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UNFOLDINGS OF HOLOMORPHIC FOLIATIONS

X AVIER GOMEZ-MONT

Abstract

The sobjective of this paper is to give a criterium for an unfolding of a
holormorphic foliation with singularities to be holomorphically trivial.

1. Introduction

An unfolding is a holomorphic foliation with singularities F in the complex
manifold M, with 7 : M — A; C € a smooth holomorphic map, defining a
family of foliations F; in the family of complex manifolds M, = = 1(#), obtained
by ntersecting the leaves of F with M, (see definitions 2.1 and 3.1}, such that
the leaves of F are not contained in the fibres of n. The leaves of F have one
more dimension than the leaves of F;, and the problem we are addressing in
this paper is to give a criterinm to determine when the family of foliations F; 1s
trivial, that is, they are all biholomorphically equivalent. QThe technique that
we will use to analyse this problem, will consist in measuring the obstructions
to lifting the vector field % on A to a holomorphic vector field ¥V tangent to
the foliation F. If = is a proper map, or a germ of a2 map, then the 1-parameter
group cbtained by integrating ¥ gives the triviality of the unfolding.

We begin by showing i Proposition 2.2 that the local existence of a lhifting
of éf? is equivalent to the triviality of the extension class of the normal sheaves
(i.e. the normal sheaf of the family of foliations F, is a direct swn of the
normal sheaf of the foliation F by the structure sheaf). We do not need the
iuegrability of the foliation for thus first step. In Theorem 3.3 we use the
integrability conditions, and the assumption that the foliation is full, to show
that the triviality of the extension class of the conormal sheaves is equivalent
to the local triviality of the unfolding. We globalize this criterium in Theorem
4.1

Having formulated the triviality of the unfolding in terms of a triviality of
an extension class, we use a spectral sequence to divide this second problem
into two problems: The first is local and concentrated in the singularities of the
foliation, and the second is global and measured by a first cohomology group.
In section 5 we apply the above procedure to foliations by curves. We show
that the local ohstructions vanish if the depth of the singularity set is at least
3, and that the global obstructions are measured by a cohomology group of an
invertible sheaf, which may then be analysed by standard vanishing theorems
{Cartan-Serie’s Theorem B o Kodaira-Nakano). In particular we obtain:
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Theorem 5.3. Let Xy : Ly — O, de a foliation by curves with isolated
singularities in the compact manifold My. Assume thet My has dimension al
feast § and H'{(My, £o) = 0; then every unfolding of Xo is triviel.

We finish by analysing the case of foliations by curves in surfaces:

Theorem 5.5. [G-O] Let Xg : Lo — Our, be a folintion by curves with
1solated singularities in the compact complex 2-dimensional manifold My. As-
sume that H'(My, Lo} = O and that every singular point has muliiplicity 1 and
non-vanishing trace; then every unjfolding of Xo s irimal

The method we present in this paper is a generalization of an idea of Hias-
henko [1]. He originally applied it to foliations by curves in the complex pro-
jective plane tangent to a line, where after taking affine coordinates of the
complement of the line he applied Noether’'s AF+BG Theorem (see [GHH] p.
703) instead of carrying out the cohomological computation.

1 would like to thank J. Girbau, M. Nicolau and R. Castelet for prowdmg a
stimulating atmosphere during the elaboration of this research at the Centre de
Recerca Matematica at the Universitat Autdnoma de Barcelona, in Catalunya.

2. Local unfoldings of distributions

Let
7:ExC* —C, wlt,z)=1t

with t € C and 2 = {231, ...,2n) € C", be the projection of € x C™ to the first
factor. # induces a ring homomorphism

‘JT’ H Ol — On_g,l

from the ring of germs of holomorphic functions at 0 in € to the ring of ho-
tomorphic functions at 0 = (0,0) in C**1. If we denote by .41 and {; the
(free) modules of germs of holomorphic 1-forms on €™*! and C, respectively,
and by #*§l; the O, —module 180, On4, then the pull back of i-forms
under 7 extends to an exact sequence of O, .;-modules

(2.1) 0 — Q) — Qg — Qp — 0

where the right hand term is the {free} O, i—module of relative differential
1-forms to 7 and p is the projection map.

