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DIFFERENTIAL FORMS, WEITZENBOCK
FORMULAE AND FOLIATIONS

HANSKLAUS RUMMLER

Abstract

The Weitzenhock formulae express the Laplacian of a differential form on
an oriented Riemannian manifold in local coordinates, using the covariant
derivatives of the form and the coefficients of the curvature tensor. In
the first part, we shall describe a certain "differential algebra formalism”
which seems to be a more natural frame for those formulae than the vsual
calculations in local coordinates.

In this formalism, there appear some interesting differential operators
which may also be used to characterize lacal geometric properties of fo-
liations. That is the topic of the second part.

I. Differential Forms and Weitzenbock Formulae

1. Introduction.

Relations between the curvature tensor of a compact oriented Riemannian
manifold and its topology play an limportant role in global differential geometry.
The cldest and still most beautiful theorem of this kind is of course the glebal
Gauf-Bonnet formula. Another theorem of this type is the following one by
S. Bochner (see [3],[1]): If all sectional curvatures are positive, then the first
Betti number must vanish. To prove this theorem, one can for instance show
that there are no non-trivial harmonic 1-forms, and in order to derive this
from the positivity of sectional curvature, one uses the so-called Weitzenbock
formulae, expressing the Laplacian of a differential form in local coordinates
by an expression which contains coefficients of the curvature fensor. In order
to see, how the curvature temsor comes in, we shall develop an appropriate
formalism in the next two paragraphs.
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2. Ordinary and Vector-valued Differential Forms.

Let M be a differentiable {i.e. £°°) manifold, TM its tangent bundle and
T* M the cotangent bundle. A veclor-vaelued p-form & on M is 2 differentiable
{i.e. C°°) section in the bundie TM ® A’ T*M. Locally, ® may be written as

2=3 »i®X;
i=1

with ordinary p-forms ¢, and vector fields X;. For £ € M one can interpret
&{z) as a p-linear alternating map from T, M x ... x Ty M to T M.

The vector space of these forms will be denoted by AP = AP (M), and we shall
write AP = AP(M) for that of ordinary p-forms. A= @ff" is in a natural

=t
way an A-module, i.e. there are exterior products

A AP x AY — APHe and A A% x AP — APHY

with the obvious commutation rules.

Now let M be & Riemanman manifeld. Then the Riemannian metric induces
also an "exterior inner product”

{ )i AP x AT — ar¥e
and there is also a Hodge »-operator
*: AP — AP,

locally defined by (¥ ¢; @ X;) = Y {+p;) @ X,

Let D denote the Levi-Civita connection on M. [t can be interpreted as
amap D A® — 4!, and this map is extended in a unique way by maps
D AP — AP¥! such that the product rule

DipA¥)=do AT + (—1)p A DY

holds for ¢ € A? and ¥ € A7,

This can be done for any linear connection on TAL, but the Levi-Civita
connection satisfies also the product rule for our "exterior inner product”™:

d(®, ) = (DB, T) + (~1)7(®, D)

for@_ezi:"and\llei‘f.

In this formalism, the curvature tensor is simply given by

RxyZ2 =D?Z(X,Y) for XY, Z¢A°
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and also the torsion (which vanishes in one case} has a simple interpretation:
Ty = Didpyr, where the identity on the tangent bundle T 1s interpreted as
a vector-valued l-form.

The Riemannian metric induces also several maps between ordinary and
vector-valued differential forms, which we shall now describe: The first one
consist of maps

j:Ar — A1
which extend the canonical isomorphism between 1-forms and vector fields. ;
is simply defined by (jw, X} =iywiorwe A¥ and X € A®, where ix denotes
the interior derivative. j Is a derivation of degree —1, 1.e. it satisfies the product
rule

Jlerd)=jerd+(-1)prjy
for ¢ € Af and ¢ € AY. We can as well extend the inverse isomorphism
a=j7"1:4% — 4! by
p+1

a®(Xy, .. Xy =Y (1)KL QXL X X))

i=1
The next map is the contraction with respect to the first argument, i.e. the
map "trace” tr: A¥ — 4777 defined by
tr®(Xy,. .., Xp_y) = wace (B(—, Xy,... . X, TM — TM),
and the last map is a sort of a "diagonal” diag : 4P —— AP*3, an extension of

the map from A® to A that sends the constant 1 to the identity idras.

