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Abstract

ENERGY MACHINERIES ON A MANIFOLD ;
APPLICATION TO THE CONSTRUCTION
OF NEW ENERGY REPRESENTATIONS

OF GAUGE GROUPS*

J. MARION

The introduction ofthe concepts ofenergy machinery and energy structure
on a manifold makes it possible a large class of energy representations of
gauge groups including, as a very particular case, the ones known up to
now . By using an adaptation of methods initiated by I.M . Gelfand, we
provide a sufficient condition for the irreducibility of these representations .

Introduction

a) Let X be a smooth Riemannian manifold, let G be a compact semisimple
Lie group with Lie algebra g, let D(X, G) be the gauge group consisting of all
the G-valued and compactly supported smooth mappings en X, let Dl (X, g)
be the nuclear space of all the 9-valued and compactly supported smooth 1-
forms on X, and let b : D(X, G) -> Dl (X, g) be the Maurer--Cartan cocycle
g -- b(g) = dg .g-1 .
An energy representation of D(X, G) is a unitary representation II of D(X, G)

into the symmetric Fock space of some complex Hilbert space (h, 1111) such that :
(1) there exists a continuous morphism (P from Dl (X, G) into h;
(2) the spherical function ep of II with respect to the vacuum vector EXPO

is given by

-> (P(g) =G II(g) EXPO,EXPO >=exp

	

-2ll~¿(b(g)11 2{ ~

*Supported in part by the Centre National de la Recherche Scientifique (C.N .R .S .) and by
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b) In [111 I have exposed why, from several points of view, such represen-
tations of gauge groups are interesting ; at that time only two kinds of energy
representations were known : those constructed by Ismagilov [7] and Gelfand
et al . [16], [17] associated with Riemannian structures on X, and the ones
constructed in [9] which are associated to non vanishing vector fields on X (for
more details, see the Historical Note in § 7) .

c) The present paper tries to being a substantial answer (although incom-
plete) to the open questions exposed in [11] . More precisely, we introduce the
concepts of energy machinery and of measurable field of such objects, which
allow to endow some spaces related to DI(X, g) with D(X, G)-invaxiant Eu-
clidean structures, namely the energy structures . Then, the Maurer-Cartan
cocycle b and the method exposed in [6], [7], [17] allow to associate to each
energy structure an energy representation of D(X, G) (Theorem 1) .

d) The last part of the paper (§§ 7, 8, 9) is devoted to extend the papers [16],
[17], [18] and [2] in order to get a sufficient condition for the irreducibility of the
energy representations with support X, the so-called P-property, which turns
the irreducibility into a result about a kind of strong disjointness of Gaussian
measures closely connected with the restriction of the energy representations
to D(X,T), where T is some Cartan subgroup of G (Theorem 3) .

1 . Preliminaries and Notations

a) In all this paper X is a n-dimensional smooth Riemannian manifold-,
as usual, TX specifies its tangent bundle, and T*X its contangent bundle ;
D(T*X) is the space of real valued and compactly supported smooth 1-forms
on X endowed with the Schwartz topology of compactly supported smooth
sections ; it is well-known that D(T*X) is a LF-space, that is to say a real
nuclear space, inductive limit of Fréchet spaces (see e.g . [15]) .

b) The set R(X) of Riemannian structures on X is by definition the subset
of C°°(S'T*X) consisting of sections T which induce a positive definite inner
product qr x on each tangent space Tx X, and therefore a volume measure dvT
on X. Let r be in R(X) and let r be in the set Cl (X ) of all the strictly positive
C'-functions on X ; an element x of X being given, one gets a positive definite
inner product q* , ,, on the cotangent space TiX by

q*,x(ux, v.) = tr(ux, vx), (ux, vx) E (TxX)',

where ux : R -> Tx X denotes the adjoint of u .,: with respect to q, x . One gets
also a positive definite inner product ( , ) ,r,r on the space D(T*X) of all
the compactly supported real smooth 1-forms on X, given by :

(W 1 W, )T,r - J q*,x(w(x),w'(x))r(x)dv'(x) .Ix
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c) Let F =

	

U Fx be a smooth subbundle of TX, and let Y be a connected
XEX

smooth submanifold of X. FY will be the restricted subbundle U Fx , and
xEY

M+(Y) will be the set of strictly positive measures on Y. An element w in
D(T*X) being given, wF will be the mapping from X into the dual bundle
F* =

	

EX
F,,*, of F, such that for all x in X, wF(x) is the restriction of w(x) to

Fx , and wY will be the restriction of wF to the submanifold Y . An euclidean
structure q on FY is a family q = (gx).EY such that for all x in Y, qx is a scalar
product on Fx ; of course, one gets a scalar product qx on Fx, x E Y, by :

gx(ux , vx ) = tr(ux - vx), (u .,, v.,) E Fx xFx,

where u* denotes the adjoint of u x with respect to the scalar product qx on Fx .

d) Let T be an element of R(X), let F be a smooth subbundle of TX, and
let Y be a submanifold of X.

	

F1 =
xÉ

Fx , where Fi is the orthogonal

complement of Fx with respect to the scalar prodiict q,,, will be called the
T-orthogonal complement of F, and we have a canonical identification of the
space {wF/w E D(T*X) with the subspace of D(T*X) :

(2)

	

D(T*X)F = {w E D(T*X)l,F1 = 0} .

From proposition 50.1 of [15] it follows that D(T*X)F , as subspace of D(T*X ),
is a real nuclear space, inductive limit of Fréchet spaces .

D(T*X)F will be the space {WY1wF E D(T*X)F } ; one has also :

D(T*Z)F = {wF/w E D(T*X)} .

2 . Energy Machineries on the Manifold X

Definition 1 . An energy machinery on the manifold X is a quadruplet
e = (Y, dv, F, q) such that :

(1) Y is a connected submanifold of X endowed with a strictly positive
measure dv ;

(2) F is a smooth subbundle of TX, and q = (gx)x EY ls an Euclidean
structure on FY;

(3) for all w,w' in D(T*X) the mapping :

x --+ gx(WF(x),wrF(x))

	

x EY

is dv-integrable .
An obvious example of energy machinery is the following:
Let T be in R(X ), and let p be in C+(X) ; it follows from (1) that (X, p dvr,

TX, (q, , .,),:EX) is an energy machinery . We shall give later on numerous other
examples .
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Lemma 1 . Le¡ e = (Y, dv, F, q) be ¢n energy machinery on X.
(i) The mapping: (wy,wy ) -~ (wy,wy )e - fY q*(WF(x)~w~F(x))dv(x) is

a positive definite inner product on D(T*X)F ;
(ü) the mapping: (w, w') --+ (w, w'), = (wy,wy )E is a positive inner product

on D(T*X) .
(iii) the mapping: (w F,w'F) -> (wy,wy)E is a positive inner product on

D(T*X)F .