An element ¥ of Q,41 may be written as d = b(i,z)dt + 2:;;1 aj(t, z)dz;
and it may be interpreted as describing a possibly singular distribution of co-
dimension one planes in some open neighbourhood of § in C**1. Its projection
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() may be interpreted as a l-parameter family of distributions defined in
neighbourhoods of 0 in C™ by Zr‘ y 6;{t, z)dz; and it describes the family of
distributions obtained by intersecting the distribution defined by ¥ with the
hyperplanes tangent to the m—fibres.

Definition 2.1. A germ of a family of (singular holomorpkz'c) distribuiions
is an injective Opy;~module map & defined from an O, +;-module F into {Q,,
and giving rise to the short exact sequence of O,4;-modules:

{2.2) 0— F-2 0, — Q. /a(F}— 0

An unfolding of a germ of a family of distributions ©: F — {1, is a lifting
of & to an Op,y morphism w : F — Q.. We will also call an injective
morphism  w: F —» Q,¢; a germ of a (singular holomorphic) distribution
and if @ = pow is an injective 4 -module map, we will call w 2 germ of an
unfolding with & as underlying family of distributions.

Remark: The recquirement that & is an injective map means that the image
of w does not contain elements of the form b(t, z)dt, or equivalently, that the
planes defined by the unfolding are not all contained in the tangent planes to
the m—fibres.

An unfolding gives rise to an exact commutative diagram of O, ,-modules:

0 0
! 1
F = F
lw l&
(2.3) 0 — =9, — Qrt1 2, Q. — 0
i 4 !
60 — 7' — Quufu(F) — Qfo(F) — 0
H !
0 0

Proposition 2.2. [Letw: F — Q. be a family of disiributions, then:

1} There is o one 1o one correspondence between the unfoldings of F and the
elements in Hom{F,x*(;) & F*.

2) The maep which wsssoctales to each unfolding n & < the extension cluss of
Qnf@(F) by 7*Qy in the lower row of (2.3) is the coboundary morphism § of @
long ezact sequence of Ext-groups.

3) If the above extension class 8{n) i3 0, then we may find o germ of a
holemorphic vector field tangent to the distribution of the form

v =0 Syl
(2.4) X=- Z;A}(:,z)a%
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Proof: Since the middie vertical sequence splits, 1,4, = 7*8; @ Q,, we may
write w = 5 @, where n € Hom(F,n*(})) = F™*. This proves part 1.

The long exact sequence of Ext-modules associated to the functor
Hom{ - ,#*Q;) applied to the right hand column in (2.3} is:

(2.5)
0 — Hom(Q,/o{F),n* ) — Hom(Qg, 7" )

Hom(F,m'y) - Eat'(Q./a(F),x*Q) -~ Bot{{Qe, Q) —

The kernel of ¢ corresponds to those extensions that induce the trivial extension
of 0y by 7*{1;, and these extensions are described as images of § by means of
elements 7 € Hom(F, n*$1;). This proves part 2,

If éfn) = 0, then by the exactness of {2.5), we may find an extension # :
Qr — 70y of g F — #*2; that Is, there is a relative vector feld

n ) 3 ]
X = ;"\ja_zj €, = HO??I(QW,O“+1)E Hom(Qﬂ);r Ql)

such that if for f € F we have &(f) = )_ o;(f)dz; then
w(f) =Pt + ) a;(f)dz; =

(Y a;(fdz;) 0 (3 ng%)dt + 30,

where o evaluates a I--form on a vector fleld through the natural duality. Hence
we have

W(f) =D a;(F)X;)dt+ > a;(f)dz

Define now X as in (2.4) using the previously obtained components X;, and
then

wifyoX =7 a;(H)X; =Y a;(f)X; =0

_Hence X is tangent to the distribution defined by w(f) for every f € F, s0
X is tangent to the distribution defined by w. This finishes the proof of the
proposition. B