We shall not derive all the relations between those maps, but we mention
that the following two diagrams commute up to sign:

AP — ., AnTP AP, 47 P
and
A’p+1 A‘u—p—! A’;:—l ‘i’n—p+1

3. Gradient, Divergence and Laplacian.

In cur language, the classical operators grad and div inay be expressed by
grad=jd: A® — A° and div = ir D : A — A°.
As by definition - ; vanishes on 4% and tr on A®, we may as well use the
"more symimetric” formulae
grad = jd + Dj and div =tr D + dir,
and we use these formulae to define gradient and divergence in any degree p
for i< p<n.

The reason for adding the terms I j and d tr which are "hidden” in degree
zero is of course not only an esthetic one, but it 1s the following theorem:
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Theorem 1. The operators grad and div salisfy the following relations, by
which they are uniquely delermined:
(1) f € A" = grad f is the ordinary gradient
(2) fe A= graddf=Dygradf
(3 pe AP, ¥ € AY = grad(p AY) = (gradp)AY + p A grade
{4) X € A = div X is the ordinary divergence
(8) p€ AP, p € A% => div(p A ¥) = (grade, U) + pAdiv ¥

We shall not prove this theorem — nor the next one — but only indicate that
this can be done using local coordinates which are geodesic at a given point
z € M. Observe also that property {2) is not valid in degree p > 0, where we
have Dgradw — graddw = D?jw, which does not vanish in general if the
curvature tensor is non-zero.

The properties (1} - (3) of the gradient and the well-known rules for covariant
derivation imply:

Corollary. For ¢ € AP and X € A®,
(X,grady} = Dxyp, the covartant derwative,

This characterizes grado completely.

So the gradient grudw contains the information about all the covariant de-
rivatives of the p-form w, and is thus metrically equivalent to the tensor Dw,
defined by Dw(X; Xy,... . X,) = (Dxw)}X1,...,X,). So why not simply use
this tensor instead of the vector-valued form gradw? One good reason is that
this tensor is only alternating in the last p arguments, and by changing the
variance of the first argument we exhibit its special role. {Antisymmetrizing
Dw would give the ordinary exterior derivative dw, because the Levi-Civita
connection I} is torsion-free.)

Theorem 2. Beiween the operators grad, div and the classical operators
d, %, 6 = (=1)*PTP & du, there hold the following relations:

{6) d=agred

(D) é = tr grad

{8) * grad = gradx
{9} * div = div

Now let us try - for the sake of curiosity — whether we have also the relation
A = divgrad as in degree zero: With the relations {6) and (7) of the above
theorem and the fact that ir j = 0 we get easily

divgrad = (tr.D + dtr)f(jd + Dj}=6d + d6 + tr D*j = A + tr D?.

So we don’t have A = div grad, but we make the following definition:
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Definition. On an orienied Riemannian mentfold M, we set
Ay := div grad and Ric := tr D7,
Thus we have the

Weitzenbéck Fornmla.
A = Ay — Ric

Of course, this is not really interesting as long as we don't know something
about at least two of these three operators! To begin with, let us consider the
operator Ric:

One checks easily, that Ric commutes with », and that it is A%-linear, i.e. it
is a tensorial operator: forw € A? the value Ricw(z} at a point x € M depends
only on w{z). The name "Hic” for this operator is justified by the following:
For two vector fields X and V', we have for the l-formw = a X:

(Ricw)(Y) = (tr D*X)(Y) = trace R_yX = Ri(Y, X} = Ric(X,Y),

the well-known Ricci tensor on M1
The operator Ay commutes alsc with *, so its kernel

Hy :=ker Ao = (P H]

p=0

is 2 *-invariant subspace of A = @A”‘ As we shall see in the next paragraph,
it is even a finite-dimensional subalgebra. For the moment, we mention the
product rule

Al AP} = Ao AP + @ ADeYp + 2{gradep, grad ).

4, Compact manifolds.

The reason for using differential forms rather than arbitrary, non-alternating
tensors is that we can integrate differential forms. Solet Af be in this paragraph
a compact connected oriented Riemannian manifold of dimension n.

