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UNFOLDINGS OF HOLOMORPHIC FOLIATIONS

Abstract

XAVIER GÓMEZ-MONT

The objective of this paper is to give a criterium for an unfolding of a
holomorphic foliation with singularities to be holomorphically trivial .

1. Introduction

An unfolding is a holomorphic foliation with singularities p in the complex
manifold M, with 7r : M -> Al C C a smooth holomorphic map, defining a
family of foliations Ft in the family of complex manifolds Mt = 7r -1 (t), obtained
by intersecting the leaves of ,F with Mt (see definitions 2.1 and 3.1), such that
the leaves of F are not contained in the fibres of 7r . The leaves of F have one
more dimension than the leaves of -Ft, and the problem we are addressing in
this paper is to give a criterium to determine when the family of foliations Pt is
trivial, that is, they are all biholomorphically equivalent . QThe technique that
we will use to analyse this problem, will consist in measuring the obstructions
to lifting the vector field át on 01 to a holomorphic vector field Y tangent to
the foliation J' . If 7r is a proper map, or a germ of a map, then the 1-parameter
group obtained by integrating Y gives the triviality of the unfolding .
We begin by showing in Proposition 2.2 that the local existence of a lifting

of at is equivalent to the triviality of the extension class of the normal sheaves
(i .e . the normal sheaf of the family of foliations 7t is a direct sum of the
normal sheaf of the foliation .7 by the structure sheaf) . «7e do not peed the
integrability of t11e foliation for this first step . In Theorem 3 .3 we use the
integrability conditions, and the assumption that the foliation is full, to show
that the triviality of the extension class of the conormal sheaves is equivalent
to the local triviality of the unfolding . We globalize this criterium in Theorem
4.1 .

Having formulated the triviality of the unfolding in tercos of a triviality of
ari extension class, we use a spectral sequence to divide this second problem
into two problems : The first is local and concentrated in the singularities of the
foliation, and the second is global and measured by a first cohomology group .
In section 5 we apply the above procedure to foliations by curves . We show
that the local obstructlorls vanlsh lf the depth of the singularity set is at least
3, and that the global obstructions are measured bv a cohomology group of an
invertible sheaf, which inay then be analysed by standard vanishing theorems
(Ca.rtan-Serre's Theorem B or I~odaira-Nalcano) . In particular we obta.in :
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Theorem 5 .3 . Let Xo : .Co -+ OMo be a foliation by curves with isolated
singularities in the compact manifold Mo . Assume that Mo has dimension al
least 3 and H'(MO, Co) = 0, then every unfolding of Xo is trivial .

We finish by analysing the case of foliations by curves in surfaces :

Theorem 5.5 . [G-O] Leí Xo : Go -i OMo be a foliation by curves with
isolated singularities in the compact complex 2-dimensional manifold Mo . As-
sume that H1 (Mo,Go) = 0 and íhaí every singular point has multiplicity 1 and
non-vanishing trace; then every unfolding of Xo is trivial .

The method we present in this paper is a generalization of an idea of Ilias-
henko [1] . He originally applied it to foliations by curves in thé complex pro-
jective plane tangent to a line, where after taking affine coordinates of the
complement of the line he applied Noether's AF+BG Theorem (see [G-H] p .
703) instead of carrying out the cohomological computation .

	

.
1 would like to thank J . Girbau, M. Nicolau and R . Castelet for providing a

stimulating atmosphere during the elaboration of this research at the Centre de
Recerca Matemática at the Universitat Autónoma de Barcelona, in Catalunya .

Let

2 . Local unfoldings of distributions

7r : C X C 'ti -) C,

	

7r(t, 2') = t

with t E C and z = (z1, . . ., zn ) E Cn, be the projection of C x C' to the first
factor . 7r induces a ring homomorphism

7r * : (91 -) (7n+1

from the ring of germs of holomorphic functions at 0 in C to the ring of ho-
lomorphic functions at 0 = (0, 0) in Cn+l. If we denote by Sin+1 and 91 the
(free) modules of germs of holomorphic 1-forras on Cn+1 and C, respectively,
and by 7r*St l the (fin+1-module S21®o l 0n+l, then the pull back of 1-forras
under 7r extends to an exact sequence of On+l-modules

