HÖLDER AND L^p ESTIMATES FOR THE SOLUTIONS OF THE **∂**-EQUATION IN NON-SMOOTH STRICTLY PSEUDOCONVEX DOMAINS

J.M. Burgués

Abstract .

Let D a bounded strictly pseudoconvex non-smooth domain in \mathbb{C}^n . In this paper we prove that the estimates in L^p and Lipschitz classes for the solutions of the $\bar{\partial}$ -equation with L^p -data in regular strictly pseudoconvex domains (see[2]) are also valid for D. We also give estimates of the same type for the $\bar{\partial}_b$ in the regular part of the boundary of these domains.

0. Introduction and statement of results

This paper is a continuation of [1] and deals with the estimates for the $\bar{\partial}$ equation on strictly pseudoconvex non smooth domains. By this we mean a domain D defined by the condition $D = \{r < 0\}$ where r is a strictly p.s.h. function of class C^2 defined in a neighborhood of bD. We recall that it is not assumed that the gradient of r be different of 0 in bD, and the boundary fails to be a regular submanifold of \mathbb{C}^n just in a totally real set.

Henkin and Leiterer proved in [3] that the equation $\bar{\partial}u = f$ has a bounded solution u for any (0, q)-form f, with bounded coefficients, and such that $\bar{\partial}f = 0$. In [1] it was proved that there exists an integral operator

$$Tf = \int_D K(\zeta, z) \wedge f(\zeta)$$

mapping $L_{(\alpha,\beta)}^{loc}$ to $L_{(\alpha,\beta-1)}^{loc}$ such that $\bar{\partial}Tf = f$ if $\bar{\partial}f = 0$ and satisfying the estimate $||Tf||_{L^{p}(D)} \leq c||f||_{L^{p}(D)}$ and also the Lip 1/2 estimate $||Tf||_{L^{p}(D)} \leq c||f||_{\infty}$ in the case r is of class C^{3} .

Here and in the following the L^p spaces are with respect to the Lebesgue measure dm, and Lip (s, D) stands for the class of continuous functions on D having modulus of continuity $O(\delta^s)$. The L^p - norms will be abreviated by $|| ||_p$.

Partially supported by the grant PB85-0374 of the CYCIT. Ministerio de Educación y Ciencia, Spain.

The aim of this paper is to improve these estimates extending to the nonsmooth case the optimal estimates obtained by Krantz in [2] for the regular case, for forms of arbitrary bedegree.

The paper is organized as follows. In section 1 we recall the construction of the operator T and the estimates for its kernel K that were obtained in [1]. In section 2 we prove the following three theorems:

Theorem 1.

The operator T satisfies the following L^p -estimates:

- (a) $||Tf||_q \le c ||f||_p$, $1 , <math>\frac{1}{q} = \frac{1}{p} \frac{1}{2n+2}$
- (b) $||Tf||_q \le c_q ||f||_1, \forall q < 2n+2$

(c) For p = 2n + 2, |Tf| satisfies the estimate

$$\int_D \exp\{c|Tf(z)|^{\frac{2n+2}{2n+1}}\}dm(\zeta) < \infty$$

for some constant c depending on n and $||f||_{2n+2}$.

Theorem 2.

- (a) If p > 2n + 2, T maps $L^p_{(0,1)}$ continuously into Lip $(\frac{1}{2} \frac{n+1}{p_-}, D)$
- (b) If $f \in L^p_{(\alpha,\beta)}$, p > 2n + 2 and $\beta > 1$, Tf is continuous on \overline{D} .
- (c) In case r is of class $C^{2+\gamma}$, $0 < \gamma \leq 1/2$, then for $p \geq \frac{2n+2}{1-2\gamma}$, T maps $L^p_{(\alpha,\beta)}$ into Lip $(\min\{\gamma, \frac{1}{2} \frac{n+1}{p}\}, D)$, for all α, β .

Note in theorem 2 that if r is just C^2 , Hölder estimates can only be obtained for (0, 1)-forms. For forms of bedegree $(\alpha, \beta), \beta > 1$, one needs extra assumptions on r to obtain Hölder estimates for a certain range of p's. In case r is of class $C^{2+1/2}$, then part (a) holds for forms of arbitrary bedegree.

In order to state our third result, which gives an improvement of the estimates at the boundary, we need to recall a definition from [1] and [6]: Assuming only that r is defined in an neighborhood of \overline{D} , we put for $\zeta, z \in \overline{D}$

$$\rho(\zeta, z) = |\langle \partial r(z), \zeta - z \rangle| + |\langle \partial r(\zeta), \zeta - z \rangle| + \|\zeta - z\|^2$$

This is a pseudodistance in the sense that triangle inequality holds with some constant C, and will be called the Koranyi pseudodistance.

We write $\operatorname{Lip}_{\rho}(s, D)$ for the subspace of $\operatorname{Lip}(s, D)$ such that $|f(w) - f(z)| = O(\rho(w, z)^s)$ for $\zeta, z \in bD$.

Theorem 3.