Proof. The lemma is an obvious consequence of the above definition .

3. Complete 7--Energy Machineries on X

a) Definition 2. Let r be in R(X) ; the energy machineries of the form
e = (X, rdvr, F, q) are called the complete 7--energy machineries on X.
From Lemma 1, it follows easily :

Lemma 2. Let e be a complete r-energy machinery of the form e = (X, rdvr,
TX, q) . The mapping:

(w,w,), =

	

q*(w(x),w'(x))r(x)dvr(x)f
x

is a positive definite inner product on D(T*X) .

Definition 3. The complete 7--energy machineries of the form e = (X, rdvr,
TX,q) are called regular complete 7--energy machineries .

(X, rdvr, TX,(qr x)xEX) is the basic example of regular complete r-energy
machineries and for a given subbundle F =~ (0) of TX, (X, rdvr, F, (qr,x)-EX)
is a basic example of complete 7--energy machineries.
We have to give now other examples .
b) Let us suppose that the Euler number e(X) of X is zero ; as it is well-

known (see e.g . [14], § 39.8) we can find an integer k, 1 _< k <_ n, and a
k-frame:

1= (11, . . . , Ik)
of smooth vector fields on X which generates a smooth subbundle :

i=k
(4)

	

F(J) = xÉF.,(~) with Fx(J) = i®1RSi(x);

we endow F(~) with the Euclidean structure qf = (gz).rEX such that :
i=k i=k i=k

gx( iEl aiji(x), iEl biji(x» = i2laibi;

it follows that, an element r of R(X) and an element r of C+(X) being given,
for all w,w' in D(T*X) the mapping:

x --> (q1)*(WF(e)(x) wfF(f)(x))

is rdvrr-integrable on X. So :
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Lemma 3. Let -r be in R(X), let r be in C+(X), and let us suppose that X
has a k frame of smooth vectorfields 1 = (b, . . . , llk), k >_ 1 . (X, rdvr, F(J), q£)
is a complete T-energy machinery .

c) There exists a universal way to get complete T-energy machineries : let
,r be in R(X ), let r be in C+(X) and let F 7~ (0) be a smooth subbundle
of TX; k will be the common dimension of the fibers Fx of F. Let us con-
sider the corresponding infinite Grassmann manifold Gk(R'), and let -Yk be
universal bundle with base Gk(IR') (see e.g . [12], § 5 .8) . The set of contin-
uous bundle morphisms from F into.yk is not empty ([12], theorem 5.6) . Let
0 be such a morphism, and for each x in X, let 0x be the corresponding lin-
ear isomorphism from Fx onto some k--dimensional subspace of R°°, IR°° being
endowed with its canonical scalar product <

	

,

	

>; one gets a scalar prod
uct qá on Fx by gx(u,v) =< 0,, (u), 0x (v) > .

	

Let qe be the family (ge)xEx .
From the continuity of 0, it follows that for all w,w' in D(T*X) the mapping
x -> (qe)*(w'(x), w'F(x» is rdvr-integrable on X, and then (X, rdvr, F, q) is
a complete T-energy machinery.

d) Let E = (X, rdvr, F, q) be a complete T-energy machinery, and let I'+ (X)
be the set of global sections a of class C l of the bundle Hom(F, F), such that,
for all x in X, v(x) is a positive definite operator on Fx . Each element u
of P+(X) gives rise to a new scalar product u(q)x such that a(q)x(u, v) =
gx(u(x)u, o,(x)v) . From the continuity of v it follows that (X, rdvr, F, u(q)),
with u(q) = (u(q)x)-EX, is a complete T-energy machinery.

e) Let us suppose that dim(X) > 2, let T be in R(X), and let F be a proper
smooth subbundle of TX, Le . F =~ (0) and F =,A TX. E = (X, rdvr, F, qF) is a
complete T-energy machinery, where qr is the Euclidean structure coming from
7 and restricted to F . Now let us consider the orthogonal subbundle F1 , and
let T' be another Riemannian structure on X; qFl will denote the restriction
to F1 of the Euclidean structure coming from -r' .
One gets a new Euclidean structure gr,F,r' = (gi,F,r' )xEX on TX = F ® F1

such that, for all x in X:

r,F,r'¡

	

1

	

1

	

F ¡

	

F1 1 1
(5)

	

qx

	

lux +u x , vx + 77 x ) = gr,xlux~ vx) + gr"x(uy , vx )'

with (ux , vx) in Fx xFx , and (ux, vx) in FzxFx .
From the fact that one has the orthogonal sum :

. D(T*X) = D(T*X)F ® F(T*X)F'

with respect to qr , corresponding to the decomposition w ->
w F +WF1, it

follows that for all pair (w,w') of elements in D(T*X), and each x in X one
has :

(gx'F~r/)*(wlx)~w~(x)) _ (qF.)*(WF(x)~WIF(x)) + (qr ,x)*(WF'(x),W,F1(x)) .
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As (X, rdvr, F, qT) is an energy machinery, the mapping x --> (qT x) *(W F(x),
w'F(x)) is rdvr-integrable on X; for the same reason, the mapping

As dvT and dvT are smooth strictly positive measures, there exists a strictly
positive C°°-function A on X such that dvT = Adv T ; it follows that :

and then

x -> (qTz)*(wF1(x),w'F1(x» is dvT -integrable on X.

x -> (qTx) * (wF1(x),w'F1(x)) is rdvr-integrable on X.

x --> (gx,Fj)*(W(X),W,(x)) is rdvr-integrable .

From the above study it folloNvs :

Lemma 4 . Let F be a proper smooth subbundle of TX, with dim(X) > 2,
and let E _ (X, rdvr, F, qT) be a basic complete r-energy machinery according
to F. Another Ráemannian strucíure r' on X being given, the quadruplet ET ' _
(X, rdvr, TX, q',F,T') is a regular complete r-energy machinery. ET will be
called the r'-regularizatáon of E .

Remark : If r' =
r, qT F,,' = qT and then Er is the basic regular complete

r-energy machinery (X, rdvr, TX, q,) .

4 . (A, M)-Measurable Field of Energy Machineries of Type F

a) By standard Borel measure space (A, d2), we mean here a standard Borel
space A endowéd with a positive Borel measure d~ (of course a-finite) .

