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ENERGY MACHINERIES ON A MANIFOLD;
APPLICATION TO THE CONSTRUCTION
OF NEW ENERGY REPRESENTATIONS
OF GAUGE GROUPS*

J. MANION

Abstract

The introduction of the concepts of encrgy machinery and energy struclure
on a manifold makes it possible a large class of energy representations of
gauge groups including, as 2 very particular case, the ones known up to
now. By using an adaptation of methods iniliated by LM. Gelfand, we
provide a sufficient condition for the irreducibility of these representations.

Introduction

a) Let X be a smooth Riemannian manifold, let G be a compact semisimple
Lie group with Lie algebra g, let D{X,G) be the gauge group consisting of all
the G-valued and compactly supported smooth mappings on X, let D (X, g)
be the nuclear space of all the G-valued and compactly supported smooth 1-
forms on X, and let & : D(X,G) — Di(X,y) be the Maurer--Cartan cocycle
g - bg) =dg.g™".

An energy representation of D(X, G) is a unitary representation Il of D{ X, G)
into the symmetric Fock space of some complex Hilbert space (A, || ||} such that:

(1) there exists a continuous morphism & from Di{X,§G) into #;
(2) the spherical function ¢ of Il with respect to the vacuum vector EXPQ
is given by

g — p{g) =< II{g) EXPO,EXPO >=exp {—%“@(b(g)”z} :

*Supported in part by the Centre National de la Recherche Scientifique (C.N.IR.S.) and by
the Deutsche Forschungsgemeinschaft {DFG).
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b) In [11] T have exposed why, from several points of view, such represen-
tations of gauge groups are interesting; at that time only two kinds of energy
representations were known: those constructed by Ismagilov 7] and Gelfand
et al. [16], [17] associated with Riemannian structures on X, and the ones
constructed in [9] which are associated to non vanishing vector fields on X (for
more details, sce the Historical Note in § 7).

c} The present paper tries to bring a substantial answer (although incom-
plete) to the open questions exposed in [11]. More precisely, we introduce the
concepts of energy machinery and of measurable field of such objects, which
allow to endow some spaces related to D(X, g} with D(X, G)-invariant Eu-
clidean structures, namely the energy structures. Then, the Maurer-Cartan
cocycle b and the method exposed in [8], [7], [17] allow to associate to each
energy structurc an energy representation of D(X, @) (Theorem 1).

d) The last part of the paper (§§ 7, 8, 9) is devoted to extend the papers 16},
[17], [18] and [2}in arder to get a sufficient condition for the irreducibility of the
energy representations with support X, the so-called I'-praperty, which turns
the irreducibility mifo a result about a kind of strong disjointness of Gaussian

measures closely connected with the restriction of the energy representations
to D(X, T}, where T is some Cartan subgroup of G (Theorem 3).

1. Preliminaries and Notations

a) In all this paper X is a n-dimensional smooth Riemannian manifold;
as usual, TX specifies its tangent bundle, and T*X its contangent bundle;
D(T*X) is the space of real valued and compactly supported smooth 1-forms
on X endowed with the Schwartz topology of compactly supported smooth
sections; 1t Is well-known that D(T*X) is a LF-space, that is to say a real
nuclear space, inductive limit of Fréchet spaces (see e.g. [15]).

b) The set R(X) of Riemannian structures on X is by definition the subset
of C®($2T*X) consisting of sections 7 which induce a positive definite inner
product ¢, on each tangent space T; X, and therefore a volume measure dv™
on X. Let 7 bein R(X) and let » be in the set C1(X) of all the strictly positive
C!—functions on X; an element 7 of X being given, one gets a positive definite
inner product g; , on the cotangent space T} X by

Q:,x(uri ve) = tr(ug, v}, (ug,ve) € (T:XJ21

where u; : R — T, X denotes the adjoint of u, with respect to ¢, .. One gets
also a positive definite inner product ( , )7,7 on the space D{T*X) of all
the compactly supported real smooth 1-forms on X, given by:

(1) (@, ) = /X g% L (w(2),w' (2))r(@)dv" ().
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c) Let F = LEJXFI be a smooth subbundle of TX, and let ¥ be a connected
x
smooth submanifold of X. FY will be the restricted subbundle gyF,;, and

M*(Y) will be the set of strictly positive measures on ¥. An element w in

D(T*X) being given, w? will be the mapping from X into the dual bundle

o= LEJXF; of F, such that for all z in X, wf(z) is the restriction of w(z) to
r

F,, and w{; will be the restriction of w? to the submanifold ¥. An euclidean
structure ¢ on FY is a family ¢ = (¢:)sey such that for all z in Y, ¢, is a scalar
product on Fy; of course, one gets a scalar product ¢ on F}, z € ¥, by:

q:(u:,”:) =tr(ug - ve), (¥z,0z) € FraF7,

where u} denotes the adjoint of 1, with respect to the scalar product g, on F3.

d) Let 7 be an element of R(X), let F be a smooth subbundle of TX, and

let ¥ be a submanifold of X. F1 = tEJXFl where Fi is the orthogonal
k4

r ©
complement of F, with respect to the scalar product g¢,, will be called the
T—orthogonal complement of F, and we have a canonical identification of the
space {w’ /w € D{T*X) with the subspace of D(T*X}):

(2) DT X)F = {w e DT X) /" =0}

From proposition 50.1 of [15] it follows that D(T*X)¥, as subspace of D(T*X),
is a real nuclear space, inductive limit of Fréchet spaces.

D(T*X)¥ will be the space {wf jwF € D(T* X)F}; one has also:

3) DT 2)% = {wf fw € DT X)}.