0-)7r*91 -->Qn+1 p3 Q,-i0

where the right hand term is the (free) On+l -module of relative differential
1-forras to 7r and p is the projection map.
An element 79 of Qn+1 may be written as d = b(t, z)dt +

j
:~ 1 al (t, z)dz1

and it may be interpreted as describing a possibly singular distribution of co-
dimension one planes in some open neighbourhood of 0 in Cn+1. Its projection
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p(19 ) may be interpreted as a 1-parameter family of distributions defined in
neighbourhoods of 0 in Cn by 1:n 1 aj(t, z)dzl and it describes the family of
distributions obtained by intersecting the distribution defined by t9 with the
hyperplanes tangent to the 7r-fibres .

Definition 2 .1 . A germ of a family of (singular holomorphic) distributions
is an injective O�+1-module map w defined from an On+1-module F into S2, r ,
and giving rise to the short exact sequence of On+1 -modules :

(2.2)

	

0 -> F =-~ 52, -4 S2�/w(F) --+ 0

An unfolding of a germ of a family of distributions

	

w : F -4 52,

	

is a lifting
of w to an On+1 morphism w : F -+ 52n+1 . We will also call an injective
morphism

	

w : F--> S2n+1

	

a . germ of a (singular holomorphic) distribution
and if w = p o w is an injective On+1-module map, we will call w a germ of an
unfolding with w as underlying family of distributions .
Remark: The recquirement that w is an injective map means that the image

of w does not contain elements of the form b(t, z)dt, or equivalently, that the
planes defined by the unfolding are not all contained in the tangent planes to
the ir-fibres .
An unfolding gives rise to an exact commutative diagram of On+1-modules:

(2 .3) ~*S2 1

7r * S21

F = F
1w

	

1w
Qn+1 - p 9, 0

1

	

1
Qn+11w(F) --> 9,1w(F) -> 0

1

	

1
0

	

0

Proposition 2 .2 . Le¡ w : F -f 2, be a family of distributions, then:
1) There is a one to one correspondence between ¡he unfoldings of F and ¡he

elemenis in Hoin(F, 7r*9 1 ) l--- F* .
,2) The map which associates to each unfolding il ® w the extension class of

12, r/w(F) by 7r*521 in the lower row of (2.3) is the coboundary morphism b of a
long exact sequence of Ext-groups.

3) If the abone extension class b(rl) is 0, then we may fiad a germ of a
holomorphic vector field tangent to the distribution of ¡he form

n
(2.4)

	

A. = ~t - ~
Xi(t, z)Jz~

j-1
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Proof.. Since the middle vertical sequence splits, 52 n,+1 = 7r*52 1 ®52,, we may
write w = 77 ® w, where 77 E Hom(F, 7r*52 1 ) - F* . This proves part 1 .
The long exact sequence of Ext-modules associated to the funetor

Hom( - , 7r*52 1 ) applied to the right hand column in (2.3) is :

(2.5)
0 Hom(52,r /w(F), 7r*52 1 )

	

-+

	

Hom(52,, 7r*521)

	

7+

Hom(F,7r*521)

	

á+

	

Ext1(52,r/w(F),7r*521)

	

E +

	

Ext1(52,.,7r*521)

	

-+

The kernel of e corresponds to those extensions that induce the trivial extension
of Q, by ir*52 1 , and these extensions are described as images of b by means of
elements 17 E Hom(F,Tr*52 1 ) . This proves part 2 .

If «i1) = 0, then by the exactness of (2.5), we may find an extension
9, -> 7r*52 1 of 11 : F --> 7r*52 1 ; that is, there is a relative vector field

X Xj

	

z~
E E), = Ho7n(Q,r , C)�+i) - Hom(52,, 7r*521)

such that if for f E F we have w(f ) = 1: aj(f)dzj then

w(f ) = q(f)dt + 1: ai(f)dzj =

(Eai(f)dzi)o(1: ~ ~,)dt+1: ai(f)dz.i

where o evaluates a 1--form on a vector field through the natural duality. Hence
we have

w(f) = (1: aj(f)Xj )dt + E aj(f)dzl

Define now X as in (2.4) using the previously obtained components Xj, and
then

w( .Í) oJC = y~ a.i(f)X'i - 1: al(f)Xi = 0

Hence X is ta.ngent to the distribution defined by w(f) for every f E F, so
X is tangent to the distribution defined by w . This finishes the proof of the
proposition .
To further exploit the vector field (2.4), we need to impose the integrability

conditions to the distribution . Although the statement (Theorem 3.3) is local,
the proof we present is semi-local ; so we will begin the next section with global
definitions of foliations and unfoldings of foliations .