(a) For $2n + 2 , T maps <math>L^{p}_{(0,1)}$ into $Lip_{\rho}(\frac{1}{2} - \frac{n+1}{p})$ (b) For $f \in L^{\infty}_{(0,1)}$ then

$$|Tf(z) - Tf(w)| \le c ||f||_{\infty} \rho(z, w)^{1/2} |log\rho(z, w)|$$

(c) If r is of class
$$C^{2+\gamma}$$
, $0 < \gamma \leq 1/2$, then for $p \geq \frac{2n+2}{1-2\gamma}$, T maps $L^p_{(\alpha,\beta)}$
into $Lip_{\rho}(min(\gamma, \frac{1}{2} - \frac{n+1}{p}), D)$

Since $c_1 \|\zeta - z\|^2 \leq \rho(\zeta, z) \leq c_2 \|\zeta - z\|$, the meaning of theorem 3 is that the solutions of the $\bar{\partial}$ -equations will be, for the range of p indicated, twice as regular in certain directions in bD. This, in the regular case, is a reformulation of the estimates in the non-isotropic Lipschitz spaces $\Gamma_{\alpha,2\alpha}$ introduced by Stein.

Finally, section 3 contains the estimates of the integrals in the proof of the theorems.

Our technique differs from that in [2] in two aspects: first of all, of course, the non-smoothness makes more involved the estimate of the singularity of the kernels and, secondly, we use direct methods instead of interpolation results in obtaining the Hölder estimates. A main thechnical difficulty for that is that the domain being non smooth we do not have at our disposal the criteria $\nabla u(z) = O(u(z)^{s-1})$ for u to be in Lip (s, D).

1. The kernels solving $\bar{\partial}$

In [1] kernels are obtained to solve $\tilde{\partial}$ in nonregular strictly pseudoconvex domains, of Henkin-Ramirez type with weight factors. Let us briefly recall their construction and main properties.

1.1. General construction.

For $U \neq C^1$ bounded domain in \mathbb{C}^n , let $s, Q: \overline{U} \times \overline{U} \to \mathbb{C}^n$ where s is a section of Bochner-Martinelli type, say:

$$||s(\zeta,z)|| = O(||\zeta-z||)$$

for $\zeta, z \in \overline{U}$, and

$$|\langle s(\zeta, z), \zeta - z \rangle| \ge c_L \|\zeta - z\|^2$$

whenever $\zeta \in \overline{U}$ and $z \in L$ compact in U, and Q is of class \mathcal{C}^1 and holomorphic in z.

Let also G be a holomorphic function of one complex variable defined in a neighborhood of $\overline{U} \times \overline{U}$ under the map $(\zeta, z) \to 1 + \langle Q(\zeta, z), \zeta - z \rangle$ and with G(1) = 1.

Finally define

(1)
$$K(\zeta, z) = c_n \sum_{k=0}^{n-1} \frac{(n-1)!}{k!} G^{(k)} (1 + \langle Q, \zeta - z \rangle) \frac{\tilde{s} \wedge (d\tilde{Q})^k \wedge (d\tilde{s})^{n-k-1}}{\langle s, \zeta - z \rangle^{n-k}}$$

where $c_n = ((2\pi i)^n (n-1)!)^{-1}$, $\tilde{s} = \sum_{j=0}^n s_j d(\zeta_j - z_j)$ and $\tilde{Q} = \sum_{j=0}^n Q_j d(\zeta_j - z_j)$ K is a 2n-1 form in $d\zeta_j d\bar{\zeta}_j dz$ and $d\bar{z}$ together, and for $0 \le \alpha, \beta \le n$, let $K_{\alpha,\beta}$ the component of bedegree (α,β) in z and $(n-\alpha, n-\beta-1)$ in ζ .

Then:

Theorem 1.1. Whenever $\beta \geq 1$, if $K_{\alpha,\beta}(\zeta,z)|_{\zeta \in bU}$ is 0 for $z \in U$, the operator

(2)
$$Tf = (-1)^{\alpha+\beta} \int_U f \wedge K_{\alpha,\beta-1}$$

satisfies $\bar{\partial}Tf = f$ if $f \in \mathcal{C}^{1}_{(\alpha,\beta)}(\bar{U})$.

1.2. The section and weights in the strictly pseudoconvex case.

If D is a strictly pseudoconvex (non regular domain) and r is a C^2 defining function for D, let $U_{\delta} = \{r(z) < \delta\}$ and $V_{\delta} = \{-\delta < r(z) < \delta\}$. Then Henkin and Heffer's lemmas provides us with a family of functions Φ_j , j = 1, ..., n, and constants c_0, ϵ_0 , δ_0 depending only on the function r (but not on its gradient, nor on the variable z), such that $\Phi_j \in C^1(\bar{V}_{\delta_0} \times \bar{U}_{\delta_0})$ and are holomorphic in z, and the function $\Phi(\zeta, z) = \sum_{j=1}^n \Phi_j(\zeta, z)(\zeta_j - z_j)$ satisfies:

$$\begin{split} |\Phi(\zeta, z)| &\geq c_0 \text{ if } ||\zeta - z|| \geq \epsilon_0 \\ 2\Re\Phi(\zeta, z) &\geq r(\zeta) - r(z) + c_0 ||\zeta - z||^2 \text{ if } ||\zeta - z|| < \epsilon_0 \\ d_{\zeta}\Phi_{|\zeta=z} &= d_z \Phi_{|z=\zeta} = \partial r(z) \\ \Phi_j(\zeta, z) &= \frac{\partial r}{\partial \zeta_j}(\zeta) + O(||\zeta - z||) \text{ when } ||\zeta - z|| < \epsilon_0, |r(z)| < \delta_0 \end{split}$$

We define:

$$A(\zeta, z) = -r(z) + \Phi(\zeta, z)$$

and if $\chi \in \mathcal{C}^{\infty}_{c}(\mathbf{C}^{n})$, $0 \leq \chi \leq 1$ and $\chi \equiv 1$ on $V_{\frac{\epsilon_{0}}{2}}$, define

$$Q_j(\zeta, z) = \chi(\zeta) \frac{\Phi_j(\zeta, z)}{A(\zeta, z)}$$

and $Q = (Q_1, ..., Q_n)$.