2. Energy Machineries on the Manifold X

Definition 1. An energy machinery on the manifold X is a quadruplet
e = {Y,dv, F, g) such that:
(1) Y is a connected submanifold of X endowed with a strictly positive
measure du;
(2) F is a smooth subbundle of TX, and ¢ = (¢z)zey is an Euclidean
structure on FY;
(3) for all w,w’ in P{T*X) the mapping:

Z ——t g:(wF(a:),w'F(:c)) , zeY

is di—integrable.
An obvious example of cnergy machinery is the following:

Let 7 be in R{(X), and let p be in CL{X}; it follows from (1) that (X, gdv",
TX,(grz)eex) is an energy machinery. We shall give later on numerous other
examples.
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Lemma 1. Let ¢ = {Y,dv, F,q) be an energy machinery on X.
(i) The mapping: (w§ Wi} = (W W), = Iy a2 (w0’ (2),w'F (2))dv(z) is
¢ posttive definite tnner product on D(T‘X)g;
(i1) the mapping: (w,w'} = {w,w')e = (wg‘:,w’f)s 3 @ positive tnuner product
on TH{T* X},
(iii) the mapping: (wF,w'F) — {(wf wif), is o positive inner product on

D(T*X)F.
Proof: The lemma is an obvious consequence of the above definition. W

3. Complete r—Energy Machineries on X

a} Definition 2. Let 7 be in R{X); the energy machineries of the form
e = (X,rdv", F,q) are called the complete r—energy machineries on X.

From Lemma 1, it follows easily:

Lemma 2. Lete be a compleie r-energy machinery of the formé = (X, rdvT,
TX,q). The mapping:

() = (00 = [ gl @) (@)
b's
13 a positive definite inner product on D{T"X).

Definition 3. The complete 7-energy machineries of the form ¢ = (X, rdv”,
TX,q} are called regular complete 7—energy machineries.

(X,rdv", TX,{gr:)zex) is the basic example of regular complete T—energy
machineries and for a given subbundle F' # (0} of TX, (X, rdv", F,(¢rz)zex)
is a basic example of complete T—energy machineries.

We have to give now other examples.

b) Let us suppose that the Euler number e(X) of X is zero; as it is well-
known (see e.g. [14], § 39.8) we can find an integer &, 1 < £ < n, and a
k—frame:

6 = (511"‘ :Eﬁ:)
of smooth vector fields on X which generates a smooth subbundle:
=k
(4) F(&y = IgXF:(f) with Fo(£) = ie%ﬁ{.-(x);

we endow F(£) with the Euclidean structure ¢ = (g¢);¢x such that:
i=k i=k =k
QE(.glaifi(E), .Elbi&(z}) = ,§la,-b,-;

it follows that, an element 7 of R{(X) and an element 7 of C}.(X) being given,
for all w,w’ in D(T*X) the mapping:
z — (g8)"(w Oz}, W' T8(2))

is rdvT-integrable on X. So:
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Lemma 3. Let v be in R(X), let v be in CL(X), and let us suppose that X
has a k—frame of smooth vector fields £ = (£1,...,€x), k > 1. (X, rdv™, F(£),4%)

is a complete T—energy machinery.

¢) There exists a universal way to get complete T—energy machineries: let
7 be in R(X), let r be in C}(X) and let F # (0) be a smooth subbundie
of TX; k will be the common dimension of the fibers F; of F. Let us con-
sider the corresponding infinite Grassmann manifold Gx(R*), and let v be
universal bundle with base G(R™) (see e.g. [12], § 5.8). The set of contin-
uous bundle morphisms from F into. 4 is not empty ({12}, theorem 5.6}, Let
8 be such a morphism, and for each z in X, let 8, be the corresponding lin-
ear isomorphism from F; onto some k--dimensional subspace of R*,R* being
endowed with its canonical scalar product < , >; one gets a scalar prod-
uct ¢¢ on F, by ¢f(u,v) =< 6.(u)}, 8:(v) >. Let g? be the family (¢?),ex.
From the continuity of 8, it follows that for all w,w’ in D{T* X} the mapping
z = (g (W (=), w'F(2)) is rdvT~integrable on X, and then (X, rdv", F,q) is
a complete T—energy machinery.

d) Let ¢ = (X, rdv", F,g) be a complete 7—energy machinery, and let I} {(X)
be the set of global sections o of class C! of the bundle Hom(F, F), such that,
for all # in X, o(z) is a positive definite operator on F;. Each element o
of TL(X) gives rise to a new scalar product o(g); such that o(q)-(u,v) =
gz(o(2)u, o{x)v). From the continuity of o it follows that (X,rdv", F,o(q})),
with o(q) = {(0(¢): )zex, 1s a complete 7-energy machinery.

e) Let us suppose that dim(X) > 2, let 7 be in R(X), and let F be a proper
smooth subbundle of TX, ie. F# (0)and F £TX, ¢ = (X,rdv", F, ¢fyisa
complete T—energy machinery, where g7 is the Euclidean structure coming from
r and restricted to F. Now let us consider the orthogonal subbundle F*, and
let 7' be another Riemannian structure on X; qf;l will denote the restriction
to FL of the Euclidean structure coming from 7',

One gets a new Euclidean structure g Fr = (g7 yex on TX = F@ FL
such that, for all z in X:

n .r’ 1
(5) a0 P (ug Hul, vy +op) = ¢ (un,ve) + af (uy,vn )

with (ug,v,) in FraF,, and (uy,vl) in FlzFl
From the fact that one has the orthogonal sum:
CD(TX)=D(T"X)" & F(T*X)F"

with respect to ¢, corresponding to the decomposition w — wl 4 wFJ', it
follows that for all pair (w,w’) of elements in D{T* X}, and each z in X one

has:

(@ F7 ) (w(e),w' () = (65w (@), T (2) + (gF ) (@™ (@), ().
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As {X,rdv", F,¢f'} is an energy machinery, the mapping z — (qf:x)*(wp(:c),
w'F(z)) is rdvT-integrable on X; for the same reason, the mapping

T — (qf‘,:)'(wFl(:z),w*FL (z)) is dv” —integrable on X.

As dv” and dv™ are smooth strictly positive measures, there exists a strictly
positive C™—function A on X such that dv™ = Adv™'; it follows that:

z — (qf:;)"(wpl(x),w"pl {z}) is rdv"-integrable on X.

and then
z — {g2F7 Y (w(x),w'(2)) is rdv"—integrable.