To further exploit the vector field (2.4), we need to impose the integrability
conditions to the distribution. Although the statement {Theorem 3.3) is local,
the proof we present is semi-local; so we will begin the next section with global
definitions of foliations and unfoldings of foliations.
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3. Local unfoldings of foliations

Let 7 : M — € be a smooth holomorphic map between the complex mani-
fold M of dimension n+1 and the complex line C. The fibers of #71(¢) = M, of
7 are smooth complex manifolds of dimension n. If My is compact, we will also
assume that = is a proper map onto its image. Overall, we will be interested
in a neighbourhood of My, so we consider C as a pointed space (C,0), and we
shrink the neighbourhoods arcund M.

We will denote by

OM:QM:QM:QF}OT

the sheaves on M of germs of holomorphic functions, 1-forms, vector fields,
relative 1-forms, relative vector fields, and

n412

w=@ N, o= é/\pﬂar and 77l = Qe®ocOn
p=0

p=0

where the first two are the sheaves of exterior algebras of differential and relative
differential 1-forms, respectively, with derivatives d and dr, where d is a C-
linear map and d, is O¢-linear. Given a subset 4 C %, we will denote by
A - " the sheaf of ideals generated by the elements of A.

We obtain an exact sequence of sheaves on M, as in (2.1)

(31) O‘--—‘??I'*Qc——-fQM—prQ,r—rO

Definition 3.1. A family of distributions (or a distribution) on M is an in-
jective Qys-morphism & 1 F — 2, {respectively, an injective Og-morphism
w : F — §1y) from the coherent sheaf F on M. The singular set Sing(w)
{or Sing{w}) of the family of distributions (or of the distribution) is the set of
points where Q. /G(F) (or Qar/w(F)) is not locally free.

A family of foliations {or a foliation, or an unfolding of a family of foliations)
is a family of distributions & : F — {1, such that on the non-singular points
of w(F) we have d (w(F)) C w(F)- - $I (respectively, a distribution w :
F — Q3¢ such that on the non-singular points of w(F} we have d{w(F}) C
w(F)- Q3 , and for an unfolding we recquire that w is a foliation and the
morphism of Op—sheaves & = pow 1 F — £, s injective).

We also say in the preceeding definition that the germs of distributions are
involufive. We will always consider an unfolding of a family of foliations as being
involutive. An unfolding on M gives rise to an exact cormmutative diagram of
O p—modules: :
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0 0
! !
a = F
lw L@
(3.2) 0 — 7ec — Qus £, Qe —5 0
I ! . l
0 — Qe — Qu/w(F) — Qfo(Fy — 0
1 1
0 0

The process of restriction to the fibre M, is carried out by tensoring with
®oC: , where €, = O¢/m, and m, is the sheaf of ideals in O¢ associated to
thepointt€ C. lf @ : F — Q, is a family of foliations, then its restriction to
Mg is .

@i FOo O — 80,0 = Oy,

which may be considered as an Oy, -morphism, and after dividing by its kernel
{if it is not injective) it defines a foliation on M,.

Given wy : Fy — (¥, & foliation on My, its trwial extension te g family of
foliations is defined on 7 : My x € — € by

(3.3) w=weRcid : FoRcOc — QM0®COC ~ 0.

and its iriviel extension as an unfolding by further defining w = n @& & with
={.

fo: F— ), (orw: F— Q,4) is a germ of a family of foliations {or a
foliation or an unfolding), then it extends to a family of foliations (or a foliation
or an unfolding} in a neighbourhood of 0. This may be realized by extending
a set of generators of F'. By coherence, this extension is unique In a perhaps
smaller neighbourhood of 0.