Definition 4. Let (A, de) be a standard Borel measure space, let F be a
smooth subbundle of TX, and for each a in A, let e,, = (Ya, dva , F, q,,,) be an
energy machinery on X. The assignment a -> Ea will be a (A, M)-measurable
field of energy machineries of type F if:

(1) a

	

a' implies Ya fl YQ - = ~ ;

(2) a -> dva is a d~-integrable field of measures ;
(3) for all pair (w, w') of elements in D(T*X) the thapping a -> (wp,wY )E~

is d2-integrable on A ;
(4) let X(A) = aEAYa' the mapping (wX(A),'X(A)) ' fA(wá,a )-.d2(a)

is a positive definite inner product on D(T*X)X(A) .
Remarks : Let us suppose that A is reduced to a. single point : A = {a.},

endowed with its canonical counting measure dnl , and let E = (Y, dv, F, q)
be an energy machinery ; the assignment a E A = {a.} --> Ea = E is obvi-
ously a (A, dnl)-measurable field of energy machineries of type F; it follows
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that any energy machinery can be viewed as (A, M)-measurable field of energy
machineries .
b) Let y be a configuration in X, Le . a non empty locally finite subset of

X ; we can find a subset N(y) of the set of strictly positive integers IV*, with
N(-y) . = {1, . . . , p} if y is a finite configuration (this is always the case if X is
a compact manifold), and with N(y) = N* if y is countable, such i --> xi is
a one-to-one mapping from N(y) onto y. N(y) is endowed with its counting
measure dn-y , and each subset {xi}, i in N(-y), with its counting measure di, .

Lemma 5 . Leí y be a configuration in X, leí p be a strictly positive function
on y, and leí q = (gi)iEN(y) be a family of scalar products, such that for all i
in N(-y), qi is a scalar product on Tx;X .

The aseignment i - el = ({xi}, edil, TX, qY) is a (N(y),dnj-measurable
field of energy machineries of type TX .

Proof.. Let i be in N(-y) ; x -> qi (w(x),w'(x» is obviously di l-integrable on
{xi}, for all w,w' in D(T*X). Identifying D(T*X){xi} with T,,X, it follows
that el is an energy machinery, the scalar product being given on D(T*X){x;}
by (w(xi),w'(xi))E, = p(xi)gs (w(xi),w'(xi)), which, for a given pair (w,w') of
compactly supported 1-forms, equals to zero outside a finite subset of N(-y) ; it
follows that i -> (w(xj,w'(xi)) fi is dny-integrable and :

IN

	

(w(x',w'(x=))Eidny(i) = . Eyp(xi)gi(w(xi),w,(xi))
(y)

c) In the following example wé suppose that dim(X) > 2 . Let I®I* be the set
N* U {oo} ; if k is an element of N*, [k] will be the set {l, 2, . . ., k} ; of course,
[oo] = N* .

Definition 5 . Let Fbe a smooth subbundle of TX. A family F of connected
submanifolds of X will be said subordinate, to F if:

(1) There exists k in W* such that F = (Y)¡E(k], and for all ¡in [k] the
restricted bundle FY = TYi ;

(2) Y; n Yj = 0 for- all i,j in [k] such that i

	

j ;
(3) for ariy compact subsei K of X there exists a finite subset K of [k] such

Remarks :
that Y, fl K = ¢ for all i. in [k] - K.

1) All the submanifolds of a family F subordinate to F have the same di-
mension dim(F) .

2) Let F be a smooth subbundle of TX; any finite family of connected
submanifolds of X satisfying properties (1) and (2) of the above definition is
subordinate to F.



1 0

	

J. MARION

3) Let F be an integrable smooth subbundle of TX; any almost countable
family of leaves of the foliation coming from F (see e.g . [5], [13]) and satisfying
(3) is subordinate to F.

Let F = (Y¡)ir,[k] be a family of connectéd submanifolds of X subordinate to
some subbundle F of TX, and let r be a Riemannian structure on X ; r induces
on each submanifold Y¡, i in [k], a Riemannian structure r i , together with a
volume measure dv i and an Euclidean structure q" on TYi ; it follows that for
all families (pi)¡E[k] such that pi is in C+(Y), for all i in [k], the quadruplet

(Yi, pidv`, F, q") is an energy machinery.
Let dn[k] be the counting measure on [k] .
Let w, w' be in D(T*X) ; as w and w' are compactly supported (wF.,wY) E r =

fi,,(qx~)*(wF(x),w'F(x»pi(x)dvi(x) is zero except for a finite subset of [k] ; it
follows that i -> (wy wy )ET is dn[k]-integrable .
From the above study it follows that Lemma 6 holds :

Lemma 6. Le¡ F be a smooth subbundle of TX, leí T be a Riemannian

structure on X, leí F = (Y¡)¡E[k] be a family of connected submanifolds of X
subordinated to F, where k is some element of i®I*, and leí (pi)iC,[k] be a family
such that for all i in [k], pi is an element of C+(Yj) .

	

The assignment i ->
(Yi, pidv`, F, q"), is a ([k], dn[k]) -measurable field of energy machineries

of type F.

Definition 6. The fields of energy machineries of the type given in Lemma
6 are -called (F, [k], T)-fields of energy machineries . When the codimension of
F is 1, they are called maximal (F, [k], r)-fields .

5. (T, x, F, A, de)-Energy Structures

Definition 7 . Let X be endowed with the Riemannian structure T, let h
be a non zero smooth subbundle of TX, let F be a smooth subbundle of h,
and let (A, de) be a standard Borel measure space. A (T, 7-l, F, A, de)-energy
structure on X is a family E = (Ep , E,) of energy machineries such that :

(1) Ep = (X, rdv', U, q) is a complete r-energy machinery,
(2) E, = (Ea),,EA, with eá = (Ya , dv,F, q«), is a (A, de)-measurable field

of energy machineries of type F.
Ep and E, are respectively called the principal part and the comple-

mentary part of E.

Lemma 7. LeíE be a (r, h, F, A, de)-energy structure on X: E _ (Ep,Ec
(Y« , dv« , F, q-)-EA) . The mapping:

(w x w'x) --> (wx wfx)E
= (wx w fx)EP + (wy +wYlEa~l«)
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is a positive definite inner product on D(T*X)x .

Proof.. Let Ep = (X, rdv7 , 7-L, q) be the principal part of E ; from Lemma 1
it follows that :

(w?i w~~l)

	

(wH w '4l)Ev = IX q*(wx(x),w"(x))r(x)dvr(x)

is a positive definite inner product on D(TX )F . Moreover, for all w in D(T*X),
lince F C q-l, the restriction of w'< to F is exactly WF ; it follows from Definition
4 that (wX(n),c(n)) -a JnlwY Wf ),.d«a) is a positive definite inner prod-

uct on (TX)X(A) 1 from which it follows that : (wx, w'~) -> Jn(Yw,wy )Ea d£(a)
is a positive inner product on the space of 1-forms D(T*X)x. (

	

,

	

)E is then
the sum of a positive definite inner product and of a positive inner product,
hence is a positive definite inner product on D(T*X)7í .
Remark : When E = (Ep , E,) is a (T, ií, (0)A, &)-energy structure, then