From the above study it follows:

Lemma 4. Let F be a proper smooth subbundle of TX, with dim(X} > 2,
and let ¢ = {X,rdv", F, g} be a basic complete T-energy machinery according
to F'. Another Riemannian structure T on X being given, the guadruplet e™ =
(X, rdv", TX, q"F"") is @ regular complete T—energy machinery. &7 will be
called the 7' -regularization of .

Remark: If 7' = 7, ¢"F" = 4 and then 7 is the basic regular complete
7—energy machinery (X, rdv",TX,q,).

4. (A,dfy-Measurable Field of Energy Machineries of Type F

a) By standard Borel measure space (A, d€), we mean here a standard Borel
space A endowed with a positive Borel measure df {of course o—finite).
Deflnition 4. Let {A,df) be a standard Borel measure space, let F be a
smooth subbundle of TX, and for each & In A, let ¢, = (Ya,dvy, F,q.) be an
energy machinery on X. The assignment a — £, will be a (A, df)-measurable
field of energy machineries of type F if:
{1} a # o implies Y, NY,: = ¢;
(2) @ — dv, is a df-integrable field of measures;
(3) for all pair (w,w') of elements in D{T™X) the mapping o — (w{,; ,w;i Yeo
is df-integrable on A;
(4) let X(A) = U Yo; the mapping (w(xy,wifin) = fw,.4, )e.dt(a)
18 a positive definite inner product on D(T"X))F('(A).
Remarks: Let us suppose that A is reduced to 2 single point: A = {a,},
endowed with its cancnical counting measure dn;, and let ¢ = (¥, dv, F,q)

be an energy machinery; the assignment o € A = {a,} - ¢4 = £ is obvi-
cusly a (A, dn;}-measurable field of energy machineries of type F; it follows
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that any energy machinery can be viewed as (J\,df)—measurable field of energy
machineries.

b) Let v be a configuration in X, i.e. a non ernpty locally finite subset of
X; we can find a subset N{v} of the set of strictly positive integers WN*, with

( ). = {i,...,p} if 7 is a finite configuration (this is always the case lf X is
a compact ma.mfoid), and with N{y) = N* if ¥ is countable, such ¢ — z; is
a one—to-one mapping from N{¥) onto 7. N(v) is endowed with its counting
measure dn., and each subset {2;}, ¢ in N(v), with its counting measure di;.

Lemma 5. Let v be & configuration in X, lei p be a stricily posﬁive funciion
on v, and let @ = (giYien(y) be ¢ family of scalar products, such that for all i
in N(7), ¢: i3 & scalar product on T, X.

The assignment i — ¢; = ({z:}, pdiz, TX, ¢i) 18 ¢ (N(v),dn,)-measurable
Ffeld of energy machineries of type TX.

Proof: Let 1 be in N(v);  — ¢}{w(z),w'(2)} is obviously dij-integrable on
{z,}, for all w,w' in D(T"X). ldentifying D(T"X )¢,y with T7 X, it follows
that €; is an energy machinery, the scalar product being given on D{T" X ), 3
by (w(z:),w'(Z:))e; = p(xi)a] (w(z:),w'(2:)), which, for a given pair (w,w') of
compactly supported 1-forms, equals to zero outside a finite subset of N{v}; it
follows that ¢ — (w(&,),w’{%:))e; is dn,-integrable and:

[ @l () = 3 pleai (), (@). @
N{y) = :

¢) In the following example we suppose that dim({X} > 2. Let N* be the set
N* U {oo}; if k is an element of N*, [k] will be the set {1,2,...,k}; of course,
[oo] = W*.

Definition 5. Let F be a smooth subbundle of TX. A family F of connected
submanifolds of X will be said subordinate to F if:

(1) There exists k in N* such that F = (¥i)igq, and for all 7 in [k] the

restricted bundle FY¥ = TY};
(2) YiNY; = ¢ forall 7,7 in [k] such that : # j;
(3} for ariy compact subset K of X there exists a finite subset K of [k] such

that YN K = ¢ for a.ll i in [k]
Remarks:
1} All the submanifolds of a family F subordinate to F have the same di-
mension dim{F).

2} Let F be a smooth subbundle of TX; any finite family of connected
submanifolds of X satisfying properties (1) and {2} of the above definition is
subordinate tc F.
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3) Let F be an integrable smooth subbundle of TX; any almost countable
farnily of leaves of the foliation coming from F (see e.g. [5], [13]) and satisfying
(3) is subordinate to F.

Let F’ = (Yi)ie4) be a family of connecteéd submanifolds of X subordinate to
some subbundle F of TX, and let 7 be a Riemannian structure on X; 7 induces
on each submanifold Y¥;, 7 in [], 2 Riemannian structure 7}, together with a
volume measure dv* and an Euclidean structure q"‘ on TY; it follows that for
all families (p;}ig[x such that p; is in C}(¥7), for all ¢ in [k], the quadruplet
el = (Y;, pidv', F, grij is an energy machinery.

Let dn(y) be the counting measure on [k].

Let w,w’ be in D(T*X); as w and w' are compactly supported (wffi,w’};‘:}sr =
fy‘,(q;é)‘(wF(z), w'F(x))pi(z)dv () is zero except for a finite subset of [k]; it
follows that i — (wf,,wif Jer is dnyy-integrable.

From the above study it follows that Lemma 6 holds:

Lemma 6. Let F be a smooth subbundle of TX, let 7 be ¢ Riemeonnian
structure on X, let F= (Y)igw) be a family of connected submanifolds of X
subordinated to F, where k 13 some element of N*, and let (p;)iqqi be @ family
such that for all i in [k], p; 15 an element of CL(Y;). The assignment i —
el = (Yi, pidv', F, q"'), is a ([k], dny)-measurable field of energy machineries
of type F.