Write now, $V_{\epsilon,\delta} = \{(\zeta, z) : |r(\zeta)| < \delta, |r(z)| < \delta, ||\zeta - z|| < \epsilon\}$ and define $\Phi_j^*(\zeta, z) = \Phi_j(z, \zeta), \Phi^*(\zeta, z) = \Phi(z, \zeta), v_j(\zeta, z) = r(\zeta)\Phi_j^*(\zeta, z) + A(z, \zeta)\Phi_j(\zeta, z),$ and $v(\zeta, z) = \sum_{j=1}^n v_j(\zeta, z)(\zeta_j - z_j).$

Finally, if $\phi \in \mathcal{C}^{\infty}_{c}(\mathbb{C}^{n}), 0 \leq \phi \leq 1, \phi \equiv 1 \text{ on } V_{\frac{\delta_{0}}{2}, \frac{\epsilon_{0}}{2}}$, define

$$s_j(\zeta,z)=\phi(\zeta,z)v_j(\zeta,z)+(1-\phi(\zeta,z))(ar{\zeta}_j-ar{z}_j)$$

 $s = (s_1, ..., s_n)$ and $H = \langle s, \zeta - z \rangle$.

The following estimates are crucial for the estimates of the kernel's singularity:

$$2ReA \approx -r(\zeta) - r(z) + c_0 \|\zeta - z\|^2$$

$$|H| \ge c\{(r(\zeta) - r(z))^2 + (-r(\zeta) - r(z)) \|\zeta - z\|^2 + \|\zeta - z\|^4 + Im\phi Im\phi^*\},\$$

for $(\zeta, z) \in V_{\epsilon_0, \delta_0} \cap (\overline{U} \times \overline{U})$. This implies that, in terms of the pseudodistance, ρ :

$$\begin{split} |A| &\approx -r(\zeta) - r(z) + \rho(\zeta, z) \\ |H| &\geq c\{(-r(\zeta) - r(z)) \|\zeta - z\|^2 + \rho^2(\zeta, z)\} \end{split}$$

1.3. The resulting kernels and their estimates.

Take in the formula (1) $G(w) = w^n$, and the section and weight introduced before. Define also:

$$\omega(\zeta, z) = \sum_{j=0}^{n} \Phi_j(\zeta, z) d(\zeta_j - z_j)$$
$$\omega^*(\zeta, z) = \sum_{j=1}^{n} \Phi_j(z, \zeta) d(\zeta_j - z_j)$$
$$A^*(\zeta, z) = A(z, \zeta)$$
$$\eta(\zeta, z) = r(\zeta) \bar{\partial}_z \omega^* + A^* \bar{\partial}_\zeta \omega$$

After a combinatoric computation one obtains in that case:

$$(3) \quad K(\zeta,z) = v \wedge \sum_{k=0}^{n-1} c_{n,k} \left(\frac{-r(\zeta)}{A}\right)^{n-k} \frac{1}{H^{n-k}A^{k}} (\bar{\partial}_{\zeta}\omega)^{k} \wedge \eta^{n-k-1} + \left[r(\zeta)\bar{\partial}_{z}A^{*} - A^{*}\bar{\partial}_{\zeta}r\right] \wedge \omega \wedge \omega^{*} \wedge \sum_{k=0}^{n-1} c_{n,k}(n-k-1)\left(\frac{-r(\zeta)}{A}\right)^{n-k} \frac{1}{H^{n-k}A^{k}} \qquad (\bar{\partial}_{\zeta}\omega)^{k} \wedge \eta^{n-k-2} - - r(\zeta)\bar{\partial}_{\zeta}A \wedge \omega \wedge \omega^{*} \wedge \sum_{k=1}^{n-1} c_{n,k}k\left(\frac{-r(\zeta)}{A}\right)^{n-k} \frac{1}{H^{n-k}A^{k+1}} (\bar{\partial}_{\zeta}\omega)^{k-1} \wedge \eta^{n-k-1}$$

Define now $q(\zeta, z) = ||dr(z)|| + ||\zeta - z||$, and denote $||dr(z)|| = \lambda(z)$

It is clear from (3) that $K(\zeta, z) = 0$ for $\zeta \in bU$ so Theorem 1.1 applies and the kernel K has the estimate (see [1], lemmas 2.4 and 2.5):

(4)
$$|K(\zeta,z)| = O(\frac{|A|^{n-1}}{|D|^n} \{-r(\zeta) + q^2(\zeta,z)\} ||\zeta-z||)\}$$

J.M. Burgués

In terms of the pseudodistance, we have (see[1], lemma 6.2)

(5)
$$|K(\zeta, z)| = O(\frac{1}{\|\zeta - z\|^{2n-1}} + \frac{(-r(z))^{n-1}\|\zeta - z\|q^2(\zeta, z)}{[-r(z)\|\zeta - z\|^2 + \rho(\zeta, z)^2]^n} + \frac{\|\zeta - z\|q^2(\zeta, z)}{\rho(\zeta, z)^{n+1}}) = def O(N_1)$$

As showed in [1], lemma 6.3, the kernel $K(\zeta, z)$ is integrable in each variable, uniformely in the other. Using a standard regularization process, one can then show that if $f \in L^1_{loc}(\alpha,\beta)$ and $\bar{\partial}Tf = 0$ in the weak sense then Tf is a form in $L^1_{loc}(\alpha,\beta-1)$ and $\bar{\partial}Tf = f$ in the weak sense.