Definition 3.2. Two unfoldings w; : F; — Qp;,5 = 1,2 (or fami-
lies of foliations w; : F; — Q) are isomorphic if there is a biholomor-
phisms & : M — M? over C {i.e. it induces the identity on C) such that
wi{Fy} = *wa(F,), where " is the natural action of ® on 1-forms (respec-
tively oy {Fy} = "9 F2)). We say that an unfolding w : F — 4 is trivial
over 0 {or that a family of {oliations @ is trivial over 0) if w (or @ , respectively)
is isomorphic to the irivial extension of the restriction of w to My in some
neighbourhcod of the fibers over 0 € C. A germ of «n unfolding at 0 € Cx C®
is trivial if there is a neighbourhood of 0 where the unfolding is trivial.

The singular set Sing(®) of a family of foliations w : F — §2. is defined as
the set of points where §3, /& (F) is not locally free. The singular sef Sing{w)
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of an unfolding or of a foliations w: F — ;¢ is defined as the set of points
where Qar/w(F) is not locally free. By the Theorem of Frobenius (see [Ch]},
we may find at a non—singular point of © {or of w) coordinates (t,wy, ... ,wn)
such that @(F) C Qx (respectively w(F) C $ar) is generated by dws, ... ,dw,.
With these coordinate charts, that are called foliated coordinaie charts, we
may define on M — Sing(w) (or M — Sing(w)) a geometric foliation Fol(w)
(or Fol()) that gives a decomposition of M — Sing(®) into a disjoint union of
connected complex submanifolds, which in general are only inmersed and called
the leaves of the foliation, that are locally defined by w; = K; , 7 =1,...,¢.

We may associate to a farnily of foliations @ : F — (2, a foliation on the
total space M which has the same leaves as Fol(®@). This is done by taking the
inverse irnage of & in (3.1) to obtain an exact commutative diagram:

0 )
! l
6 — ﬂ*QM — F — F — 0
I 1@ @
(3.4) 6 — w* Qat 2, Qs — 0
I i
Qu/o(F) = Q. fe(F)
{ )
0 0

An O, 1-submodule G of §3,4; (or of Q) is full if & is equal to its double
dual G**, where the duality is the one between 1-forms and vector fields, {or
between relative 1-forms and relative vector fields, respectively). We will say
that a germ of a family of foliations @ : ' — {2, (or a germ of a foliation
w: F = Quyy)is fullif ©(F) C 0, (or w(F) C aq1) is a full submodule.
Similarly an OQyr-submodule of Qpy,....etc. 1s full if the stalk over every point
of M is full. The fullness condition is useful, since a full foliation is completely
determined by the foliation at the non—singular points.

Theorem 3.3. Letw: F — Q,1) be a germ of a full unfolding of o famaly
of foliations @ + F —— Q. w is a triviel unfolding if and only if there is an
Oy~ module isomorphism

(3.5) Qi /A F) = 7°Q) @ Q0 /a( F)

Proof: H w is a trivial unfolding, then we may find a neighbourhood and a
biholomorphism over x such that w has the form w = 0 & wy, where @y is the
induced foliation in {0} x C®, as in {3.3). In these coordinates, the extension
class in Proposition 2.2 is 6{0) = 0; hence we have (3.5).
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Conversely, assume that (3.5) holds. This condition means that the extension
class in Proposition 2.2 is 0, and so by Proposition 2.2 we may find a germ of
a holomorphic vector field X as in (2.4) tangent io the distribution. Extend
everything to a neighbourhood of 0.

By integrating X with initial conditions on {0} x C™ we obtain a biholo-
morphism over C. Using this bihclomorphism as a change of coordinates, we.
may assume that X is 3‘%— In the following argument we will make use of the
integrability conditions. We will first argue at the nonsingular points of the
foliation, and then use the fullness hypothesis to extend the conclusion to the
singular points.