Definition 6. The fields of energy machineries of the type given in Lemma
6 are called (F, k], v)-fields of energy machineries, When the codimension of
Fis 1, they are called maximal {F, [£], r)}fields,

5. (r,H,F, A, dfy-Energy Structures

Definition 7. Let X be endowed with the Riemannian structure 7, let H
be a non zerc smooth subbundle of TX, let -F' be a smooth subbundle of H,
and let (A,dZ) be a standard Borel measure space. A (7,H, F,A,df)-energy
structure on X is a family £ = (E;, E;) of energy machineries such that:

(1} E, = {X,rdv", H,q) is a complete r—energy machinery,

(2) Fe = (€a)aca, With &5 = (Ya,dva, Flqq), is 2 (A, df)-measurable field

of energy machineries of type F.
E, and E, are respectively called the principal part and the comple-
mentary part of E. :

Lemma 7. Let E be o (1, H, F, A, dl)-energy structure on X: E = (B, E. =
(¥a,dve, F,ga)acn). The maepping:

Yo ?

(WH, ™) s @, W M)p = (W ™y ] WF Wk )., db(a)
A
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is a positive definite inner product on D(T*X)M.
Proof: Let E, = (X,rdv",H, ¢} be the principal part of E; from Lemma 1
it follows that:

(w?‘,wm) — (wﬂ,wm)gp = fxq:(w"(z),wm(z))r(x)dvr(z)

is & positive definite Inner product on D{TX Y. Moreover, for all w in D(T*X),
since F C H, the restriction of w™ to F' is exactly w”; it follows from Definition
4 that (w;‘ém),w'){(“} — fn(wi ,wg,i ¢, d0(a) is a positive definite inner prod-
uct on (TX);U\), from which it follows that: (w™,w'™) — fA(}F,-w,w'}i Yo db{}
is a positive inner product on the space of 1-forms D(T*X)H. { , }eisthen
the sum of a positive definite inner product and of a positive inner product,
hence is a positive definite inner product on D{T*X)*.

Remark: When E = (E,,E;) is a (7, H,(0}A, df)-energy structure, then
( , Je={ , )&, This fact allows to identify a (A,d{)-measurable field
of energy machineries of type {0} with an object that we shall call the vacuum
evergy machinery and that we shall denote ¢. It follows that energy struc-
tures of the form E = (F,,¢) will be identified with the complete T—energy
machineries: E = B, = (X, rdv", H,q).

Definition 8.

(1) The energy structures of the form: E = (X,rdv",H,q) are called the
simple r—energy structures.

(2) Among the simple T-energy structures the ones of the form E=(X,rdv",
TX, ¢) are called the principal 7-energy structures.

(3) Among the principal 7'-energy structures the ones of the form E =
(X,rdv™,TX,q") are called the basic 7—energy structures.

{(4) The energy structures of the form E = (Bp, E.) with E, a basic 7
energy structure, and with E, a (F, [k],7")-field of energy machineries are called
(v, F,[k], 7" )-energy structures; if moreover the codimension of Fisl, Fis
called a maximal (7, F, [k}, r')-energy structure.

As a corollary of Lemma 7 one gets:

Lemma 8. Let E = {E,, E.) be an energy structure whose principal part K,
is @ principal T-energy structure; { , )E is a positive definite inner product

on D(T*X).

6. The Orthogonal Representation V* of a Gauge Group

a) Let X be a smooth connected Riemannian manifold and let G be a com-
pact semisimple Lie group with Lie algebra g endowed with its canonical scalar
product < - > given by the opposite of its Killing form (which is invariant
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by the adjoint representation Ad of G into g). In accordance with the practice
in quantum field and gauge field theories the nuclear Lie group D(X, G) of all
the G-valued compactly supported smooth mappings on X will be called a
gauge group (see e.g. [2]); its Lie algebra is the space D{(X, g} of g—valued com-
pactly supported smooth mappings on X. For any subspace V of g, D{X, V)
will be the nuclear space of V-valued compactly supperted smooth mappings
on X, and Dy{X, V) will be the nuclear space of V—valued compactly supported
smooth 1-forms on X. If F is a smooth subbundle of TX, D (X, V) will be
the space of restrictions w® to F of the elements w of D,(X, V).

We have of course the following equalities:

6 Dy(X,V) =D(T*X) @V
(6) DX, V) =D(T*X)F RV }

b) Let E be a (7, M, F, A, dl)-energy structure on X and let V # (0) be
a subspace of g. It follows from Lemma 7 that we can endow D;(X,V)¥

with a positive definite inner product < , >pg such that for all elements
wh @ u, w™ @u' in the space D(TXY @ V = Dy (X, V).

(7) <w?@u, W @u >p= (WM M <y’ >,

For all § in P(X, G) let us consider the operator VZ(F) on the real prehilber-
tian space;

(8) (P](X,g)?{‘ < 7 >E)
such that, for all w™ in D)(X, )", VE(§)w™ is the 1-form:
(9 z — (VF(g™)(z) = Adg(z) -w™().

As G acts unitarily on g (with respect to < , >} by its adjoint represen-
tation Ad, it follows that:

Lemma 9. Let E be a (1, H,F, A, d0)-energy structure on X; the casign-
ment § — VE(G) is an orthogonal representation of D(X,G) into (Dy(X, ¢)¥,
<, >g). Of course the continuily of Ad on G implics the continuity of VE
on D(X,); consequently we can extend VE in the following two ways:

i) Firstly, we eztend V¥ into a continuous unitary representation of DX, G)
into the compler Hilbert space h¥(g) gemerated by Di(X,9)" with respect to
< v .

1) Secondly, we extend VZ by transposition into a continuous representation
of D(X,G) into the dual space Di(X, )" of the nuclear space Dy(X,g)M :
< VE(@E,wM >=< x, VE(G "W >, forall§ in D(X, @), all x in DI(X, g)¥,
and ol ™ in DX, 9)%.
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These extensions remain denoted by VE.

c) Let us consider now the so—called Maurer-Cartan cocycle & : D(X, Gy —

DX, g), given for all § in D(X, G) by:

(10) Hg)=dg g’
It is well-known that for each z in X and all g, §' in D{X, &) one has:
(11) b(gg' ) (z) = 8(g)(z) + Adg{z) - b(g')=)-

Let F be a (7,H,F,A,d{}-energy structure on X, and let DX, G) -
Dy(X,¢)"* the mapping § — bR(g) = (6(g))™. From the definition of VE and
from {11} it follows that for all §, §’ in D(X, G):

(12) b™(3g") = b7 (3) + VE(g™(d").