( , )E = ( , )E, . This fact allows to identify a (A,de)-measurable field
of energy machineries of type (0) with an object that we shall call the vacuum
evergy machinery and that we shall denote 0. It follows that energy struc-
tures of the form E = (Ep , 0) will be identified with the complete r-energy
machineries : E=Ep = (X, rdvr,

Deflnition 8.
(1) The energy structures of the form : E = (X, rdvr, 7-l, q) are called the

simple r-energy structures .
(2) Among the simple r--energy structures the ones of the form E = (X, rdvr,

TX, q) are called the principal r-energy structures .
(3) Among the principal T'-energy structures thé ones of the form E _

(X, rdv', TX, qT) are called the basic T-energy structures .
(4) The energy structures of the form E = (Ep , E,) with Ep a basic T--

energy structure, and with E, a (F, [k], T')-field of energy machineries are called
(T, F, [k], ,r')-energy structures ; if moreover the codimension of F is 1, E is
called a maximal (r, F, [k], r')-energy structure .
As a corollary of Lemma 7 one gets :

Lemma 8. Let E = (Ep , E,,) be an energy structure whose principal part Ep
is a principal r-energy structure; ( , )E is a positive definite inner product
on D(T*X) .

6 . The Orthogonal Representation VE of a Gauge Group

a) Let X be a smooth connected Riemannian manifold and let G be a com-
pact semisimple Lie group with Lie algebra g endowed with its canonical scalar
product <

	

-

	

> given by the opposite of its Killing form (which is invariant
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by the adjoint representation Ad of G into g) . In accordance with the practice
in quantum field and gauge field theories the nuclear Lie group D(X, G) of all
the G-valued compactly supported smooth mappings en X will be called a
gauge group (see e.g . [2]) ; its Lie algebra is the space D(X, g) of g-valued com-
pactly supported smooth mappings on X . For any subspace V of g, D(X, V )
will be the nuclear space of V-valued compactly supported smooth mappings
on X, and DI (X, V) will be the nuclear space of V-valued compactly supported
smooth 1-forms on X . If F is a smooth subbundle of TX, Dl (X, V)' will be
the space of restrictions w' to F of the elements w of D1(X, V) .
We have of course the following equalities :

b) Let E be a (7-,9-(,F, A, M)-energy structure on X and let V 7~ (0) be
a subspace of g .

	

It follows from Lemma 7 that we can endow DI (X, V) , í
with a positive definite inner product < ,

	

> E such that for all elements
w'í ® u, w'í ® u' in the space D(TX )1~ ® V = Di (X, V)' :

For all g in D(X, G) let us consider the operator VE(p) on the real prehilber-
tian space :

(D1(X,g)"', < ,

	

>E)

such that, for all wx in Dl (X, g)<, V E(g)WIi is the 1-form :

D 1(X,V) = D(T*X) ®V
Dl(X, V )F= D(T*X) F® V } .

< ww ® u, w'x ® u r >E= (w9t wfH)E. < u, U ' > .

x -i (V E(g)wx)(x) = Adg(x) - wx(x) .

As G acts unitarily on g (with respect to <

	

,

	

>) by its adjoint represen-
tation Ad, it follows that :

Lemma 9. Le¡ E be a (T, 7-L, F, A, df2)-energy structure on X; the assign-
ment g -> VE(g) is an orthogonal representation of D(X, G) finto (D1 (X, g)x ,
< , >E) . Of course the continuity of Ad on G implies the continuity of VE
on D(X, G) ; consequently we can extend VE in the following two ways:

i) Firstly, we extend VE into a continuous unitary representation of D(X, G)
into the complex Hilbert space h'(g) generated by D1(X,g) lí with respect to
< , >E;

ii) Secondly, we extend VE by transposiiion into a continuous representation
of D(X, G) finto the dual space Di (X, g)H of the nuclear space Di (X, g),í
< VE(gg,w111 >=< X,VE(g -1 )wx >, for'all1 in D(X,,G), allX in Di (X, g)",
and all wx in D1 (X, g)w .
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These extensions remain denoted by V E .

c) Let us consider now the so-called Maurer-Cartan cocycle b : D(X, G) -+

Dl (X, g), given for all g in D(X, G) by :

(10)

	

b(g) = dg - g-1
It is well-known that for each x in X and all g, g' in D(X, G) one has :

(11)

	

b(gg')(x) = b(g)(x) + Adg(x) - b(g')(x) .

Let E be a (T, 7-(, F, A, dQ)-energy structure on X, and let bx : D(X, G) ->

Dl (X,g)x the mapping g --> b'(g) _ (b(g))` . From the definition of VE and
from (11) it follows that for all g, g' in D(X, G) :

(12)

	

b"(gg' ) = b H(g) +VE(g)0(g') .

Let (gp)p be a sequence in D(X, G) and let g be in D(X, G) such that
lim gp = g with respect to the Schwartz topology of the nuclear Lie group

p-~-r 00

D(X, G) ; the sequence (dgp)p converges, with respect to the Schwartz topology,
to the corresponding differential mapping dg of g, and then, with respect to
the Schwartz topology of Dl (X*, g) *7í = D(TX)< ® g,

	

lim bw(gp) = b <(Y) .
p-'+-

It follows that 0 is a continuous 1-cocycle of D(X,G) with respect to VE .
Moreover, bl< cannot be a 1-coboundary ; for all g in D(X, G), b' (g) depends on
the first derivative of g, while, for any element wx of h'(g), the corresponding
1--coboundary VE(g)wx -wx depends only on g ; this argument of order in the
sense of [10] proves that blí cannot be a 1-coboundary, and therefore we have :

Lemma 10. Leí E be a (T, 7-l, F, A, d2)-energy structure on X, and leí G be a
compact semisimple Lie group with Lie algebra g . bx is a continuos non trivial
1--cocycle of D(X,G) wiih respect to the continuous unitary representation VE .

7. The (T, U, F, A, dB)-Energy Representations of D(X, G)

a) Let D(X, G) be a gauge group, and let E be a (T, 7-L, F, A, M)-energy
structure on X; we shall denote by ShE(g) the symmetric Hilbert space based
on the complex Hilbert space h E(g) generated by Dl(X, g)í with respect to <

> E . Taking into account the Lemma 10, the general procedure described
in [6] yields a unitary representation UE of type (S) of D(X, G) into ShE(g)
such that, on the total set EXP(hE(g», for all g in D(X,G), and for all w'H
in hE(g) (the notations being the ones used in [16]) :

(13)

	

UE (g) EXPww = exp
{_

1
2 110(y)IJ É- < VE'(g)w, b~`(g>

>EJ
EXP(VE (y) + b"' (g» .