Let 7r : M -> C be a smooth holomorphic map between the complex mani-
fold M of dimension n-}-1 and the complex line C . The fibers of 7r -1 (t) = Mt of
7r are smooth complex manifolds of dimension n . IfMo is compact, we will also
assume that 7r is a proper map onto its image . Overall, we will be interested
in a neighbourhood ofMo , so we consider C as a pointed space (C, 0), and we
shrink the neighbourhoods around Mo .
We will denote by

the sheaves on M of germs of holomorphic functions, 1-forms, vector fields,
relative 1-forms, relative vector fields, and

where the first two are the sheaves of exterior algebras of differential and relative
differential 1-forms, respectively, with derivatives d and dn , where d is a C-
linear map and d, is Oo-linear . Given a subset A C S2*, we will denote by
A - S2* the sheaf of ideals generated by the elements of A .
We obtain an exact sequence of sheaves on M, as in (2.1)
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3 . Local unfoldings of foliations

OM , QM , OM , Qn , on

n+1

	

va

QM =®l \PQM ,	Q* =®l \PQ,
and

	

*52c = S2o®o,OM
P=0

	

P=0

0 -> 7r*S2c -+ QM -P-> Q,r

	

> 0

Definition 3 .1 . A family of distributions (or a distribution) on M is an in-
jective OM-morphism w : F

	

> Sl, (respectively, an injective OM-morphism
w : F

	

> 52,x,1 ) from the coherent sheaf F on M . The singular set Sing(w)
(or Sing(w)) of the family of distributions (or of the distribution) is the set of
points where 52,/w(.F) (or QM/w(.F)) is not locally free .
A family of foliations (or a foliation, or an unfolding of a family of foliations)

is a family of distributions w : F -> 9, such that on the non-singular points
of w(.~) we have d,(w(7)) C wJ) - 52* (respectively, a distribution w
.F -+ 52, 1 such that on the non-singular points of w(7) we have d(w(.F» C
w(7) - Q*y1 , and for an unfolding we recquire that w is a foliation and the
morphism of O,M-sheaves w = p o w : F

	

> Q,r is injective) .
We also say in the preceeding definition that the germs of distributions are

involutive . We will always consider an unfolding of a family of foliations as being
involutive . An unfolding on M gives rise to an exact commutative diagram of
O,u-modules :
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(3.2) 0

0

7r*SZC
11

7r* SZc

0

wt : .F6o¢C t -> 9,(F90,, C t - QM,

(3 .3)

	

w = cwo® c id : .Fo®c0c -> QMo®c0c - SZn

0

0

The process of restriction to the fibre Mí is carried out by tensoring with
®oc Ct , where C t = Oc/mt and m t is the sheaf of ideals in Oc associated to
the point t E C . Ifw : .F -> S2� is a family of foliations, then its restriction to
Mt is

which may be considered as an OM,-morphism, and after dividing by its kernel
(if it is not injective) it defines a foliation on Mt .
Given wo : .Fo -> SZM,, a foliation on Mo , its trivial extension to a family of

foliations is defined on ir : Mo x C -> C by

and its trivial extension as an unfolding by further defining w = rl ®w with
r1=0.

If w : F -> 9, (or w : F -> SZn+i) is a germ of a family of foliations (or a
foliation or an unfolding), then it extends to a family of foliations (or a foliation
or an unfolding) in a neighbourhood of 0 . This may be realized by extending
a set of generators of F. By coherence, this extension is unique in a perhaps
smaller neighbourhood of 0 .

Definition 3.2 .