Restrict to an open set I = Ay x A, of C x C™ which is the product of small
disks around the origin. Let V be a connected open subset in U — Sing{w)
such that for every z € A, we have that V 1 #; 7p(2) is connected, where

ma Ay X A, — A, is the projection to the second factor. We claim that
7y 'm{V) is contained in U — Sing{w) and that the unfolding there is the
pullback of a non-singular foliation in 72(¥)

To see this, observe that Fol(w) in V' is non-singular and tangent to %,
so if we intersect V with a set of the form {f} x A,, it will induce a non-
singular foliation there, of the same codimension. Project it to m{V). These
foliations coincide for distinct values of ¢, since the foliation is tangent to £ 3: and
Vﬂn’! ( }is connected. By pulling back this foliation, we obtain two foliations
in my '72{V), one of them non- singular, the other one full, and they coincide
on an open non-empty subset. By the principle of analytic continuation, they
coincide at the non-singular points of Fof{w); but since w is full, actually they
coincide. This proves the claim.

If we denote by & the trivial extension as an unfolding to the restriction of w
to {0} x Ay, as in {3.3), the preceeding argument shows that Folfw ) and Fol(w)
have the same singular set, and that they agree at the non-singular points.
Since w is full by hypothesis, this implies that we have the sheaf inclusion

(3.6) W((F ®oy Co)®cOc) C w(F)

We must still show that they coincide. Let ¢ be an element in the rlght hand
side of (3.6). Expand @ as a power series in t

(3.7) 9t 2) = iﬁj(zyti
i=1

where the J;{z) are holomorphic 1-forms on A,,. We claim that each J; belongs
to the left hand side of (3.8). To see this, observe that 9, is the restriction of 4 to
0xAy,. Hence by definition it lies on the left hand side of {3.6). Now ¢~} { —¢)
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belongs to the right hand side of {3.6) on the complement of {0} x An, so by
fullness also on all of I/. Repeating the argument for this new l-form, we
obtain that ¥, also belongs to the left hand side of (3.6). By induction then,
all 9; belong to the left hand side of (3.6). By properties of closures under
convergence in compach sets of sections of a coherent sheaf, see [G~RJ], we then
have that the sum (3.7) also lies in the left hand side of (3.6). This proves
equality, and hence the theorem. @

Proposition 3.4, Letw : F — s be an unfolding of ¢ fomily of foliations
w: F — Q.. Then

1} Sing{w) C Sing(®)

2) Sing(w) — Sing(w) is the set of points p of M — Sing(w) such that the
leaf of Fol(w) through p is tangent to My, at p.

Proof: 1) We prove that M — Sing(w) C M — Sing(w). At a non-singular
point of w we have that (. /&(F)), is locally free, but since all extensions of
locally free modules by locally free modules are trivial (i.e. Ext {(Qn/@(F)}p,
(7*Qc)p) = 0}, we also have by (2.3} that (Qa/w(F)), is free. Hence p €
M — Sing(w).

2) Let p € M — Sing(w}. Then F), is locally free at p, and so is .?'"-'p in {3.4).
The map @ : F — §la in (3.4) has the same cokernel sheaf as w : F —
., so we are looking for a criterium under which (S /&{(F)), is free. Let
dt,¥;,... ,9, be a basis for Q(ﬁ)p, The point p is non-singular for Fol{w) if
and only if di{p}, %)(p),... ,¥,(p) are linearly independent as elements in the
cotangent space to M at p. Since p € Sing(w), we have that §,(p),... ,9,4(p)
are linearly independent; se p 1s non-singular for Fol(w) if and only if the leaf of
Fol{w) through p is not tangent to Ma(, at p. This proves the proposition. |

4, Global unfoldings of foliations

Let 7= : M — A, be a proper smooth holomorphic map onto the the unit
disk Ay in €, and let w + F — {33y be an unfolding of a family of holomor-
phic foliations @ : F — {l,. The lower row in (3.2) shows that Qs /w(F}
is an extension of Q. /@&{F) by 7*Qa,. Recall {(see [G-H] p.705 or [H-2]
p.237) that these extension classes are classified by elements in the global
Ext!{M; Qn/@{F), "0, ) group.