There are global inner products on A? and A”, obtained by integration of
the pointwise inner products:

{99,?,&)::/ @ A *p for w9 € AP
A

(®, ) ::] (B, «T) for &, ¥ ¢ AP,
Jw

The following lemma will be the key formula for the further properties we
shall derive for Ay
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Lemma. With respect to the global inner products, grad and —div are ed-
jotnts, i.e. we have for o € AP and ¥ € AP

(grad o, ¥) = —(¢, div ¥).
Proof:
(grad, ¥) + (i, div ¥) = fM((g?‘adp, €T} + @ Awdiv )
- fM((grad(p‘*\I') + o Adiv*E)
:f div(p A %D,
5

but div{p A +xF} = dir{p AxF), because the second term of the divergence,
tr D{p A »¥}, vanishes since @ A+ is of maximum degree 1. Thus, by Stokes’
theorem, the result follows.

This simple integral formula has some interesting consequences. The fol-
lowing one is obvious:

Proposition. {Agw,w) £ 0 for all w € AP,

{Observe that with our sign convention for § the same holds for the Laplacian
A)

Theorem 3.

Ajw =0 = gradw =0 <> Aw =10 aend Ricw=0.

Proof: By definition of Ay, gradw = § implies trivially Aew = 0.

So let Agw = 0. Then (gredw, gradw) = —{Apw,w) = 0, and so gredw = 0,
which implies by thecrem 2 also dw = 0 and §w = 0, hence Aw = 0, which,
together with the hypothesis A,w = 8, gives also Ricw = 0. The remaining
part is again trivial.

An immediate consequence is the following corollary, i we remember that
grad is a derivation of degree zero:

i
Corollary. Hp = @H”, the kernel of Ag, is & subalgebra of A = @A”‘
p=0
Moreover Hf C H? = ker AN AP, the space of harmonic p-forms.

In ﬁarticular the space H{ must be finite-dimensional, as H? is. But thereis
another proof of this fact, wh:ch gives still more information about the structure
of the space HI:
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" Theorem 4. For ¢,y € HZ,

1
(‘Ps 7f)> = const. = W(‘p» 'l,b),

where { , } is the pointwise scalar product on p-forms, induced by ihe Rie-
maennian melric,

Proof: {ip, 1) = *(wa * ), and thus

dlp, ) = » (@ A *p) = £ » tr grad(p A xp),

but this expression vanishes by the product rule and #-invariance of grad.

This theorem says, that for any @ € M the evaluation map

»
eval, : HY — /\T;M

is an isometric injection, up to the constant factor 1/volM. As a consequence,
H} is of dimension < (7).

If M is flat, we have D? = 0, hence Ric = 0, and thus A = Aq. So we get in
this case dim H? < co without using the ellipticity of A. {Of course, we cannot
prove the regularity in this way: if we admit harmonic forms with coefficients
in a Sobolev space, we are not sure that the €% ones are already all of them.)
The same property as for flat manifolds holds still in the case where Ric is
positive semi-definite:

Theorem 5. If the operator Ric: AP — AP i3 positive semi-definite, then
HE = H?,
If Ric: AP — AP is even positive definite, then HY = H* = 0.

Proof: In the expression
(Aw,w) = (Bow,w} — (Ricw,w)

all three terms are £ 0. So, Aw = 0 implies (Agw,w) = 0, and that implies
gredw = 0, hence w € H]. But (Ricw,w) must also vanish, and thus w = 0 if
Ric is positive definite.

The special case p = 1 yields of course the thecrem by Bochner that we
mentioned in the introduction. Even if the sectional curvatures are only positive
in almost all plane directions at almost all points, the ordinary Ricci tensor is
positive definite, which means exactly that our Ric: A — 4! is sc.
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II. The Geometry of Foliations

1. The characteristic form of a foliation.

We shall be interested in local geomeiric properties of foliations on Rieman-
nian manifolds. Therefore we lock ai the distribution in TM tangent to the
leaves. So, foliation means in the following simply tntegrable disiribution (i.e.
a £ subbundle) F < TM. For the sake of simplicity everything is oriented:
the manifold and the foliation.

Consider the situation at a point € M: The p-dimensional linear subspace
F. C T M is an element of the Grassmannian manifold of all p-dimensional
oriented linear subspaces of T, M. But things become simpler in our case, where
T.M is a Buclidean space: In this case, the Grassmannian becomes in a na-
tural way a (generating) submanifold of the linear space A’ T: M, and F; is
represented by u) A... A u,, where (u1,... ,%p) is a positively oriented ortho-
normal basis of F,. As analysts are more used to consider the space A Tp M
of p-forms than that of p-vectors, we can still use the Euclidean structure of
T. M to identify A" T, M with A"T;M: To F; corresponds now the p-form
x € N* T7 M with

1 for any pos. oriented orthonormal basis of F,,

x{uy,. L up)= {

0 if one of the u;’s is perpendicular to F..