Notice that when $z \in bU$, the estimate (5) implies

(6)
$$|K(\zeta,z)| = O(\rho(\zeta,z)^{\frac{1}{2}-n} + \lambda(z)^2 \rho(\zeta,z)^{-n-\frac{1}{2}}) = {}^{def} O(N_2)$$

and also the worse but symmetric estimate:

(7)
$$|K(\zeta,z)| = O(\frac{1}{\|\zeta-z\|^{2n-1}} + \frac{\lambda(\zeta)^2 + \lambda(z)^2}{\|\zeta-z\|^{2n-3}\rho^2(\zeta,z)}) =^{def} O(N_3)$$

1.4. Estimates of the differences.

Our method in proving Hölder estimates involves estimates of the differences of the kernels $|K(\zeta, z) - K(\zeta, w)|$. A suitable control can be obtained in terms of the gradient of K with respect to the second variable whenever it makes sense, that is when the coefficients of the form $K(\zeta, z)$ are C^1 in z. Formula (3) shows that all terms but those involving $\bar{\partial}_z \omega^*$ are C^1 in z, because $\bar{\partial}\omega^* =$ $\sum \bar{\partial}_z \Phi_j^* \wedge d(\zeta_j - z_j)$ and $\bar{\partial}_z \Phi_j^*(\zeta, z) = \bar{\partial}_z \Phi_j(z, \zeta)$ is only continuous, since it involves second derivatives on r.

Observe also that bad terms may appear only once (because $\bar{\partial}_z \Phi^* \wedge \bar{\partial}_z \Phi^* = 0$), and in the components $K_{\alpha,0}$ they do not appear at all.

So we can write the kernel K as a sum

$$K(\zeta, z) = K_1(\zeta, z) \wedge \bar{\partial}_z \omega^* + K_2(\zeta, z)$$

where K_1 , K_2 are C^1 in z and $K_{\alpha,0} = (K_2)_{\alpha,0}$. The kernels K_1 and K_2 satisfy the same estimates as K, that is (5) and (6).

The gradients in z of K_1 and K_2 satisfy the estimates contained in lemma 6.6 of [1] and hence it follows that there exists c such that if ||z - w|| is small enough and $||\zeta - z|| \ge c||z - w||^{1/2}$, $\zeta \in D$, then, for j = 1, 2

(8)
$$|K_j(\zeta, z) - K_j(\zeta, w)| = O(||z - w|| M_1(\zeta, z))$$

where (8')

$$M_{1} = {}^{def} \left(\frac{\lambda}{\|\zeta - z\|^{2n+1}} + \frac{|r(z)|^{n} \|\zeta - z\| \lambda(z)^{2}}{[|r(z)| \|\zeta - z\|^{2} + \rho(\zeta, z)^{2}]^{n+1}} + \frac{\|\zeta - z\| \lambda(z)^{2}}{\rho(\zeta, z)^{n+2}} \right) q(\zeta, z)$$

thus, $K_{\alpha,0}(\zeta, z) - K_{\alpha,0}(\zeta, w)$ will satisfy (8) if ζ, z, w are as above, without any further requirement on r. For the components $K_{\alpha,\beta}$ with $\beta > 0$ write

$$K(\zeta, z) - K(\zeta, w) = \{K_1(\zeta, z) - K_1(\zeta, w)\} \land \bar{\partial}_z \omega^* + K_2(\zeta, z) - K_2(\zeta, w) + K_1(\zeta, z) \land \{\bar{\partial}_z \omega^* - \bar{\partial}_w \omega^*\}$$

It follows that if d^2r satisfies a Lipschitz estimate of order γ , and z, w, ζ are as above, then

(9)
$$|K_{\alpha,\beta}(\zeta,z) - K_{\alpha,\beta}(\zeta,w)| = O(||z-w||M_1(\zeta,z) + ||z-w||^{\gamma}N_1(\zeta,z))$$

The estimates (8), (8') and (9) will be used in the Euclidean Hölder estimates.

For the non-isotropic Hölder estimates it will be convenient to estimate the difference $K_{\alpha,\beta}(\zeta,z) - K_{\alpha,\beta}(\zeta,w)$ just in terms of ρ . In a similar way as before, but using now lemma 6.9 of [1] instead of lemma 6.6, we see that if r is just C^2 and $\rho(\zeta,z) \ge c\rho(z,w) \zeta, z, w \in bU$ then:

(10)
$$|K_{\alpha,0}(\zeta,z) - K_{\alpha,0}(\zeta,w)| = O(\rho(z,w)^{1/2}M_2)$$

where

(10')
$$M_2 = {}^{def} \rho(\zeta, z)^{-n} + \lambda(z)^2 \rho(\zeta, z)^{-1-n}$$

and if $r \in \mathcal{C}^{2+\gamma}$ then for $\beta > 0$

(11)
$$|K_{\alpha,\beta}(\zeta,z) - K_{\alpha,\beta}(\zeta,w)| = O(\rho(z,w)^{1/2}M_2 + \rho(z,w)^{\gamma/2}N_2)$$

where

(11')
$$N_2 = \rho(\zeta, z)^{1/2 - n} + \lambda(z)^2 \rho(\zeta, z)^{-n - 1/2}$$