Let (g,)p be a sequence in D{X,G) and let g be in D(X,G) such that

lirf gy = § with respect to the Schwartz topology of the nuclear Lie group
p—+oo

D(X,G); the sequence (dg, ), converges, with respect to the Schwartz topology,

to the corresponding differential mapping dg of g, and then, with respect to

the Schwartz topology of Dy (X*, ) = D(TX" ® g, lirf b"(g,) = b™{g).
p—ro

It follows that & is a continuous I-cocycle of D{X, G) with respect to Ve
Moreover, b cannot be a 1-coboundary; for all § in D(X, G), b"{g) depends on
the first derivative of §, while, for any element w™ of h®(g}, the corresponding
1-coboundary V(g)w™ —w™ depends only on §; this argument of order in the
sense of [10] proves that 5™ cannot be a 1-coboundary, and therefore we have:

Lermma 10. Let E be a (r, H, F, A, d0)-energy structure on X, and let G be a
compuct semisimple Lie group with Lie algebra g. b is ¢ continueus non irivial
1-cocycle of D(X,G) with respect to the continuous unitary representation VE

7. The (r,H, F,A,d¢)-Energy Representations of D(X,G)

a) Let D(X,G) be a gauge group, and let E be a (r,H, F, A, dl}-energy
structure on X; we shall dencte by ShE(g) the syrametric Hilbert space based
on the complex Hilbert space hE(g) generated by Dy{X, ¢)" with respect to <
,  >g. Taking into account the Lemma 10, the general procedure described
in [6] yields a unitary representation UF of type (§) of D(X,G) into ShE(g)
such that, on the total set EX P(h®(g)}, for all § in D(X,G), and for all w™
in hE(g) (the notations being the ones used in [16]):

(13) UF (9) EXPu = cap { I (@B < V(G 5"(6) >5
EXP(VE(g) +5™(9)).

One easily sees that such a represeniation is of order 1 and its support is the
whole manifold X. If follow that the following theorem holds:
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Theorem 1. To each (7, H, F, A, df)-energy structure E on the menifold X
there is a continuous unitary representation UP, given by (13), of the gauge
group D{X, ), with support X and erder 1. The corresponding sphericel func-
tion wg : § =< UE(GIEXPO,EXPO > with respect to the vacuum vector
EXPQ is given by wg(g) = exp {-2)18™(9)1%}.

Definition 9: Let E be a (7,H, F, A, df)-energy structure on X; the corre-
sponding representation UZ of D(X, G) is called a (7, H, F, A, df)-energy rep-
resentation.

b) Historical Note. The first energy representation UF was given by
R. Ismagilov in [7], with X an open subset of R*, G = SU(2), and E =
(X,dz,X x R",qp), where dz is the Lebesgue measure on X, g being the
canonical Euclidean structure on R”. A series of papers of A. M. Vershik, I.M.
Gelfand and M.I. Graev ([18], [17], [18]) followed; this first work gave, for
any gauge group D{X,G), the energy representations !f | E being a simple 7—
energy structure of the type (X,dv™, H,¢?). In[1] S. Albeverio and R. Hgegh-
Krohn gave another realization of the same U it is in this paper that, for the
first time, appeared the expression energy represeniaiion, which comes from the
fact that the correspending spherical function @£ can be looked at as a kind of
integral of energy. Then 5. Albeverio, R. Hgegh-Krohn and D. Testard studied
energy representations U® with E = (X, pdv™, TX,¢,), p in CL(X) N C®(X),
in [2). In the case of a manifold X with Euler number ¢{X) = 0 J. Marion,
in [9], gave energy representations UF with E = (X,rdu”™, F(£), ¢¢) of the type
described in Lemma 3, with r in C} (X). A survey of these various U¥, E being
always a simple r—energy machinery is given in [11]; in this paper was raised
the question of the existence of other types of energy representations; a partial
answer to this question is given in the present work.

¢) Let us give another useful and convenient realization of the representation
DE. The spherical function ¢ g of UF is a continuous funct.ion of definite positive
type on DX, G) it induces a positive definite function @g on the real nuclear
space D1(X, ¢)", given by:

(14) pp(w™) = e 11" LF € DX, o).

Now let us recall that D;(X, ¢)” is a real nuclear space, inductive limit of
Fréchet spaces; it follows then from the Bochner-Minloss theorem that there
exists a unique gaussian measure p g on the dual space Dj{X, g) whase Fourier
transfom g is given by:

. ~ .
(15) i) = op(w™) = e~ |W™|[E, v € Di(X, g).
3

The theorem 7.9 of [6] allows then the realization of UF in the Hilbert space
LY(DV(X; ¢)™; g); in this picture U is given by:

(16) HE(§)®8(x) = ezp{i < ¥"(7),x >} - S(VE( ")),
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VE being here the representation of D(X,G) extended by transposition mto
DX, ) (see § 111.6b), for all § in D(X,G), € in L(D(X,9)" pE), x in
DX, )™

d)} The main question is now to recognize what are the energy representa-
tions which are irreducible (if so, their classe are G-distributions of order 1
and with support X), or, at least, what are the ones which are cyclic. The
following lemma shows that if suffices to know the answer in the case of energy
representations UE, E being a (7,TX, F| A, df)-energy structure, ie. of the
form E = (E,, E.) with E, a principal 7-energy structure (X,rdv",TX,q).

Let E = ((X,rdv",H,q), E;) bea(r,H, F, A, df)-energy structure with prin-
cipal part B, = (X,rdv",H,q), H # TX, let ¢; be the restriction of the Eu-
clidean structure ¢, coming from 7 to the orthogonal subbundle HL of H with
respect to this Riemannian structure. BT = (X,rdv’,H*, ¢} is an energy
machinery; moreaver, let ¢ @ g+ be the Euclidean structure on TX = H @ Ht
such that g @ ¢ restricted to H equals ¢, and such that ¢ @ g restricted to
HL equals ¢+. From Lemma 4 it follows that:

E,« E" ={(X,rdv", TX g @ pt)
is a regular complete 7-energy machinery. Asan obvious consequence it follows
thet E + ET = (E, » ET E;) is a (r,TX, F, A, d{}~energy structure on X. In
accordance with the definition given in Lemma 4, E * E7 will be called the
r-regularization of E.