One easily sees that such a representation is of order 1 and its support is the
whole manifold X. If follow that the following theorem holds :
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Theorem 1 . To each ( ,r, ?í, F, A, d2)-energy structure E on the manifold X
there is a continuous unitary representation UE , given by (13), of the gauge
group D(X, G), with support X and orden 1 . The corresponding spherical func-
tion cOE : y __+< UE(g)EXPO,EXPO > with respect to the vacuum vector
EXPO is given by WE(y) = exp {-á Jjbx(y)j 12 } .

Definition 9: Let E be a

	

F, A, dQ)-energy structure on X ; the corre-
sponding representation UE of D(X, G) is called a (T, h, F, A, d2)-energy rep-
resentation .

b) Historical Note. The first energy representation UE was given by
R. Ismagilov in [7], with X an open subset of R', G = SU(2), and E =
(X, dx, X x IRA, qo ), where dx is the Lebesgue measure on X, qo being tlie
canonical Euclidean structure on R' . A series of papers of A.M . Versliik, I.M .
Gelfand and M .I . Graev ([16], [17], [18]) followed ; this first work gave, for
any gauge group D(X, G), the energy representations UE, E being a simple r-
energy structure of the type (X, dv', 7-L, qT1

) . In [1] S . Albeverio and R. Hoegli-
Krohn gave another realization of the same UE ; it is in this paper that, for the
first time, appeared the expression energy representation, which comes from the
fact that the corresponding spherical function WE can be looked at as a kind of
integral of energy. Then S . Albeverio, R . Hoegh-Krohn and D. Testard studied
energy representations U E with E = (X, pdvt,TX,q,), p in cl(x) fl C°°(X),
in [2] . In the case of a manifold X with Euler number e(X) = 0 J . Marion,
in [9], gave energy representations UE with E = (X, rdv', F(J), qf) of tlie type
described in Lemma 3, with r in C+1 (X) . A survey of there various U E , E being
always a simple T-energy machinery is given in [111 ; in this paper was raised
the question of the existence of other types of energy representations ; a partial
answer to this question is given in the present work .

c) Let us give another useful and convenient realization of the representation
UE. The spherical function cOE of UE is a continuous function of definite positive
type on D(X, G) ; it induces a positive definite function ~E on the real nuclear
space Di (X, g)x, given by:

(14)

	

(PE(W'~í ) = e 2111-'11",F EDi(X,g)~ .

Now let us recall that Di (X, g)' is a real nuclear space, inductive limit of
Fréchet spaces ; it follows then from the Bochner-Minloss theorem that there
exists a unique gaussian measure UE on the dual space Di (X, g)x whose Fourier
transfom PE is given by:

(15)

	

l~E(W~) _
~E(w]t)

= e'-2P'H11E, wF E Di (X,g)x .

The theorem 7.9 of [6] allows then the realization of UE in the Hilbert space
L2(Di (X; 9)x ; ME); in this picture UE is given by:

( 16)

	

uE(y)j(x) = exp{i < bx(y),X >} . j(VE(y-1)X),



ENERGY MACHINERIES ON A MANIFOLD

	

1 5

VE being here the representation of D(X,G) extended by transposition into
Dl (X, G)x (see § III .6,b), for all g in D(X, G), (P in L2(Di (X, 9)lí ; ME), X in

Di (X, g)x .
d) The main question is now to recognize what are the energy representa~

tions which are irreducible (if so, their classe are G-distributions of order 1
and with support X), or, at least, what are the ones which are cyclic . The
following Lmma shows that if suffices to know the answer in the case of energy
representations UE, E being a (T, TX, F, A, d~)-energy structure, Le . of the
form E _ (Ep, E,) with Ep a principal r-energy structure (X, rdvr, TX, q) .

Let E - ((X, rdvr, 7-d, q), E,) be a (-T, 7-L, F, A, dB)-energy structure with prin-
cipal part Ep = (X, rdvr, 7í, q), H :~ TX, let qT be the restriction of the Eu-
clidean structure qr coming from r to the orthogonal subbundle I-í1 of 7í with
respect to this Riemannian structure . Er = (X, rdv", 7-l1 , qr) is an energy
machinery ; moreover, let q ® qr be the Euclidean structure on TX = 7H ® 7í'

such that q ® qt restricted to 7{ equals q, and such that q ® qT restricted to
7H1 equals qT . From Lemma 4 it follows that :

EP * Er = (X, rdvr, TX, q ®pt )

is a regular complete r-energy machinery. As an obvious consequence it follows
that E * E' = (EP * Er, E,) is a (-r,TX, F, A, de)-energy structure on X. In
accordance with the definition given in Lemma 4, E * Er will be called the
T-regularization of E .

Lemma 11 . Le¡ E be a (-r, U, F, A, dP)-energy structure with 7í :~ TX, and

let E * Er be its r-regularization .
UE*Er is unitarily equivalent to UE ® LJET .

Proof.. In the proof of Lemma 4 the orthogonal decomposition with respect
to T was shown

D(T*X) = D(T*X)"< ® D(T*X)Hl .

This orthogonal decomposition remains true with D(T*X) endowed with the
scalar product (

	

,

	

)E*Er which is the sum of the scalar product (

	

,

	

)E on
D(T*X) x and of the scalar product (

	

,

	

) E r on D(T*X)x
l

.
It follows the orthogonal decomposition :

(17)

	

Di(X, g) = Di (X, g) 7< ED Di (X, g)
71-,

with respect to the scalar product <

	

,

	

, >E*Er which is the sum of
<

	

,

	

>E on Dl(X,g)x and of <

	

,

	

>E * on DI (X,g)x1 .
Let ME, ME- and ME- E, be the Gaussian measures on respectively DÍ(X, g)x,

Di (X, g)1< -L and Di (X, g) with corresponding Fourier transforms given by :

F~E(w1) =exp -21Iwx 11É} wx in DI(X,g)W ,

PEr(w'1 ) = exp {-211wx ÉT} ,
w11l in D,(X,g)xl ,

PE " Er(w) = exp { -2I
1
w IlÉ" E'} > w in D(X,g) .
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From 1IW11E-Er = IIW' 1¡E + 1jw'111E', it follows that :

and then, taking account (17), one gets :

L2 (Di(X,g) ;PE" Er) = L2(Di(X,g)x ;pe) ® L2(i(X,g)"1 ;PET)-

It follows then from (16) that LJE*E' = LJE ® LJE* .

Corollary. If LJ E*E' ie irreducible, LJE is irreducible, too.

8. The Unitary Representation HE and its Spectral Measure

Let E be a (T, TX, F, A, M)-energy structure on X, let LJE be the corre-
sponding energy representation of the gauge group D(X, G), and let A be a
Cartan subalgebra of g ; the orthogonal complement of A in g with respect to
the canonical scalar product < , > on g will be denoted by A1, and the
maximal torus exp(A) in G will be denoted by T .
We introduce here the spaces D1 (X,A) = D(T*X) ® A, Di (X, A1 ) _

D(T*X) ® .A1 ; from the orthogonal sum:

g = A ® A1 (with respect to <

it follows the orthogonal decomposition with respect to <

	

,

	

>E :

( 19 )

	

Dl(X, g) =Dl (X, A) ® D, (X,Al).