2. Proof of theorems

2.1. Proof of theorem 1:

As in [2], the proof of Theorem 1 is based on the following lemmas:

Lemma. Let $K : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{C}$ have the property that K(x, .) is of weak type s as a function of y, uniformly in x, and K(., y) is of weak type s as a function of x, uniformly in y. Then the linear transformation

$$f(x) \to Tf(x) = \int_{\mathbf{R}^n} K(x,y)f(y)dy$$

defined for $f: \mathbf{R}^n \to \mathbf{C}$, satisfies $||Tf||_{L^q} \leq A_p ||f||_{L^p}$ whenever s > 1, $1 and <math>\frac{1}{q} = \frac{1}{p} + \frac{1}{s} - 1$. Moreover, $||Tf||_{L^{s-\epsilon}} \leq A_{\epsilon} ||f||_{L^1}$ for all $\epsilon > 0$.

Lemma. Suppose K,s,f as above and $f \in L^{s'}$ where $\frac{1}{s} + \frac{1}{s'} = 1$, suppose also that m = n, $\Omega \subset \mathbb{R}^n$, and $supp K \subseteq \overline{\Omega} \times \overline{\Omega}$. Then

$$\int_{\Omega} exp((c\frac{|Tf(z)|}{\|f\|_{L^{s'}(\Omega)}})^s) dm(z) \leq M < \infty$$

and c, M do not depend on f, but on s and $m(\Omega)$

According to the lemma, we have to prove that $K(\zeta, z)$ is of $\frac{2n+2}{2n+1}$ -weak type on D in each variable uniformely in the other.

For this we use the estimate (7) and, since it is symmetric, it will be enough to prove the following result:

Lemma 2.1.
$$m\{z: |K(\zeta, z)| > t\} = O(t^{-\frac{2n+2}{2n+1}})$$
, uniformly in $\zeta \in \overline{D}$

This will be done in section 3. \blacksquare

2.2. Proof of Theorem 2:

Let p > 2n + 2 and $f \in L_{(0,1)}^p$. First we prove that $Tf \in \text{Lip}(\frac{1}{2} - \frac{n+1}{p}, D)$ Let $z, w \in \overline{D}, \delta = ||z - w||$. We define $\eta = \delta^{1/2}$ and estimate Tf(z) - Tf(w), using (8), by

(12)
$$\int_{B_{e\eta}(z)\cap D} |f(\zeta)| N_1(\zeta, z) dm(\zeta) + \int_{B_{e\eta}(z)\cap D} |f(\zeta)| N_1(\zeta, w) dm(\zeta) + \delta \int_{D\setminus B_{e\eta}(z)} |f(\zeta)| M_1(\zeta, z) dm(\zeta)$$

In case $r \in \mathcal{C}^{2+\gamma}$ and $f \in L^p_{(\alpha,\beta)}$, $\beta > 1$, we will have, according to (9), one more term:

$$\delta^{\gamma} \int_{D \setminus B_{e\eta}(z)} |f(\zeta)| N_1(\zeta, z) dm(\zeta)$$

Using Hölder estimates we are lead to the following lemmas which will be proved in section 3:

Lemma 2.2.1. For $1 \le s < \frac{2n+2}{2n+1}$ we have

$$\{\int_{B_{\eta}(z)\cap D} N_1(\zeta, z)^s dm(\zeta)\}^{1/s} = O(\eta^{\frac{2n+2}{s}-2n-1})$$

Corollary. For $1 \le s < \frac{2n+2}{2n+1}$

$$\{\int_{D\setminus B_\eta(z)} N_1(\zeta,z)^s dm(\zeta)\}^{1/s} = O(1)$$

Lemma 2.2.2. For $1 \le s < \frac{2n+2}{2n+1}$

$$\{\int_{D\setminus B_{\eta}(z)} M_{1}(\zeta, z)^{s} dm(\zeta)\}^{1/s} = O(\eta^{\frac{2n+2}{s}-2n-3})$$

Using lemma 2.2.1 the first integral in (12) is $O(\delta^{\frac{1}{2}-\frac{n+1}{p}})$. The second one is also $O(\delta^{\frac{1}{2}-\frac{n+1}{p}})$, because $B_{c\eta}(z) \subset B_{c\eta}(w)$. Finally by lemma 2.2.2, the last term in (12) is $O(\delta\eta^{\frac{2n+2}{2}-2n-3}) = O(\delta^{\frac{1}{2}-\frac{n+1}{p}})$

This proves the first part of the theorem. Under the conditions in (b) we have one more term which is O(1) according to the corollary of lemma 2.2.1. Then if $p \geq \frac{2n+2}{1-2\gamma}$ we obtain a Lipschitz condition whith exponent $\min(\gamma, \frac{1}{2} - \frac{n+1}{p})$ which gives part (b) of the theorem. Finally, for part (c) we simply write,

$$\begin{aligned} |Tf(z) - Tf(w)| &\leq \|f\|_{p} \{ \int_{B_{\epsilon}} (|K(\zeta, z)| + |K(\zeta, w)|)^{s} dm(\zeta) \}^{1/s} \\ &+ \|f\|_{p} \{ \int_{D \setminus B_{\epsilon}(z)} |K(\zeta, z) - K(\zeta, w)|^{s} dm(\zeta) \}^{1/s} \end{aligned}$$

where $\frac{1}{p} + \frac{1}{s} = 1$

The first term can be made arbitrarily small by choosing ϵ small and the second too by choosing w close enough to z beacause the kernels are continuous off the diagonal.