Lemma 11. Let E be o {7, H, F, A, df)-energy structure with H # TX, and
let F + ET be its T-requlerizetion.

LUE*E" {5 unitarily equivalent to U puf,

Proof: In the proof of Lemnma 4 the orthogonal decomposition with respect
to T was shown

DT*X) = D(T* X & DT X)"".

This orthogonal decomposition remains true with D(T*X) endowed with the
scalar product { , )}g«gr which is the sum of the scalar product { , Jgon
D(T*X)" and of the scalar product { , )& on D(T‘X)Hl.

It follows the orthogonal decomposition:

(17) Di(X, 9) = Da(X,9)" & Dy (X, )"
with respect to the scalar product < , ,>g.g- Which is the sum of
< , >Eon ’DI(X,Q)H and of < |, >g- on’Dl(X,g)H'L,

Let pg, ppr and pp- g- be the Gaussian measures on respectively D} (X, g)?‘,

P2 (X,gr)"'fL and D} (X, ¢) with correspending Fourier transforms given by:
pp™)  =ep{-3lE} W s DiX.g),
4
ﬁE’(wH )= e:cp{—%”w“”i;,} ) w?{ in Dl()(sg)?.lr )
pgegr(w) =exp{—jlllh-p-} » w  in D(X,g)
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From |Jw||%. g = {lo™||% + ]|wHJ' l{z-, it follows that:
{18) HEET = UE @ UE,
and then, taking account (17), one gets:

1
LYDYUX,g); pe-£r) = LADHX, ) pe) @ L 1( X, 0Y s pmr ).
It follows then from (16) that UE'E" —Eguf . u

Corollary. If UF"E" g irreducible, UF is irreducible, too.

8. The Unitary Representation II£ and its Spectral Measure

Let £ be a (7,7X,F,A,df})-energy structurc on X, let UZ be the corre-
sponding energy representation of the gauge group D{X,G), and let A be a
Cartan subalgebra of g; the orthogonal complement of A in g with respect to
the canonical scalar product < , > on g will be denoted by 4%, and the
maximal torus exp({A) in G will be denoted by T.

We introduce here the spaces Di{X, A} = D(T*X) @ A Dhi(X, A1) =
D(T*X)® At; from the orthogonal sum:

g=A® A" (with respect to < |, )
it follows the orthogonal decomposition with respect to < |, >g:
(19) Di(X,9) = Di(X, A) & D1 (X, AY).

Of course the Lie algebra of the abelian nuclear Lie group D(X,T) is the
abelian Lic algebra D(X,A). The cnergy representation UZ defines a unitary
representation Ufi of the abelian nuclear group D{X, .4) into the Hilbert space
L*(Di(X,g); &) given by:

(20) NE(u) = UP(ep u), u € D(X, A).
The present section is devoted to the study of I15.
a}Let d: D(X, A) — D (X, A) be the exierior derivative, given by u — du; d

is continuous with respect to the Schwartz topologies of (X | A) and D (X, 4)
and kerd, the space of constant functions in (X, A) is a closed subspace

which equals (0} if X is a non compact manifold; we shall denote by f?(X,.A)
the space D(X, A)/ker d, and for any element u in D(X,.4) by ¥ its class in
13(}{ A}, 5{)( A) is a nuclear space and d: f)(X Ay = Dy(X, A) such that
d(u) = du is a one-to-one continuous linear ma.ppmg which allows to endow

@(X A} with the positive definite inner product E given by:

~

(21} E(u #) =< dit, dv >p=< du,dv >5 .

It follows that the following lemma holds:
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Lemma 12. d is an isomeiry with close range of the real prehilbertian space

(D(X, A), B) into the prehilbertian space (D{X, A),< , >E).

Let jir be the Gaussian measure on the dual space D'(X, A} with Fourier
transformation fig @ @ — pg(#) = ezp {—%E‘(&,ﬁ)}, let ug 4 and pg 40 be
the Gaussian measures on the dual spaces D}{X, A) and D}{(X, A"} given by

g4 tw— pgpalw) = ezp{—% < w,w >g} ,we DX, A),
fipariw — ppar(w)=ezp {-i<ww>g} ,weD(X,AL).

One gets:

Lemma 13. For all @ in D(X, A) let &(i) be the operator on L*(Di(X, A);
LE.A) given by |
H@)(0) = expli < x,du >}O(x).
(i} &% : & — W(#) is & continuous unitary representairon of D(X, A) into
LDy (X, A); g, 4):

(ii} The speciral measure of W 13 equivalent fo fg.

Proof:

(i} follows from an easy verification.

(ii): Let d* bhe the transposed mapping of d: from Lemma 12 d* maps
Di(X, A) onto (D'{X, A). As these two spaces are standard Borel spaces there
exists a Borel section s of d* such that the mapping:

5:x — (d*x, sd*x — X}
is an isomorphism of Borel spaces from D}(X, A) onto D'(X, A) X kerd®, from
which it follows that (g 4} = d*pEe 4 X A, X being some Borel measure on
kerd*. One gets then an isomorphism of Hilbert spaces:
LADUX, A up.a) = LHD(X, A) ig) ® L2 (kerd™; X),

such that for all @ in TE‘(X,A), w(i) is transformed into the operator w(d) ®
]:I, W' being the unitary representation of D{X, A} into Lg(ﬁ'(X, A);(f’,ug,A)
given by:

B'(@)(x) = exp{i < x,di >}9(x),
¥ in LA(D(X, Ay, d* pe ) x € D'(X, A).