Doing this at every pomt @ € M simultaneously, we get the characteristic form
xr of the foliation or distribution F. In the case of a foliation, the restriction
of xr to a leaf is simply the volume form for that leaf.

For calculations with the characteristic form of the distribution F, the
following simple representation is often useful: Let (X;,...,Xn) be a local
positively oriented orthonormal frame of vector fields on the open subset U C
M, such that X,,... X, span F. If {w),... ,w,) denotes the dual frame of
1-forrms, we have

VP = wh A AW,

and as wi{X;} = 6,5, we get for the differentials of the w; simply

dwi{ Xj, X)) = —wi{[X;, X))
(X, [ X, X501}
= (X, Dx X5} ~ (X, Dy X
= (DX, X Xp) — {kaﬁ';,X—j).

2. Geometric properties of a foliation and differential properties
of its characteristic form.

To begin with, and to give also an idea of what kind of calculations one has
to do, let us try to find out what it means that yp is closed:
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With the above notations that means
dxF{XH"“!X‘S'F.{.;}:O for 1511?,;;.{,15?’1

It is clear that dyxp{X;,,... ,Xi,,,) = 0 if more than two indices are > p. So
there remain two cases to be interpreted:

{1) dxr(Xy,... X, Xj)=0forp+1<;<n
and
(2)  dxr(Xy,... X X, X5 X )=0for1gigp<j<ksn

For the first case one finds easily

F
dxF(-X-ls"' 1-Yp1-xj) - (_I)P Z(-Yh‘oxi-xj) = (_1)P+EP<H, X})!

=1

where H is the mean curvature vector field of the foliation. Thus (1) means
that all leaves are minimal submanifolds. Observe that (1) says simply that the
restriction of xp to any {p + 1)-dimensional submanifold tangent to the leaves
is closed.

For the second case one gets
dxP( X1, Xin o X X5 Xe) = (1)HG, (X, Xil),

and (2) means simply that the orthogonal complement F+ is integrable. This
applies also if F itself is not integrable. Together with the fact that »xyp = ypz1,
we have thus the following theorem and the two corollaries:

Theorem 6. The characteristic form of the foliation F is cleosed if end only
if all the leaves ere minimal submanifolds and the orthogonal complement F+
1s integrable.

Corollary 1. If the charecterisiic form x r of the disiribuiion F is co-closed,
e if bxp =0, then F is integrable.

However, this condition is not necessary for the integrability of F: f dim F' =
1, we have §xyr = div X, where X is the normed vector field describing F. So
¢xr = 0 means in this case that the corresponding flow is volume preserving,.

Corollary 2. On & compact orienied Riemennian manifold, the chereete-
ristic form xr of the distribution F is harmonic if and only if F and FL are
foliations by minimal submanifolds,

In order to check the properties of grad x s, one needs essentially only the
following lemma, the proof of which is trivial:
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Lemma. With the notations introduced in the last section, locally

P
gredxp = Zwl Ao Awisg Agradw; Awigr Ao Awp,
i=1

with {gradw(X;), X} = (Dx. X0, X;} for 1<i<pand 1 <jk <n.
Before using this lemma, let us make two definitions:

Definition. A distribution F C TM 13 said to be geodesic if DxY 13 tangent
to F whenever the vector fields X and ¥ are fangent o F.

The distribution is said to be parallel if DxY i3 tangent to F whenever the
vector field ¥ is tangent fo F' and the vectorfield X is perpendicular fo F.

Let us make some remarks concerning these definitions:

(1) By definition, these notions are dual: F is geodesic if and only if F* is
parallel.

(2) If F is geodesic, it is integrable and all the leaves are totally geodesic
submanifolds, The converse is also true: A foliation with totally geodesic
leaves is geodesic in the sense of the above definition. However, if a
disiribution F'is totally geodesic in the sense that any geodesic tangent
to F at some time remains tangent to F forever, the disteibution F
needs not be integrable, and so it is not necessarily geodesic in the sense
of the above definition.