2.3. Proof of the Theorem 3:

First, let $A_{\delta}(z) = \{\zeta : \rho(\zeta, z) < \delta\}$, be the Hörmander ball related to ρ . For p > 2n + 2 and $f \in L^{p}_{(0,1)}$ we split now the integrals giving Tf(z) - Tf(w) for $z, w \in bD$ in the form:

(13)
$$\int_{A_{\epsilon\delta}(z)} |f(\zeta)| N_2(\zeta, z) dm(\zeta) + \int_{A_{\epsilon\delta}(z)} |f(\zeta)| N_2(\zeta, w) dm(\zeta) + \delta^{1/2} \int_{D \setminus A_{\epsilon\delta}(z)} |f(\zeta)| M_2(\zeta, z) dm(\zeta)$$

Here $\delta = \rho(z, w)$ and we have used (10)

In case $r \in \mathcal{C}^{2+\gamma}$ and $f \in L^p_{(\alpha,\beta)}$, $\beta > 1$, we will have by (11) another term:

(14)
$$\delta^{\gamma/2} \int_{D \setminus A_{c\delta}(z)} |f(\zeta)| N_2(\zeta, z) dm(\zeta)$$

Using Hölder's inequality as before we are lead now to the following lemmas:

Lemma 2.3.1. For $1 \le s < \frac{2n+2}{2n+1}$,

$$\{\int_{A_{\xi}(z)} N_{2}(\zeta, z)^{s} dm(\zeta)\}^{1/s} = O(\delta^{\frac{n+1}{s} - n - \frac{1}{2}})$$

Corollary. For $1 \le s < \frac{2n+2}{2n+1}$

$$\{\int_{D\setminus A_{\delta}(z)} N_2(\zeta, z)^s dm(\zeta)\}^{1/s} = O(1)$$

Lemma 2.3.2. The integral

$$\{\int_{D\setminus A_{\delta}(z)} M_2(\zeta,z)^s dm(\zeta)\}^{1/s}$$

is
$$O(\delta^{\frac{n+1}{s}-n-1})$$
 for $1 < s < \frac{2n+2}{2n+1}$ and $O(|\log \delta|)$ for $s = 1$

Now, as in the proof of theorem 2, using lemma 2.3.1, we see that the first term in (13) is $O(\delta^{\frac{1}{2}-\frac{n+1}{p}})$, and the second one has the same order estimate, because $A_{c\delta}(z) \subset A_{c'\delta}(w)$ (since $\rho(z,w) = \delta$). Finally, the lemma (2.3.2) gives us the same estimate for the third one, whenever $p < \infty$. This proves part (a) of the theorem.

When $p = +\infty$, s = 1, and using the same lemmas we have for (13) the estimate $\delta^{\frac{1}{2}} + \delta^{\frac{1}{2}} |ln\delta|$. This gives (b).

Finally for general forms (part (c)), the corollary of lemma 2.2.1 and the same considerations as in the corresponding part in theorem 1 complete the proof of (c). \blacksquare

3. Proof of the estimates

3.1. The case of the euclidean balls.

First, let us notice that for $z \in D$ far away from the boundary, or in the set of singular points $(\lambda(z) = 0)$, the only terms appearing in the integrals are those of type $\|\zeta - z\|^{-2n+1}$ and $\|\zeta - z\|^{-2n}$.

Otherwise, when $\lambda > 0$, in order to integrate in or outside euclidean balls we choose the coordinates:

$$t_1 = \Re \langle \frac{\partial r(z)}{2\lambda(z)}, \zeta - z \rangle$$

$$t_2 = \Im \langle \frac{\partial r(z)}{2\lambda(z)}, \zeta - z \rangle$$

$$t_3, \dots, t_{2n}$$

euclidean orthonormal coordinates in T_z^c , the complex tangent space to $\{r = r(z)\}$ at the point z.

The jacobian matrix associated to the change $x(\zeta - z) \rightarrow t(\zeta - z)$ is 1, and let us denote $t' = (t_3, ..., t_{2n})$, and $t = (t_1, t_2, t')$

In terms of these coordinates, $\rho(\zeta,z)\simeq\lambda(z)[|t_1|+|t_2|]+\|t\|^2$.

Proof of lemma 2.1:

We use (7); the estimate is clear for the term $\|\zeta - z\|^{1-2n}$. Note that since $\lambda(\zeta) = \lambda(z) + O(\|\zeta - z\|)$ we can delete $\lambda(\zeta)$ in the estimate. Now, we have

$$A = \left\{ \frac{\lambda^2}{\|t'\|^{2n-3} (\lambda |t_1 + it_2| + \|t'\|^2)^2} > s \right\} \subset \left\{ \|t'\| < \left(\frac{\lambda^2}{s}\right)^{\frac{1}{2n+1}}, \\ (\lambda |t_1 + it_2|)^2 < \frac{\lambda^2}{s \|t'\|^{2n-3}} \right\}$$

and then

$$m(A) \le m\{\|t'\| < (\frac{\lambda^2}{s})^{\frac{1}{2n+1}}, (\lambda|t_1 + it_2|)^2 < \frac{\lambda^2}{s\|t'\|^{2n-3}}\}$$

$$= \int_{\{0 < \|t'\| < (\frac{\lambda^2}{s})^{\frac{1}{2n+1}}\}} dm(t') \int_{\{0 < |t_1+it_2|^2 < \frac{1}{s\|t'\|^{2n-3}}\}} dt_1 dt_2 = O(s^{-\frac{2n+2}{2n+1}}) \quad \blacksquare$$