It follows that the spectral measure of W is equivalent to d* ue 4; as all the
spaces interfering here are nuclear spaces, owing to the uniqueness of gaussian

measures given by their Fourler transforms, it follows that J‘pE,A equals fig.
So, the spectral measure of @ is {equivalent to) ip. W

b} Let ©% be the unitary representation of D(X, A} into LYD(X, AL);
#E a+) given by:
(22) OF(u)d(x) = (V¥ (expu)x),
with @ in L(D4(X, ALY up a1), x in D{(X, A1)
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Lemma 14, The spectral measure v© of OF is equivalent to the infinite
dirvect sum:

@ {rdv” @ N)®*,
k>0
N being the counting measure on the set A of roots of the Cartan pair (g, A).

Proof: We shall use the Fock realization of L%{D{(X, A1); pg 4L ): let RE(AL)
be the complex Hilbert space spanned by D (X, AT) withrespect to <,  >g;
from [6], theorem 7.2, L¥(D{{ X, A*); ¢p ar) is isomorphic to the Fock space

ShE(A*) = Pgﬂﬂa‘svﬂfﬁ(,ql),

SPRE(AL) being the p — th symmetric tensor power of h¥(AL). Let A be the
set of roots of ¢ with respect to the Cartan subalgebra A, and for o in A, let
g% be the subspace of g with weight a; one gets.

A'L= ® g“,
xth

from which it follows that AZ{ A1) = @ﬁhE(g“), kE{g*) being the complex
515

Hilbert space spanned by Dy (X, g™) with respeci to < |, >g. It follows that
ShE(ALY = ® ShE(g™). For allw in h¥{¢g*), for all u in D{X, A) one has:
aEh

icfu{z)}

VE(expulw:z — e wiz}, z € x.

Then the restriction of @ on §PRF(AL) (which equals ®&SPhE(g°‘)} acts
aft
S i olulz)) _
by mualtiplication by elements of the form e =t , with ay,...,ap in A

and z,...,2p in X. It follows that the spectral measure v® of OF is supported
by the subset I' 4 of P'(X, A) consisting of functionals of the form:

X iu s x(w) = 3 ox(u(zs))

for all non negative integer p, the a4 being in A and the z; being in X,
We can then identify "4 with L)Jg(X X A, and v® with the Poisson
P2

measure whose restriction to (X x A)? . is given by (rdv” @n)®?, N being the
counting measure on A, rdv” the measure on X given by the principal part of

E(seeeg [6),83). N

¢) We come back now to the representation I1§ of D(X, A} into LH(D{(X, A);
u#E ) such that, for all v in (X, A):

E(u) = UP(expu).
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From {18) it follows that we have the isomorphism:
LHDYX, g)i p) ~ LHDI(X, A) ) ® L (DUX, A )i pp a2 )

so, if u is in D{X, A), and ® = ®; @ P2 in the above space, from the definitions
of UZ, % and ©F, and the fact that for all u in D(X, A), blexpu) = du, it
follows that:

TE(u)($1 ® 2) = (B(8)8:1) @ (OF(w)®,), ie-:
(23) 5 (x) = &(%) ® ©7(u).

From Lemma 13 and Lemma 14, one gets then:

Theorem 2. Let E be a {1,TX, F, A, dl}-energy structure on the manifold
X, let UF the corresponding energy representation of the gauge group DX, G},
let A be o Cartan subalgebra of g, and let 115 be the unitary representation of
the abelian Lie group D(X, A) such that for all u in D(X, A):

15 () = LB (exp ).

The speciral measure of Hﬁ is equivaleni fo the convelulion g * vE nip
being the Gaussian measure on D'(X, A) with Fourier transform & — jig(d) =
exp {—1jldul|}} end with vF ~ @ {rdv” ® N)®*.

g0

d) We want to give now a direct integral decomposition of ng.

Let us recall that I'4 is the subset of D'(X,A) of functionals of the form

X = kel’% _ 8%, the oy beingin A, the z¢ in X, and the functional 65% being
nite

given by 62(u) = au{u(z)), v in D(X, A) (see part b} above).

For each x in 4, let 7, be the character of D{X, A) such that vy(u) =
exp(i < x;u >), u € D(X, A), and let b, = & ® 7, the unitary representation
of D(X, A), W being the representation defined in Lemma 13. & can be written
also @, = w ® vy, w being the unitary representation of D(X, A) defined by:

(24} ‘ w{u} = w{), u € D(X, A).

It follows that w and @ have the same spectral measure, which is equivalent
to iip by Lemma 13, and then the spectral measure ji%; of ty is the convolution
of the spectral measure fig of w by the spectral measure of the character .
More precisely:

Lemma 15.
(1) One has the direct integral decomposition:

@ -
0§ = | wdv®(x).
Ta
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(13) ii% 18 equivelent fo the iranslated of fip by —x, i.e.
f‘% 2 ﬁE('s _X)'
Proof:

(i) From Lemma 14 one gets: 0F = frﬂi vy dvE(x); it follows then from (23)
that:

HE:{&@@E:@@/
' T

© E
= / Wy dv = (x).
|

(ii) follows from the fact that the spectral measure of @, is the convolution
of the spectral measure jig of & by the spectral measure of the character v,
which is given by x, and them: % = jig(-,—x).

& i3]
dvE(x)=f (1 ® v )drE(x)

Ta

Remarks:

1) Let I be the algebra of measurable subsets of D'(X, A); the mapping
(x,B) € T' x U — p}(x, B} is measurable because i %5(x,B) = pr(B — x).

2) The results of Lemnmas 13, 14, 15 and of Theorem 2 are proved in [17] and
(2] in the case of a non compact X and of E of the form (X, rdv™,TX, g, ). The
proofs given here in the case of a general (v, TX, F, A, d)-energy structure are
of the same type; moreover the use of the space D(X, A) and for d, instead of
D{X, A) and 4, allows to include the case X is compact.

9. A Sufficient Condition for the Irreducibility of ¥

The goal of this section is to prove that under some conditions about uniform
disjointness of the Gaussian measures 3%, UZ is irreducible.

Definition 10: Let E be a (7,TX, F, A, df)-energy structure on X, and let
D(X,G) be a gauge group. We shall say that UF has the [—property if there
exists a Cartan subalgebra A of g such that for any pair (I';,I'2) of subsets
of I‘A satisfying v (I‘l) > 0, v¥(Tz) > 0, v®(I'y NT2) = 0, the measures
fr“ i% dvE(x) and fl‘z vE(x) are singular.