(3} I F is a parallel foliation, then the Riemannian metric is bundle-like for
F, in the sense of B. Reinhart, but the converse is only true if F* is
integrable.

(4) The terminology is inspired by the following example in R? \ {0} : The
foliation F* by straight lines passing through the origin is geodesic, and

_ the foliation FL by concentric circles around the origin is parallel.

The following two theorems are now easy consequences of the lemma, and

we leave their proof as an exercise:

Theorem 7. The distributton F 13 _
geodesic <= grad yp L F, i.e. all values are perpendicular to F,
parallel < gradx p||F, t.e. all values are tongent to F.

Theorem 8. Let F be ¢ foliation. Then the given Riemennian metric on
M is bundle-like for F if and only if

ixgrodyrp L X for every X L F.

3. Foliations of comipact Rilemannian manifolds.

If the manifold M is compact, then grad yr = 0 <= Ayxr = 0, and we may
apply the resulls of the last section of the first part to get some informations
about geodesic and parallel folhations.. The first result is a trivial consequence
of the fact that HI' ¢ H?: '
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Theorem 9. If the Bett: number b,(M) = 0, then there 1s no p-dimensional
folintton on M which 13 ot the same time geodesic and parallel, whatever is the
Riemannien metric given on M.

In the case p = 1 we can also say something about the set of all geedesic and
parallel flows {(i.e. 1-dimensional foliations} on M :

Theorem 10. Lel M be a compact, connected, oriented Riemannian mani-
fold, and let p = dim H] > 0. Then there is a differentiable action
@ :RP x M — M such that

(1) R? acts on M by wsometriy ;

(2} The orbits of this action are lhe leaves of o geodesic and parallel p-
dimensional foliation;

(3} The projection of R? onte any orbif is a local isometry, where RP carries
the standard Euclidean structure;

(4) Any geodesic and parallel flow on M s the restriclion of this action lo
a 1-dimensional linear subspace of RP.

Proof: Recall that the evaluation maps eval, : H} — T*M are isometric
injections, up to a constant factor, and that also j : T;M — T M is an
isometry. Thus, by choosing an appropriate basis in H}, we get a linear map

X RP — A°
with the following properties:

(i) eval, o X : R? — T, M is an isometric injection for any z € M, where
R? carries the standard Euclidean structure;

(11) The 1-form w, = j !(X,) has vanishing gradient for any u € R?.

Now, if |lu|| = 1, w, is the characteristic form for the flow defined by the
vector field X, and this flow must be geodesic and parallel. Conversely, the
characteristic form of any geodesic and parallel flow on M is in H} and hence
of the form w, for some u € R? with |lu|| = 1. This will prove (4} once we have
shown the other properiies.

We define now the action of R? on M by these flows, i.e. by
Du,z) = .expr(Xu{:c}).

To prove that this is a well-defined action, we must show that the flows defined
by the vectorfields X, commute. So let u,v € R?. Then

Dx. X, = DXu(Xy) = (Djwu)(Xy) = gradwy(Xu) — jdws{Xa) = 0,

because with gradw, = 0 we have also dw, = 0. Thus [X,,X,] = Dx X, —
Dy, Xy =0.
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A similar calculation shows that the vector flelds X, are Killing fields, i.e.
that R? acts on M by isometries.

If es,... ,ep are the standard basis vectors of RP, the distribution F' on M
defined by the map X : R? — AP has just the characteristic form

XF = We, Ao Ay,

which has vanishing gradient. So F is a geodesic and parallel foliation, and by
construction its leaves are the orbits of the action @.

Finally, eval, o X : R? — F, 1s an isometry for any r € M, and this map
is just the tangent map at the origin of the map &, : R — M, so this map
iz a local isometry from RP onto the orbit of the point a.

4. Final remarks.

The last two theorems suggest that on a compact oriented Riemannian ma-
nifold the spaces H} are in general very small, much smaller than the spaces
HP of harmonic forms. In fact, the last theorem shows that the flat torus is the
only compact oriented surface admitéing non-trivial 1-forms w with Agw = 0.
But this is not necessarily so in higher dimensions: On a compact connected Lie
group endowed with an invariant Riemannian metric, all invariant forms are
already in Hg, so in this case HJ = H? in any degree p. But H) #0forp > 1
does not 1mply the existence of geodesic and parallel p-dimensional foliations.
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