Proof of lemma 2.2.1:

In view of formula (5) we have to estimate, for $1 \le s < \frac{2n+2}{2n+1}$, the following integrals:

(15)
$$\int_{D\cap B_{\eta}(z)} \frac{dm(\zeta)}{\|\zeta-z\|^{(2n-1)s}}$$

(16)
$$\int_{D\cap B_{\eta}(z)} \left(\frac{|r(z)|^{n-1} ||\zeta - z|| \lambda^2}{||r(z)|||\zeta - z||^2 + \rho^2|^n} \right)^s dm(\zeta)$$

(17)
$$\int_{D\cap B_{\eta}(z)} \left(\frac{\|\zeta-z\|\lambda^2}{\rho(\zeta,z)^{n+1}}\right)^s dm(\zeta)$$

The first one is immediately seen to be $O(\eta^{1-(2n-1)(s-1)})$. The second, using the coordinates above, is estimated by

$$|r(z)|^{(n-1)s}\lambda^{2s}\int_{B_{\eta}(0)}\frac{\|t\|^{s}dt_{1}\dots dt_{2n}}{[|r(z)|^{1/2}\|t\|+\lambda(|t_{1}|+|t_{2}|)+\|t\|^{2}]^{2ns}}$$

and taking polar coordinates:

$$t_1 = R \cos \theta$$
$$t_2 = R \sin \theta \cos \phi$$

.....

the integral above is bounded by:

$$Ct.|r(z)|^{(n-1)s}\lambda^{2(s-1)} \int_{0}^{\eta} R^{2n-3+s} dR \int_{0}^{\pi} \lambda R \sin\theta d\theta$$
$$\int_{0}^{\pi} \frac{\lambda R \sin\theta \sin\varphi d\varphi}{[|r(z)|^{1/2}R + \lambda R \cos\theta + \lambda R \sin\theta \cos\varphi + R^{2}]^{2ns}} \le C|r(z)|^{(n-1)s}\lambda^{2(s-1)} \int_{0}^{\eta} \frac{R^{2n-3+s} dR}{[(|r(z)|^{1/2} + R)R]^{2ns-2}} \le C|r(z)|^{(n-1)s}\lambda^{2(s-1)} \int_{0}^{\eta} \frac{dR}{(|r(z)|^{1/2} + R)^{2ns-2}R^{(2n-1)(s-1)}} \le C\lambda^{2(s-1)} \int_{0}^{\eta} \frac{dR}{R^{(2n+1)(s-1)}}$$

this is in turn bounded by $O(\eta^{1-(2n+1)(s-1)})$.

The third one is treated in a similar way. \blacksquare

Proof of lemma 2.2.2:

Acording to the definitions (8') and easy calculations, we have,

$$M_1(\zeta, z) = O(\frac{q(\zeta, z)}{\|\zeta - z\|^{2n+1}} + \frac{\|r(z)\|^n \|\zeta - z\|\lambda^3}{(|r(z)|^{1/2} \|\zeta - z\| + \rho]^{2n+2}} + \frac{\lambda^3}{\rho(\zeta, z)^{n+3/2}})$$

and so we have to estimate the three integrals corresponding to the three terms on the right. The first one is estimated by

(18)
$$\int_{D\setminus B_{\eta}(z)} \{ \frac{\lambda^{s}}{\|\zeta - z\|^{(2n+1)s}} + \frac{1}{\|\zeta - z\|^{2ns}} \} dm(\zeta)$$

and this is

$$O(\frac{1}{\eta^{(2n+1)s-2n}} + \frac{1}{\eta^{2n(s-1)}})$$

when 1 < s and

$$O(\frac{1}{\eta} + |ln\eta|)$$

when s = 1

Both are of order

$$O(\frac{1}{\eta^{1+(2n+1)(s-1)}})$$

for $1 \le s < \frac{2n+2}{2n+1}$. For the second one we use the same coordinates as before and bound it by

$$C|r(z)|^{ns}\lambda^{3s-2} \int_{\eta}^{d_1} R^{2n-3+s} dR \int_{0}^{\pi} \lambda R \sin\theta d\theta \int_{0}^{\pi} \frac{\lambda R \sin\theta \sin\varphi d\varphi}{[|r(z)|^{1/2}R + R^2]^{(2n+2)s}}$$

$$\leq C|r(z)|^{ns}\lambda^{3s-2} \int_{\eta}^{d_1} \frac{dR}{R^{2+(2n+1)(s-1)}(|r(z)|^{1/2} + R)^{(2n+2)s-2}}$$

$$\leq C\lambda^{3s-2} \int_{\eta}^{d_1} \frac{dR}{R^{2+(2n+3)(s-1)}} = O(\eta^{-1-(2n+3)(s-1)})$$

for $1 \le s < \frac{2n+2}{2n+1}$, where d_1 is the euclidean diameter of D. The third one is estimated along the same line and it is left to the reader.

