r > 4, the intervals L;
are not void. As the value of the parameter b is increased, the distance between
the points ,; and 1/2 decreases and the distance between the points Z;and 1/2
increases. When the parameter b > 2", we have by Proposition 1 |fi(z)] > 1
for all values of z € f, '{I}. Due to the continuity of fs(z} with respect to
the parameter b, there is a parameter value b* where b* € (27,02"] for which
L;UJ; = I; whenever b > b*. Define M(r) to be the interval (27,5*} C (27, a27].
Hence, if b € M{r) then L;U J; # I;, and the proof of Lemma 4 is complete. B

Therefore,
1

s 3,

2

4o

1 ~
37

and

or equivalently,
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Corollary.
Ifr =4, then M(r) = ¢.

Proof:

Evaluating
1 ol (2 1 1\F g (1)
2 7Y T4 b 20 ) 2 T T Arb

when r =4 and b = 2! yields
5

- — X

2

Therefore, when r =4, LU J; =1, and M(r)=¢. B
Define K; = I, — (L; U J;), where i = 1,2, for r > 6 and b € M(r).

Lemma 5.
Ifbe M(r) and z, € K;, then |fi{zo) - fi(fo{z0))| > 1.

Proof:
It is enough to sbow that |f}(z2) - fi(fs(32))] > 1 as fi(zo} = fi(22) and
filfs(z0)) 2 fifi(z2)) for all 25 € K.

Recall that
s (21 1Y, 1 (1\FT 1
2=\ vty =\ ta

Since
ol ()
and oy
A ==rb(s-3)
we have
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By substituting the above expressions for f3(£;) and f{(fs(Z2}).inte |f£(3:'2) .
Fi(fs(22))| we obtain the following: , .

' r—1 r_ 3. r—1
- 20 1 1\~ 1 /1N
1’ L ~ e 212 i = = - =
G S =% (Z + 5 -5) (5{2, (%) ] 2)
o\ 1oy 1\
2o r|l - _ = _Z
> (41‘52) (2 [zf (rb) ] 2)
r r—1
AN A S A
- Y id - 1__21- = =
e ( or ) ({ (w) } 2)
. 1 r—1
P 12 T
> 2rf] 2 7{(4r27)" {-2‘_5(1‘2’) ]
4.2 (1+£ : : :
1 ¥—1
Cr2rlerar (1 1L NTT
T+ i)Y 2 or
Lt 1o ( 1 )ﬁ}
—7 |5 7 A\
(1.!_% _2 ri\r2

r'-"'il’_:r-r
preac BTV B
(1+3) L

r 1r—1
> i3]
(+E) LT

r 1
> — . =
(1+3) ¢
_‘817‘>'.~'>1
T e 4 )

Therefore, we have shown that whenever the parameter b is an element of
M(r) and zp is an element of K;, then |fi{zo) - fi{fa{zo))| > 1. B

As we have now completed the proofs of Lemma 4 and Lemma 5, we have
also completed the proof of Proposition 3. B
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