	

Two unfoldings wj : .Fj --> QM; , j = 1,2 (or fami-
lies of foliations wj : Fj -> 52,,) are isomorphic if there is a biholomor
phisms P : M'

	

> M2 over C (i .e . it induces the identity on C) such that
w1(.'Fl ) _

	

*w2 (.F2 ), where <P* is the natural action of

	

on 1-forms (respec-
tively wl ( .Fl ) ='D*w2(-F2)) . We say that an unfolding w : .F -+ SUM is trivial
over 0 (or that a family of foliations w is trivial over 0) if w (or w , respectively)
is isomorphic to the trivial extension of the restriction of w to Mo in some
neighbourhood of the fibers over 0 E C . A germ of an unfolding at 0 E C x Cn
is trivial if there is a neighbourhood of 0 where the unfolding is trivial .
The singular set Sing(w) of a family of foliations w : .F -> 9, is defined as

the set of points where Q, r /w ( .F) is not locally free . The singular set Sing(w)
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of an unfolding or of a foliations w : F

	

> Qn,1 is defined as the set of points
where SZm1w(.F) is not locally free . By the Theorem of Frobenius (see [Ch]),
we may find at a non-singular point of w (or of w) coordinates (t, w1, . . . , wn)
such that w(.F) C S2, (respectively w(.F) C Qm ) is generated by dw l , . . . , dw9 .
With these coordínate charts, that are called foliated coordínate charts, we
may define on M - Sing(w) (or M - Sing(w)) a geometric foliation Fol(w)
(or Fol(w)) that gives a decomposition ofM- Sing(w) into a disjoint union of
connected complex submanifolds, which in general are only inmersed and called
the leaves of the foliation, that are locally defined by wj = Kj , j = 1, . . . , q .
We may associate to a family of foliations w : F -) Q,r a foliation on the

total spaceM which has the same leaves as Fol(w) . This is done by taking the
inverse image of w in (3 .1) to obtain an exact commutative diagram :

0

	

---,

	

,r* 52,11

	

-->

11
(3.4)

	

0

	

-->

	

7F*QM

	

-->

(3 .5)

0

	

0
1

	

1

f, w

	

f, rw

52n~ n--> St, 0

An 0,+,-submodule G of Qn+1 (or of 52,) is full if G is equal to its double
dual G**, where the duality is the one between 1-forms and vector fields, (or
between relative 1-forms and relative vector fields, respectively) . We will say
that a germ of a family of foliations w : F ---> Qn (or a germ of a foliation
w : F --> Q,,+1) is full if w(F) C Hn (or w(F) C Qn+1 ) is a full submodule.
Similarly an Oml-submodule of QM, . . .,etc . is full if the stalk over every point
ofM is full . The fullness condition is useful, since a full foliation is completely
determined by the foliation at the non-singular points .

Theoren7 3.3 . Let w : F ---> Q,,+1 be a germ of a full unfolding of a family
of foliations w : F ---> Q,r . w is a trivial unfolding if and only if these is an
On+1--module isomorphism

Proof.. If w is a trivial unfolding, then we may find a neighbourhood and a
biholomorphism over 7r such that w has the form w = 0 ® wo , where wo is the
induced foliation in {O} x Cn, as in (3 .3) . In these coordinates, the extension
class in Proposition 2.2 is b(O) = 0 ; hence we have (3.5) .
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Conversely, assume that (3.5) holds . This condition means that the extension
class in Proposition 2.2 is 0, and so by Proposition 2.2 we may find a germ of
a holomorphic vector field 1 as in (2.4) tangent to the distribution . Extend
everything to a neighbourhood of 0 .
By integrating X with initial conditions on {0} x Cn we obtain a biholo-

morphism over C. Using this biholomorphism as a change of coordinates, we,
may assume that .I' is át . In the following argument we will make use of the
integrability conditions. We will first argue at the nonsingular points of the
foliation, and then use the fullness hypothesis to extend the conclusion to the
singular points .