3.2. The case of the Hörmander balls.

First let us notice that, for $z \in bD$, defining $\epsilon(z, \delta) = inf\{\delta^{1/2}, \frac{\delta}{\lambda(z)}\}$, we have that $A_{\delta}(z) \approx B_{\epsilon(z,\delta)}^2(z) \times B_{\delta^{1/2}}^{2n-2}(z)$, where the ball $B_{\delta^{1/2}}^{2n-2}(z)$ is 2n-2 dimensional and is taken on the complex hyperplane T_z^c , and the ball $B_{\epsilon(z,\delta)}^2(z)$ is 2-dimensional and is taken on the orthogonal complement of T_z^c . So $A_{\delta}(z) \subset B_{\delta^{1/2}}^{2n}(z)$, and also $m(A_{\delta}(z)) \leq C\epsilon(z, \delta)^2 \delta^{n-1}$

Proof of lemma 2.3.1:

By the formula (11) we have to estimate:

(19)
$$\int_{A_{\delta}(z)} \left(\frac{1}{\rho(\zeta, z)^{n-1/2}} + \frac{\lambda^{2}}{\rho(\zeta, z)^{n+1/2}}\right) dm(\zeta) \leq C \int_{B_{\delta^{1/2}(z)}} \frac{dm(\zeta)}{\|\zeta - z\|^{(2n-1)s}} + \int_{A_{\delta}(z)} \frac{\lambda^{2s} dm(\zeta)}{\rho(\zeta, z)^{(n+\frac{1}{2})s}}$$

because $\rho(\zeta, z) \ge \|\zeta - z\|$ and the considerations above.

The first integral is as (15) in the proof of the lemma 2.2.1, and the second one can be evaluated by

$$\begin{split} \lambda^{2s} \sum_{k=0}^{\infty} \frac{m(A_{2^{-k}\delta}(z))}{(2^{-k}\delta)^{(n+\frac{1}{2})s}} &\leq C\lambda^{2s} \sum_{k=0}^{\infty} \frac{\epsilon(z,2^{-k}\delta)^2 (2^{-k}\delta)^{n-1}}{(2^{-k}\delta)^{(n+\frac{1}{2})s}} \\ &\leq C\lambda^{2(s-1)} \delta^{\frac{1}{2} + (n+\frac{1}{2})(s-1)} \sum_{k=0}^{\infty} \frac{1}{2^{k[\frac{1}{2} - (n+\frac{1}{2})(s-1)]}} \end{split}$$

because $\epsilon(z, \delta) \leq \frac{\delta}{\lambda}$, and the last series converges for $1 \leq s < \frac{2n+2}{2n+1}$. So (19) is $O(\delta^{\frac{1}{2}-(n+\frac{1}{2})(s-1)})$ and this proves the estimate.

Proof of the lemma 2.3.2:

In view of (10), we have to estimate

(20)
$$\int_{D\setminus A_{\delta}(z)} \left(\frac{1}{\rho(\zeta,z)^{n}} + \frac{\lambda^{2}}{\rho(\zeta,z)^{n+1}}\right)^{s} dm(\zeta)$$

and proceeding as in lemma 2.3.1, since $\rho(\zeta, z) \ge \|\zeta - z\|^2$ and $B_{c\delta^{1/2}(z)} \subset A_{\delta}(z)$, we bound the first one by

$$\int_{D\setminus B_{s\delta^{1/2}}(z)} \frac{dm(\zeta)}{\|\zeta-z\|^{2ns}} = O(\delta^{-n(s-1)})$$

when $1 < s < \frac{2n}{2n-1}$ and $0(|\ln \delta|)$ when s = 1. and also, for d' suficiently large, the second one by

$$\int_{D\setminus A_{\delta}(z)} \frac{\lambda^{2s} dm(\zeta)}{\rho(\zeta, z)^{(n+1)s}}$$

$$\leq \lambda^{2s} \sum_{k=1}^{d'} \frac{\epsilon(z, 2^{k} \delta)^{2} (2^{k} \delta)^{n-1}}{(2^{k} \delta)^{(n+1)s}} = \lambda^{2(s-1)} \sum_{k=1}^{d'} \frac{2^{k} \delta}{(2^{k} \delta)^{1+(n-1)(s-1)}}$$

Wen $1 < s < \frac{2n+2}{2n+1}$, this is bounded by

$$\lambda^{2(s-1)} \delta^{-(n+1)(s-1)} \sum_{k=1}^{\infty} \frac{1}{2^{k(n+1)(s-1)}}$$

and when s = 1, since $2^k \delta \leq \rho(D)$, the Hörmander diameter of D, we have the bound

$$\lambda^{2(s-1)}\rho(D)\sum_{k=1}^{d'}\frac{1}{2^k\delta} \le C\int_{\frac{1}{\delta}}^{\frac{d'}{\delta}}\frac{dx}{x} = O(|ln\delta|)$$

And the lema follows.

References

- J. BRUNA, J.M. BURGUÉS, Holomorphic approximation and estimates for the \(\overline{\Delta}\)-equation on strictly pseudoconvex non smooth domains, Duke Math. J. 55 (1987), 539-596.
- 2. S. G. KRANTZ, Optimal Lipschitz and L^p regularity for the equation $\bar{\partial}u = f$ on strongly pseudoconvex domains, *Math. Ann.* **219** (1976), 233–260.
- 3. G. M. HENKIN AND J. LEITERER, "Function theory on complex manifolds," Birkhauser-Verlag, 1984.
- 4. N. KERZMAN, Holder and L^p estimates for the solutions of $\bar{\partial}u = f$ on strongly pseudoconvex domains, *Comm. pure and appl. Math.* 24 (1971), 301-379.
- 5. E. M. STEIN, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445.
- 6. R. COIFMAN AND G. WEISS, "Analyse harmonique non commutative sur certains espaces homogènes," Lecture Notes, Springer-Verlag, 1971.

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN

Rebut el 19 de Gener de 1989