Remarks:

1) Two Cartan subalgebras A and A" of g give isomorphic Borel measure
spaces (I'q,vF) and (I‘A;,v‘_g); it follows that UI¥ has the [-property with
respect to some Cartan subalgebra if and only if UE has the T-property with
respect to all Cartan subalgebras.

2) As i} is equivalent to the spectral measure of 1, the [-property is equiv-

3 - o .
alent to the fact that, for I'y, ['; as above, fl"l Wy dvE(x) and fI‘z 2y dvE(x)
contain no equivalent subrepresentations, i.e. are disjoints.

3) For all x in T'4 let a,, be the spectral measure of the character v,, and
let 'y, I'z be as in Definition 10, let A; be the measure fIEB ay, dvlB(x), i =1,2;
the property I'-property says that fip * Ay and fig * Ay are disjoints.
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Lemma 16. Let E be ¢ (1,TX, F, A, df)-energy structure, let D(X,G) be o
gauge group, and let us suppose that UE has the T-property. The von Neumann
algebra generated by N5 contains all operators of the form 1@ OF(u) and
Wiu) @1, u in D(X, A).

Proof: Let us recall that W{u) = @(ii), 4 € D(X, A), and let us consider
the family (b, )yer, of unitary representations of D(X, A} given in Lemma 15.

One has TI§ = flfB ¥y dvE(x), and then IE is equivalent to a representation

of P(X,A) into a direct integral of Hilbert spaces flfB HX dvP(x). Let § be an
operator commuting with the representation NZ, and let T' be a measurable
subset of T with »E(I") > 0, vB(T'—T"} > 0; from the I'~property it follows that
ff? HXdyvE(x) and its orthogonal complement fre)_[., HX dvP(x) are such that
the restrictions of TI'E to these two spaces contain no equivalent subrepresenta-
tions, and flf? Hx dvg(x) is invariant by §. It follows that § is decomposable
into a direct integral with respect to vE

Let NZ be the von Neumann algebra generated by Hﬁ. The operaters
(1 ® ©F)(u) and (W ® 1)(u) act on each Hilbert space HX by multiplication
by bounded v¥-measurable functions; it follows that they commute with all
decomposable operators, in particular with operators § which commute with
HE; these operators are then in the bicommutant of NZ A, and then in N, by
the von Neumann’s theorem. W

As a corollary one gets:

Corollary. NE contains all operators of multiplication by PR SR T =
D(X,A).

We come now to the main result about irreducibility.

Theorem 3. Let D(X,G) be & gauge group, and let E be o (7,TX, F, A, df}-
energy structure. If UE has the I'-property, UE 1s srreducible.

Proof: We shall use the realization of ¥ in the space L*(D}(X, g); g} given
in {16), Section 7(c).

a) Let us prove, at first, that the vacuum veclor 1 : x — 1{x) = 1¥x €
Di(X,g), is cyclic for UE. Let LE be the von Neumann algebra generated
by LE; as [I5(u) = UF(expu), u € D(X, A), the bicommutant of £ is con-
tained in the bicommutant of U®; from the corollary of Lemma 18, it follows
that if UE has the D-property, LY contains the operators of multiplication by
exp(z < -, du >), u € D(X, A), for any Cartan subalgebra A of g. As g is the
union of its Cartan subalgebras, it follows that LZ contains all the operators
of multiplication by exp(i < -,du >) for all u in D(X,g), and then, all the
operators of the form:

nBgy =uF(g) &M uFET),
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with ¢ in D(X,G) and v in D(X, ¢), i.e. all the operators of multiplication by:
ei(.,vE(g)du‘)‘g c D(X‘G), u e D(X,g).

It follows that L% contains all the operators of multiplication by functions
of the form: e
i<, ﬁpvs(ﬁk)dﬂa)v
e k=]

with g1,...,¢, in D(X,G) and u,,...,up in D(X, g).
By the lemma 3.5 of [17] one knows that the set {VE(g)du/§ € D(X,G), u €
D(X,9)} is total in D1 {X, g); 1t follows that the functions:

x — ng (9)(x), (§u) € D(X,G) x D(X, g)

constitute a total set in LZ(D} (X, g); ug).

As UF(g)1 = &' <¥9)> it follows that the smallest closed subspace of
L*(D{(X,g); uE) containing the functions U*(§)1, ¢ € D(X,G), contains the
space spanned by the functions nZ(7), and then, this space is exactly L2(D} (X, g);
ug); the cyclicity of 1 is then proved.

b) It remains now to prove the irreducibility of the cyclic component of
UE UE having the T-property.

Let @ be an operator belonging to the commutant of US(D(X, G)); @ com-
mutes with 11§ for any Cartan subalgebra A of g, and then, as it has been
seen in the proof of Lemma 16, ¢} is decomposable with respect to the integral
decomposition of 1§ given in Lemma 15, for any Cartan subalgebra A of g.
The projection of L*(Dj (X,g) yE) onto LQ(’D’ (X, A); ug,4) being diagonaliz-
able, L3(D{(X, A); ug, 4) is invariant by Q; it follows that Q1 belongs to all
the spaces L?(D{(X, A); ur 4) for all Cartan subalgebras A. Owing to the
semisimplicity of g, the intersection of all the spaces L2(D}(X, A); pi 4), A
running in the set of Cartan subalgebras of g, equals CI; it follows that @ is a
scalar operator; as 1 is a cyclic vector for U it follows that UF is irreducible, ®

Note: The Theorem 3 is, up to now, the only way known in order to prove
the possible irreducibility of the energy representations, and is substantially
the method given in [17], [2] in order to prove the irreducibility of UZ with
E=(X,rdv",TX,q;) when dim(X) = 3; in the case E = (X, rdv", F(£}, 4(£))
the irreducibility of UZ when dim(X) > 3 was also proved in [9] in the same way.
We do not know whether the I-property of LIZ is cquivalent to its irreducibility.
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