Restrict to an open set U = O1 x 0 � of C x Cn which is the product of small
disks around the origin . Let V be a connected open subset in U - Sing(w)
such that for every z E 0 � we llave that V n 7r2 1 7r 2(z) is connected, where
7r2 : A1 x On -> On is the projection to the second factor . We claim that
7r2 11r2(V) is conta.ined in U - Sing(w) and that the unfolding there is the
pullback of a non-singular foliation in 7r2(V)

To see this, observe that Fol(w) in V is non-singular and tangent to át,
so if we intersect V with a set of the form {t} x On, it will induce a non-
singular foliation there, of the same codimension . Project it to 7r2(V) . These
foliations coincide for distinct values of t, since the foliation is tangent to &t and
V fl7ri 1(z) is connected . By pulling back this foliation, we obtain two foliations
in 7r2 1 7r 2(V ), one of them non-singular, . the other one full, and they coincide
on an open non-empty subset . By the principle of analytic continuation, they,
coincide at the non-singular points of Fol(w) ; but since w is full, actually they
coincide . This proves the claim.

If we denote by w the trivial extension as an unfolding to the restriction of w
to {O} x On, as in (3.3), the preceeding argument shows that Fol(w) and Fol(w)
llave the same singular set, and that they agree at the non-singular points .
Since w is full by hypothesis, this implies that we llave the sheaf inclusion

(3.6)

(3.7)

	

19(t, z) =

(D((.F ®o, CO)®CCC) C w(.F)

We must still show that they coincide . Let 19 be an element in the right hand
side of (3.6) . Expand 19 as a power series in t

í9j(z)t

where the í9 j (z) are holomorphic 1-forms on On . We claim that each 19j belongs
to the left hand side of (3.6) . To see this, observe that i9 o is the restriction of 19 to
0 x On . Hence by definition it lies on the left hand side of (3 .6) . Now t-1 (i9 -t9o )
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belongs to the right hand side of (3.6) on the complement of {0} x On, so by
fullness also on all of U . Repeating the argument for this new 1-form, we
obtain that t9 1 also belongs to the left hand side of (3.6) . By induction then,
all 19 j belong to the left hand side of (3.6) . By properties of closures under
convergence in compact sets of sections of a coherent sheaf, see [G-R], we then
have that the sum (3.7) also lies in the left hand side of (3.6) . This proves
equality, and hence the theorem .

Proposition 3.4 . Letw : .F ----+ QM be a-n unfolding of a family offoliations
w : .F -+ 52 ., . Then

1) Sing(w) C Sing(w)
2) Sing(w) - Sing(w) is the set of points p of M - Sing(w) such that the

leaf of Fol(w) through p is tangent to M,(,) at P.

Proof.. 1) We prove that M - Sing(w) C M - Sing(w) . At a non-singular
point of w we have that (52,/w(.F))p is locally free, but since all extensions of
locally free modules by locally free modules are trivial (i .e . Ext'(AJw(.F1,
(1r*Qc)p) = 0), we also have by (2.3) that (Qm/w(.F))p is free . Hence p E
M- Sing(w).

2) Let p E M - Sing(w) . Then .Fp is locally free at p, and so is ~p in (3.4) .
The map w : .F --> S2m in (3.4) has the serme cokernel sheaf as rw : .F ->
52,, so we are looking for a criterium under which (S2M/w(JF))p is free . Let
dt,191, . . . ,19y be a basis for w(F)p. The point p is non-singular for Fol(w) if
and only if dt(p),19 1 (p), . . . 19q(p) are linearly independent as elements in the
cotangent space to M at p . Since p 1 Sing(w), we have that 191(p),_ ,19q (p)

are linearly independent ; so p is non-singular for Fol(w) if and only if the leaf of
Fol(w) through p is not tangent to D7,~(p) at p . This proves the proposition .

4 . Global unfoldings of foliations

Let 7r : M ---4 0.1 be a proper smooth holomorphic map onto the the unit
disk O1 in C, and let w : F ---> 52,M be an unfolding of a family of holomor-
phic foliations w : .F > 52, . The lower row in (3.2) shows that S2M/w(.F)
is an extension of S2~lw(.F) by vr*Slo , . Recall (see [G-H] p .705 or [H-2]
p .237) that these extension classes are classified by elements in the global
Ext'(M;vr*Qo1 ) group .