Of course the Lie algebra of the abelian nuclear Lie group D(X,T) is the
abelian Lie algebra D(X, A) . The energy representation UE defines a unitary
representation LJÁ of the abelian nuclear group D(X, A) into the Hilbert space
LZ (D1'(X, g) ; ME) given by :

(20)

	

HE(u) = LJE(eXp U), u E D(X, A) .

The present section is denoted to the study of H.Á.
a) Let d : D(X, A) -> Dl (X,A) be the exterior derivative, given by u --> du ; d

is continuous with respect to the Schwartz topologies of D(X, A) and Dl (X, A)
and ker d, the space of constant functions in D(X, A) is a closed subspace
which equals (0) if X is a non compact manifold ; we shall denote by D(X, A)
the space D(X, A)/ker d, and for any element u in D(X, A) by ú its class in
D(X, A), D(X, A) is a nuclear space and d : D(X, A) -> DI (X, A) such that
d(u) = du is a one-to-one continuous linear mapping which allows to endow
D(X, A) with the positive definite inner product E given by :

(21)

	

E(ú, v) =< dú, dv >E=< du, dv >E .

It follows that the following lemma holds :
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Lemma 12. d is an isometry with Glose range of the real prehilbertian space
(D(X,,.4),E) into ¡he prehilbertian space (D(X, ..4),<

	

,

	

>E).

Let ~E be the Gaussian measure on the dual space D'(X, A) with Fourier
transformation FUE : ú ~E( ) = exp {-1É(ú,íí)}, let PE,A and PE,.A1 be

the Gaussian measures on the dual spaces Di (X, A) and Di (X,A1) given by

úE,A

	

: w --' PE,A(w)

	

= exp{-2 < w,w >E} , w E Dj (X, A),

f~E,A1 : w --U PE,Al(w)= exp {-i < w,w >E} , w E Dl(X, ..4l) .

One gets :

Lemma 13. For all ú in D(X, A) le¡ w(ú) be the operator on L2 (Di(X, A) ;

PE,A) given by :
w(u)1P(X) = exp{i < X, du >} -¿(X) .

(i) w : ú -+ w(ú) is a continuous unitary representation of D(X, A) into

L2 (Di (X, A) ; PE,.A)-
(ii)

	

The spectral measure of w is equivalen¡ to ~E .

Prooi
(i) follows from an easy verification .
(ii) : Let d* be the transposed mapping of d; from Lemma 12 d* maps

Di (X, A) onto (D'(X, A) . As these two spaces are standard Borel spaces there
exists a Borel section s of d* such that the mapping :

s : X

	

> (d*X, sd*X - X)
is an isomorphism of Borel spaces from Di (X, A) onto D'(X, A) x kerd*, from
which it follows that s(pE,Á) = d*[tE, ..4 x A, A being some Borel measure on
kerd* . One gets then an isomorphism of Hilbert spaces :

L2(Di(X, A); PE,A) = L2(D'(X, A) ; ~E) ® L2 (kerd* ; A),

such that for all it in D(X, A), w(ú) is transformed into the operator v(ú)
~, w' being the unitary representation of D(X, A) into L2 (D'(X, A) ; d*ME,A)
given by :

w ' (u)0(X) = exp{i < X, dú >}O(X),

0 in L2 (D'(X, A) ; d*ME .A), X E D'(X, A) .

It follows that the spectral measure of w is equivalent to d*PE,A ; as all the
spaces interfering here are nuclear spaces, owing to the uniqueness of gaussian
measures given by their Fourier transforms, it follows that d*pE,A equals ~E.
So, the spectral measure of -c"v is (equivalent to) PE.

b) Let OE be the unitary representation of D(X, A) into L2(Di(X, AL) ;
PE,A1) given by :

(22)

	

DE(u)~¿(X) = .¿(VE(expu)X),
with -¿ in L2(Di(X,Al);~¿E,AL), X in Di (X, A1) .
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Lemma 14. The spectral measure vE of OE is equivalent to the infinite
direct sum:

® (rdvT ® N)®k,
k>0

N being the counting measure on the set 0 of roots of ¡he Cartan pair (g, A).

Proof. We shall use the Fock realization of L2 (Di (X,A1); PE .q1) : let h'(A1)
be the complex Hilbert space spanned by Dl (X,A1)with respect to < , >E ;
from [6], theorem 7.2, LZ (Di(X, A1); PE .q1) is isomorphic to the Fock space

ShE (~41 ) = F ®SPhE(A1 ),P>0

SPhE(A-L ) being the p - th symmetric tensor power of hE(A1). Let 0 be the
set of roots of g with respect to the Cartan subalgebra A, and for a in A, let
ga be the subspace of g with weight a ; one gets .

A1= ® ga
aEA

from which it follows that hE(.f11) = ® hE(ga), hE(ga) being the complex
aE0

Hilbert space spanned by D1(X,ga) with respect to <

	

,

	

>E. It follows that
ShE( ..41) =

	

® ShE(g cv ) . For all w in hE(ga), for all u in D(X, A) one has:
a

VE(expu)w : x -> e'a(- lxllw(x), x E X.

Then the restriction of OE on SPhE(A1) (which equals

	

® SPhE(ga» acts
aEA

Di E ak(U(tk»
by multiplication by elements of the form e k=1

	

, with a i , . . . , ap in 0
and XI . . . . , xP in X. It follows that the spectral measure vE of OE is supported
by the subset I',4 of D'(X,A) consisting of functionals of the form :

k=p
x : u -r X(u) = kE CIk(u(xk)),

for all non negative integer p, the ak being in A and the xk being in X.
We can then identify P,4 with U (X x A)P ., and vE with the Poisson

P>0
measure whose restriction to (X x A)y n, is given by (rdvT ®n)®P, N being the
counting measure on A, rdvT the measure on X given by the principal part of
E (see e.g . [6], § 3) .

c) We come back now to the representation HE of D(X, A) into L'(D' (X, .,4) ;.4

	

1
ME) such that, for all u in D(X, A) :

HA(u) = L1E(expu).
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From (18) it follows that we have the isomorphism :

L2(Di(X, g) ; PE) = L2 (Dl(X, A); PE,A) ® L2(D1'(X,Ai ) ; PE,A1 ) ;

so, if u is in D(X, A), and ~¿ = <1>1 0~D2 in the above space, from the definitions
of LJE , w and OE , and the fact that for all u in D(X, A), b(exp u) = du, it
follows that :

ná(u)(~1 0'¿2) _ (io(út)~p1) ® (OE(u)$2),

	

Le . :
(23)

	

nÁ(u) = w(ia) ®OE(u).