Theorem 4 .1 . Let 1r : M -> O1 be a proper and smooth morphism onto
the unit disk O1 in C, and let w : 'F -> s2M be a full unfolding of a family of
foliations w : F -> S2n . w is a trivial unfolding oven 0 E O1 if and only if
after shrinking the disk A1 there is an O,m-sheaf isomorphism

QAa/w(,F) _ -*S2o, ® Qn/w(F)
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Proof:: If w is a trivial unfolding over 0, then we may find a neighbourhood of
Mo and a biholomorphism over 7r such that w has the form w = 0 ® Wo, where
wo is the induced foliation in Mo, as in (3 .3) . After applying this isomorphism,
we clearly have (4.1) .

Conversely, assume that (4 .1) holds . There is a long exact sequence of global
Ext groups associated to the functor Hom(M; - , 7r*520 1 ) applied to the right
hand column in (3.2) :

(4 .2)
0

	

Hom(M;

	

7r*SZo l)

	

-3

	

Hom(M; 52,r , 7r*5201 )

(4.3)

-t

	

6
Hom(M; .F, 7r*5201 )

Extl (M ; 52,, 7r*S2o1 )

X E HO (M,O, r ) - Hom(M;S2,r,7r*5201)

Extl (M ; 52,11w(F), 7r*SZá, )

There is a canonical element 1 E Ext l (M ; 52,1, ir*5201) which represents 52M
as the extension in the middle row of (3 .2) . Recalling that Ext i(M ; 52,, 7r* '"O1 )
is isomorphic to H'(M,O,), we see that this element is thé Kodaira-Spencer
class of the family of varieties {Mi } (see [K-SI) . Using the isomorphism be-
tween this extension and QM, we see that e- '(j) in (4.2) represent all the
unfoldings of w as a family of distributions, as in diagram (3.2) .
The hypothesis (4 .1) is then equivalent, after shrinking Al to a smaller disk,

to having the unfolding w represented in Ext l(M ; 52n/w(F), 7r*520 1 ) by the 0
element . Since e(0) = 0, we deduce that the family 7r is the trivial family :
M = Di x Mo . In this case, by the conmutativity of (4.2), we may represent all
unfoldings by means of elements of Hom(M; .F,ir*5201 ). Since by hypothesis
the unfolding w is inducing the trivial extension, again by the exactness of (4.2)
we may find an element

The holomorphic vector field X = ác - X is, as in the proof of Proposition
2.2 and Theorem 3 .3, tangent to the unfolding w and its integral 1-parameter
group sends 7r-fibres to 7r-fibres . We ma.y then use this vector field, as in the
proof of Proposition 2.2 and Theorem 3.3, to show that the unfolding is trivial .
This proves the Theorem .

In order to compute if an unfolding induces a trivial extension (4.1), we may
use one of the spectral sequenes associated to the global Ext construction,
which gives an exact sequence :

--3 H1 (A1I,T) -> Extl(M;52'/w(F),ir*"O1)

HO(M; Ext' (Q,r/w(f), 7r*520 1 ))
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where T is the sheaf of germs of relative holomorphic vector fields tangent to
the family of foliations w, whose stalk over p E M is

Tp = {Y E 0,,pIW(f) ° X = 0,df E Pp}

It is the annihilator subsheaf of F under the natural pairing of 9, and 0n . The
sheaf £xtl (S2n/w(.~), *S2o , ) has as stalks the local £xtl discussed in section
2, and it has support on Sing(w) . The map p associates to an extension e the
local invariants p(e)p that measure the non-triviality of the extensions at the
points p of M. The kernel of p consists of those extensions that are locally a
direct sum at every point of M, and are parametrized by H1 (M,T) .

5 . Unfoldings of holomorphic foliations by curves

In this section we obtain a criterium for a foliation by curves to have only
trivial unfoldings .

Definition 5 .1 . A family of foliations by curves in n : M --> ~k 1 C C may
be defined by a holomorphic. map X : ,C -> 0., from an invertible sheaf ,C on
M to the relative tangent bundle 0, such that Jr' does not vanish identically
along a ir-fibre . The coherent sheaf F defined as the kernel of the sheaf map
obtained by dualising X:

defines the family of foliations associated to X, in the sense of definition 3.1 .
By an unfolding of the family of foliations by curves X, we understand an
unfolding of Co . An unfolding of a foliation by curves Xo : £0 --+ OM,, in the
manifoldMo is an unfolding of any family of foliations by curves X : .C --> 0,
on M, n : M -> O1 C C a smooth holomorphic map such that 7r-1 (0) = Mo
and Xim. = Xo . If Mo is compact, we assume that the map n is proper.
The singular set S of the family of foliations by curves defined by (5.1) is the

subspace ofM defined locally by the ideal (XI, . . . ,Xn ) C OU, where

n
(5.2)

	

X = ~Xj(t,z)~
j=1

is an expression of X in local coordinates of U C M, after having trivialized
G = OU . We may form two short exact sequences from (5.1) :

-> 9,r/w(.F) - 0(5.3)

and

(5.4)

	

0 --> 52,/wJ) -> G* --> CokX* --> 0
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where S2,/w(F) = ZmX* is locally isomorphic to the ideal generated by
(X l . . . . , Xn) C OU = £¡U, where we are using the expression (5.2) . CokX* is
a sheaf supported on S .

Recall that a complex analytic subspace V C M in the complex manifold
M has depth at least r at p if we may find germs f1, � , fr of holomorphic
functions at p belongirig to the ideal defining V such that they form a regular
sequence, namely for j = 2, . . . , r we have that fi is -not a divisor of zero in
0pl(f , . . . , fj-1)., . (see [G-H], p . 688, or [H], p . 36) .

Theorem 5 .2 . Let X : ,C -> 6, define a family of holomorphic foliations
by curves w : .F --> 52 ., in 7r : M -> Di C C . If the singular set S = {X = 0}
has depth at least 3 in M, then:

and

(5 .6)

	

Exti(M; SZ,/w(.F), ir*SZá I ) =Hl (M,£)

If we further assume that ir is a proper"map -and H1(Mo ,£ 0 ) = 0, where .C o is
¡he restriction of .C to Mo = ir-1 (0), then every unfolding of X is trivial .

Proof:: Let U be an open subset of M where the foliation is defined by the
vector field X as in (5.2) . Denote by Z the sheaf of ideals on U generated by
(X1, . . . ,Xn) . The .hypothesis that Shas depth at . least 3 is equivalent (see
[H], p .39) that for j = 0, 1, 2 we have on U

Consider the long exact sequence of Ext-sheaves associated to the functor
I-lom(*, OU) applied to

0 --, Z --> OU --> OUlI --) 0 .

From it, and the aboye observation, we deduce that Ext l (Z,OU) = 0 . This
proves (5.5) . We deduce now (5.6) from (5 .5) and (4.3) .
The last assertion follows from (5.6), since by upper-semicontinuity of co-

homology for flat families of sheaves, (see [H-2], p . 288 and 250) and the
hypothesis Hl (Mo, .Co) = 0 implies Hl (M,£) = 0.

Theorem 5.3 . Le¡ Xo : .Co -) OMo be a foliation by curves with isolated
singularities in ¡he compact manifold Mo . Assume that Mo has dimension at
least 3 and H1 (Mo, w) = 0; then every unfolding of Xo is trivial.

Proof.. Let X : ,C --> 6, be a family of foliations by curves that extend Xo ,
and let X t be its restriction to Mi. The singular set S of X has dimension 1,
since its intersection with the fibres Mt is a finite number of points ([G-H], p .
662) . Hence S is locally a complete intersection, and so Theorem 5 .2 applies .
As a particular case we obtain :
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Corollary 5.4 . Let X'o be a homogeneous polynomial vector leld inducing
a foliation by curves in the projective space CP", n >_ 3, with isolated singula-
rities ; then any unfolding of Xo is trivial .

Proof.: By a Theorem of Serre ([H-2], p . 225) for any invertible sheaf Go on
CPn , n > 2, we have H1 (CP n , £o) = 0 . Hence Corollary 5.3 applies .