From Lemma 13 and Lemma 14, one gets then :

Theorem 2. Let E be a (T, TX, F, A, dl?)-energy structure on the manifold

X, let LJ E the corresponding energy representation of ¡he gauge group D(X, G),
let A be a Carian subalgebra of g, and let HA be the unitary representation of

the abelian Lie group D(X, A) such that for all u in D(X, A):

HE(U) = LJE(expu) .

The spectral measure of HE is equivalen¡ to the convolution ~E * VE, FUE
being the Caussian measure on D'(X, A) with Fourier transform ú -+ ~E(ú) _
exp

	

1 1 Iduj 12 } and with vE - ® (rdvr ® N)OP .
P>o

d) We want to give now a direct integral decomposition of HE .
Let us recall that FA is the subset of D'(X, A) of functionals of the form

X =

	

E

	

ó=k, the ak being in A, the xk in X, and the functional óik being
kEI finite

given by óik (u) = ak(u(xk», u in D(X, A) (see part b) above) .
For each X in FA, let yX be the character of D(X, A) such that -yx(u) =

exp(i < X; u >), u E D(X,4), and let wX =w ® yX the unitary representation
of D(X, A), w being the representation defined in Lemma 13 . wX can be written
also wX = w ® yX, w being the unitary representation of D(X, A) defined by :

(24)

	

w(u) = w(ú), u E D(X, A) .

It follows that w and w have the same spectral measure, which is equivalent
to PE by Lemma 13, and then the spectral measure fiÉ of wX is the convolution
of the spectral measure fiE of w by the spectral measure of the character yX .
More precisely :

Lemma 15.
(i) One has the direct integral decomposition:

IIÁ -_

	

YVXdvE(X) .
r,,



20

	

J. MARION

Proof.

equiv¢lent to the tr¢ns1¢ted of PE by -X, i .e . :

hE - PE(. , - X)-

(i) From Lemma 14 one gets : OE = f® yxdVE(X) ; it follows then from (23)
that :

IIÁ - w ®OE = w
®J A

dvE(X) = frA(t-v 0-jx)dv'(X)

_ wxdvE(X) .
rA

(ii) follows from the fact that the spectral ineasure of wx is the convolution
of the spectral measure PE of tiu by the spectral measure of the character yx
which is given by X, and them: fiÉ = PE(', -X) .
Remarks :
1) Let U be the algebra of measurable subsets of D'(X,,4) ; the mapping

(X, B) E I' x Lf -> fiÉ(X, B) is measurable because ~x (X, B) = PE(B - X) .
2) The results of Lemmas 13, 14, 15 and of Theorem 2 are proved in [17] and

[2] in the case of a non compact X and of E of the form (X, rdv r, TX, qr) . The
proofs given here in the case of a general (-r, TX, F, A, dQ)-energy structure are
of the same type ; moreover the use of the space D(X, A) and for d, instead of
D(X, A) and d, allows to include the case X is compact.

9. A Suflicient Condition for the Irreducibility of LjE

The goal of this section is to prove that under some conditions about uniform
disjointness of the Gaussian measures pÉ, LjE is irreducible .

Definition 10: Let E be a (T, TX, F, A, df)-energy structure on X, and lét
D(X, G) be a gauge group . We shall say that LjE has the I'-property if there
exists a Cartan subalgebra A of g such that for any pair (F1, F2) of subsets
of I'A satisfying vE(P1) > 0, VE(I'2) > 0, VE(I'1 n I' 2 ) = 0, the measures
fF, PE dvE(X) and f®PE dVE(X) are singular .
Remarks :
1) Two Cartan subalgebras A and A' of g give isomorphic Borel measure

spaces (]'A, VE) and (F.4 , , vE) ; it follows that LjE has the I'-property with
respect to some Cartan subalgebra if and only if UE has the I'-property with
respect to all Cartan subalgebras .

2) As ~É is equivalent to the spectral measure of wx, the I'-property is equiv-
alent to the fact that, for rl, 12 as aboye, f® ivx dV E(X) and f® zwx dVE (X)
contain no equivalent subrepresentations, Le . are disjoints .

3) For all X in I'A let ce, be the spectral measure of the character yx , and
let rl, I' 2 be as in Definition 10, let AZ be the measure f®ax dvE(X), i = l, 2 ;
the property I'-property says that PE * A l and PE * A2 are disjoints .
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Lemma 16. Leí E be a (T, TX, F, A, M)-energy síruciure, leí D(X, G) be a
gauge group, and leí us suppose that UE has the r-property . The von Neumann
algebra generated by HE contains all operators of the form 1 ® OE(u) and

14
W(u) ® 1, u in D(X, A) .

Proof..- Let us recall that W(u) = w(ú), ú E D(X, A), and let us consider
the family (wx)XEr, of unitary representations of D(X, .A) given in Lemma 15 .
One has IhE = f® wX dvE(X), and then HE is equivalent to a representation
of D(X, A) into a direct integral of Hilbert spaces f® HX dvE(X) . Let S be an
operator commuting with the representation IIE, and let r' be a measurable
subset of I' with v E(r') > 0, VE(r-r') > 0 ; from the r-property it follows that

f® UXdvE(X) and its orthogonal complement f®r , UX dv'(X) are such that
the restrictions of ir.E4 to these two spaces contain no equivalent subrepresenta-
tions, and fr , UX dvE(X) is invariant by S . It follows that S is decomposable
into a direct integral with respect to vE .

Let NE be the von Neumann algebra generated by IIE . The operators
(1 ® OE)(u) and (W ® 1)(u) act on each Hilbert space UX by multiplication
by bounded vE-measurable functions ; it follows that they commute with all
decomposable operators, in particular with operators S which commute with
HE4 ; these operators are then in the bicommutant of IIEA, and then in NE,

	

, by
the von Neumann's theorem .

As a corollary one gets :

Corollary . NE contains all operators of multiplication by e'<.,du >E, u E
D(X, .,4) .
We come now to the main result about irreducibility .

Theorem 3. Leí D(X, G) be a gauge group, and le¡ E be a (T, TX, F, A, d'O)-
energy siructure. If UE has the I'-property, UE is irreducible .