We say that a singularity p of a foliation by curves Xo : £o --) O,ylo in
Mo has non-vanishing trace if the trace of the linear part at p of a vector
field Yo defining the foliation in a neighbourhood of p is non-zero ; 1 .e ., if Yo
j:n 1 Yl(z) 1919, then ~j-1 á (po)

	

Q.

	

We also say that the singularity p
above has multiplicity 1 if the ideal generated by Y,, . . . , Yn in the local ring
Om. 1, of germs of holomorphic functions on Mo at p is the maximal ideal .

Theorern 5 .5 . Leí Xo : .Co --> OMo be a foliation by curves with iso-
lated singularities in the compact complex 2-dimensional manifold Mo, such
that every singular point has multiplicity 1, non-vanishing trace, and we have
Hl (Mo , .Co) = 0; then every unfolding of Xo is trivial .

We will first prove the following :

Lemma 5.6 . Let Xo be a germ of a holomorphic vector field in (C2 , 0),
having 0 as a critical point of multiplicity 1 and having non-vanishing trace.
Then, any germ of an unfolding of A'o as a foliation is trivial .

Proof:: A germ of a family of foliations by curves may be described by a
germ of a family of vector fields Xt = B(z1, z2, t)1919 1 - A(zl, z2, t) aáz . Since by
hypothesis Xo has multiplicity 1, we may a£ter a change of coordinates assume
that 0 is the only singular point of Xt and it has multiplicity 1 . This may also
be stated by saying that the ideal generated by A and B in OC3 o is (z1, Z2)-
A germ of an unfolding of the family of foliations Xt may be described

by a germ of a holomorphic 1-forin w = A(zl, z2, t)dzl + B(z1, z2, t)dz2 +
C(z1, z2, t)dt which satisfies the integrability condition w n dw = 0 . Writing
out the integrability condition, we obtain :

19B + aC

	

aA
+

19C

	

DA
+
aB

wndw _ [A(--

	

-) _ B(--

	

-) + G'(--

	

-)] dzl ndz2ndt = 0
at az2	19t Óz1 az 2 19x1

Restricting now to the singular set S of the family of foliations Xt , defined
by A = B = 0, we obtain on S the equality C(- á' + áB ) . Observe that
the factor within the parenthesis is the trace of Xt , and Since we are assuming
that it is non-zero, we obtain that C = 0 restricted to S . In germs of ideals,
this means that C is a section of the ideal defining S (Since S is reduced), so
that we may find germs of holomorphic functions P and Q in (C3 , 0) such that
C = PA + QB. Now, define a germ of a holomorphic vector field in (C3 , 0) by
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Y = -Paal - Q --L + át . We then have that w(Y) = 0, which means that Y is
a vector field tangent to the unfolding . Arguing now as we did in Theorem 3.3,
we deduce that the germ of the unfolding is trivial . This proves the Lemma.

Proof of the Theorem : Let w be an unfolding of the foliation by curves Xo .
By Theorem 4.1, this unfolding is trivial if and only if the associated extension
class e in Extl(M;S2,/w(.F),ir*2o,) is 0. We use the sequence (4 .3) to show
that it is 0 .

First, p(e) E Ho(M ; £xtl(52,~/w(.F), w*9o1 )) is 0, since by Lemma 5.6 the
unfolding is locally trivial as a germ at every singular point, and this section
measures exactly this local obstructions . But then by the exactness of (4.3)
we have that e is in the image of H'(M,T). By the upper semicontinuity of
cohomology groups in fiat families (see [H-2], p . 288) we have H'(Mt , .C t) = 0,
and then using the degenérate spectral sequence associated to the higher direct
image functors of 7r (see [H-2], p.250), we have that H'(M,T) = 0 . This then
shows that e = 0, and so the unfolding is trivial . This proves the Theorem .

Corollary 5 .7 . Let Xo be a homogeneous polynomial vector field inducing
a foliation by curves in the projective plane CP 2 , with only singularities of
multiplicity 1 and non-vanishing trace; then any unfolding of Xo is trivial .

Proof.. By a Theorem of Serré ([H-2], p . 225) for any invertible sheaf Go on
CP2 , we have H1(CPZ,£o) = 0 . Hence Theorem 5 .5 applies .
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