Proof.. We shall use the realization of UE in the space L2 (Di(X, g) ; UE) given
in (16), Section 7(c) .

a) Let us prove, at first, that the vacuum vector 1 : X --> 1(X) = 1HX E
D,(X,g), is cyclic for UE . Let LE be the von Neumann algebra generated
by UE ; as HEE(u) = UE(exp u), u E D(X, A), the bicommutant of II,E4 is con-
tained in the bicommutant of UE ; from the corollary of Lemma 16, it follows
that if UE has the r-property, LE contains the operators of multiplication by
exp(i < ., du >), u E D(X, A), for any Cartan subalgebra A of g . As g is the
union of its Cartan subalgebras, it follows that L E contains all the operators
of multiplication by exp(i < -, du >) for all u in D(X, g), and then, all the
operators of the form :

nE (g) = UE(g)

	

e`< .,du> . UE(g-1)
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with g in D(X, G) and u in D(X, g), Le . all the operators of multiplication by :

e`<.,VE(g)du>g E D(X, G), u E D(X, 9)-

It follows that LE contains all the operators of multiplication by functions
of the form : k -p

á< , E vE (gk)duk>e k-,

with g l , . . . , gr in D(X, G) and u,, . . . . up in D(X, g) .

By the lemma 3.5 of [17] one knows that the set {VE(g)du/g E D(X, G), u E
D(X, g)} is total in Dl(X, g) ; it follows that the functions :

X

	

nu(g)(X), (gu) E D(X, G) x D(X, g)

constitute a total set in LZ(D'1(X,g);ME) .

As UE(g)1 = e'<',6(s)>, it follows that the smallest closed subspace of
LZ(Dí(X,g);ME) containing the functions UE(g)1, g E D(X,G), contains the
space spanned by the functions nú(g), and then, this space is exactly L'(D', (X, g) ;

ME); the cyclicity of 1 is then proved .
b) It remains now to prove the irreducibility of the cyclic component of

U E , U E having the r-property.
Let Q be an operator belonging to the commutant of U E(D(X, G)) ; Q com-

mutes with IIE for any Cartan subalgebra A of g, and then, as it has been
seen in the proof of Lemma 16, Q is decomposable with respect to the integral
decomposition of IIÁ given in Lemma 15, for any Cartan subalgebra A of g .
The projection of L2 (Di(X,g);ME) onto LZ(D',(X,A) ;ME,,a) being diagonaliz-
able, L'(DÍ(X,-A);ME,A) is invariant by Q; it follows that Q1 belongs to all
the spaces L2 (Di(X, .A) ;ME,A) for all Cartan subalgebras A. Owing to the
semisimplicity of g, the intersection of all the spaces L2(D;(X,A) ; pE,A), A
running in the set of Cartan subalgebras of g, equals C1 ; it follows that Q is a
scalar operator ; as 1 is a cyclic vector for UE , it follows that UE is irreducible .

Note : The Theorem 3 is, up to now, the only way known in order to prove
the possible irreducibility of the energy representations, and is substantially
the method given in [171, [2] in order to prove the irreducibility of UE with
E = (X, rdv r, TX, qr) when dim(X) > 3 ; in the case E = (X, rdv', F(J), q(j»
the irreducibility of UE when dim(X) > 3 was also.proved in [9] in the same way.
We do not know whether the I'-property of UE is equivalent to its irreducibility.
Acknowledgements . This work has to be considered as a part of a common

work with Professors S . Albeverio, R. H0egh-Krohn and D . Testard who have
given to me a great stimulus through many discussions . It is a pleasure for me
to thank Professor L . Streit for his kind invitation and his warm hospitality at
the Zentrum für interdisziplinare Forschung, Universitát Bielefeld, where this
work was greatly facilitated .



ENERGY MACHINERIES ON A MANIFOLD

	

23

References

1 .

	

S . ALBEVERIO, R . HDEGH-KROHN, The energy representation of Sobolev
Lie groups, Comp . Math . 36 (1978), 37-52 .

2 .

	

S . ALBEVERIO, R. HDEGH-KROHN, D . TESTARD, Irreducibility and re-
ducibility of the energy representation of the group of mappings of a Rie-
mannian manifold into a compact semisimple Lie group, J. Funci. Anal.
41, 3 (1981), 378-396 .

3 .

	

S. ALBEVERIO, R. HDEGH-KROHN, D. TESTARD, Factoriality of rep-
resentations of the group of paths on SU(n), Preprint ZiF 9, Bielefeld
University (1984) .

4 .

	

S. ALBEVERIO, R. HDEGH-KROHN, D . TESTARD, A .M . VERSHIK, Fac-
torial representations of path groups, J. Funct. Anal. 51 (1983), 115-131 .

5 .

	

A. CONNES, A survey of foliations and operator algebra in operators, alge-
bras and applications, Proc . Symp . in Math . A.M.S 38, 1 (1982), 521-628 .

6 .

	

A. GUICHARDET, "Symmetric Hilbert spaces and related topice," Lect .
Notes in Math. 261, Springer-Verlag, 1972 .

7 .

	

R. ISMAGILOV, On unitary representations of the group Co(X, G), G =
SU(2), Mat. Sb . (N.S.) 100, 2 (1976), 117-131 [Russian] .

8 .

	

R. ISMAGILOV, Representations of the group of smooth mappings of a
segment into a compact Lie group, Funk. Anal. Ego. Pril . 15, 2 (1981),
73-74 [Russian] .

9 .

	

J. MARION, Generalizad energy representations for current groups, J.
Funct. Anal. 54, 1 (1983), 1-17 .

10 .

	

J.MARION, G-distributions et G-integrales multiplicatives sur une variété,
Anal . Pol. Math . 43 (1983), 71-84 .

11 . J. MARION, A survey on the unitary representations of gauge groups,
and some remaining open questions, Conf. at the ZiF, Bielefeld Univer-
sity (1983), Trends and Developments in the Eighties (to appear) . World
Scientific Publishing Co., Singapore .

12 . J . MILNOR, J . STASHEFF, Characteristic classes, Ann. of Math. Studies
76 . Princ . Univ . Press (1974) .

13 . B . REIHNART, "Differential geometry offoliations," Springer-Verlag, Ber-
lin-Heidelberg-New York-Tokyo, 1983 .

14 .

	

N . STEENROD, "Topology of fiber bundles," Princ . Univer . Press, N.J .,
1951 .

15 . F . TREVES, "Topological vector spaces, distributions and kernels," Aca-
demic Press, New York, 1976 .



24

	

J . MARION

16 . A.M. VERSHIK, I.M . GELFAND, M.I . GRAEV, Representations of the
group Có(X, G), G compact, Dokl. Akad . Nauk . 232 (1977), 745-748
[Russian] .

17 . A .M. VERSHIK, I.M . GELFAND, M.I . GRAEV, Representations of the
group of smooth mappings of a manifold X into a compact Lie group,
Comp. Math . 35 (1977), 299-336 .

18 . A .M. VERSHIK, I.M . GELFAND, M.I . GRAEV, Representations of the
group of functions taking values in a compact Lie group, Comp. Math . 42
(1981), 217-243 .

Département de Mathématique
Faculté des Sciences de Marseille-Luminy, and
Laboratoire associé au C.N.R .S . No . 225
FRANCE

Rebut el 19 de Mai,g de 1988