Theorem 4.1. Let 7 : M — A; be a proper and smooth merphism onio
the unit disk Ay i C, and let w 1 F — Qpr be o full unfolding of a family of
foliations @ 1 F — Qn . w is & triviel unfolding over 0 € Ay of and only of
after shrinking the disk Ay there is an (Op-sheaf isomorphism

(4.1) Qp fw(F) = "y, © Qe fo{F)
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Proof: If w is a trivial unfolding over 0, then we may find a neighbourheood of
My and a biholomorphism over 7 such that w has the form w = 0 @ @y, where
&g is the induced foliation in My, as in (3.3). After applying this isomorphism,
we clearly have (4.1). _

Conversely, assume that {4.1) holds. There is a long exact sequence of global
Ext groups associated to the functor Hom{M; — ,7n*Qa,) applied to the right
hand column in {3.2):

(4.2)
0 — Hom{M;Q./0{F},7*Q4s,) — Hom(M; 0y, 7*QA,)
2 Hom(M;F,n*Q,)  —> Eat'(M;Qr/a(F),m*Qa,)
— Ext’ (M;Q,, 7" Qa,) —

There is a canonical element £ € Ext*(M;,, 7" (s, ) which represents Q3
as the extension in the middle row of (3.2). Recalling that Ext!(M;Q,, 7" Qa, )
is isomorphic to H!(M,©,), we see that this element is the Kodaira-Spencer
class of the family of varieties {M;} (see [KK—S]}. Using the isomorphism be-
tween this extension and Qu, we see that e¢71(€) in (4.2) represent all the
unfoldings of @ as a family of distributions, as in diagram (3.2).

The hypothesis {4.1} is then equivalent, after shrinking A; to a smaller disk,
to having the unfolding w represented in Eat’{M; Q /@ F), n*a,) by the 0
element. Since (0} = 0, we deduce that the family 7 is the trivial family:
M = Ay x My. In this case, by the conmutativity of (4.2}, we may represent alt
unfoldings by means of elements of Hom{M; F,7*024,). Since by hypothesis
the unfolding w is mducing the trivial extension, again by the exactness of (4.2}
we may find an element

X € HYM,0,) = Hom(M;Q,,7"Qa,)

The holomorphic vector field ¥ = £ — X is, as in the proof of Proposition

3
2.2 and Theorem 3.3, tangent to the unfolding w and its integral 1-parameter
group sends w-fibres to #-fibres. We may then use this vector field, as in the
proof of Proposition 2.2 and Theorem 3.3, to show that the unfolding is trivial.

This proves the Theorem. B

In order to compuie if an unfolding induces a trivial extension (4.1}, we may
use one of the spectral sequences associated to the global Ext construction,
which gives an exact sequence:

0 — HYMT) — Ext! (M Qe /o F),1*Qa, )
(43)
L HYM; Ext* (Qnfd(F), x*0a, )}
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where T is the sheaf of germs of relative holomorphic vector fields tangent to
the family of foliations @, whose stalk over p€ M is

T, ={Y € G, /w(f)o X =0,¥f € F,}

It is the annihilator subsheaf of 7 under the natural pairing of 2, and ©,, The
sheaf £zt (. /&(F), 7*Qa,) has as stalks the local £z¢' discussed in section
2, and it has support on Sing{w). The map p associates to an extension e the
local invariants p(e), that measure the non-triviality of the extensions at the
points p of M., The kernel of p consists of those extensions that are locally a
direct sum at every point of M, and are parametrized by H'(M,7T).

5. Unfoldings of holomorphic foliations by curves

In this section we obtain a criterium for a foliation by curves to have only
trivial unfoldings.

Definition 5.1. A faemily of foliations by curvesin 7 : M — A; C C may
be defined by a holomorphic map X : £ — O, from an invertible sheaf £ on
M to the relative tangent bundie @, such that X does not vanish identically
along a w—fibre. The coherent sheaf 7 defined as the kernel of the sheaf map
obtained by dualising X:

(5.1) 0— 7, X

defines the family of foliations associated to X, in the sense of definition 3.1.
By an unfolding of the family of folietions by curves X, we understand an
unfolding of @. An unfolding of e foliation by curves Xq : Lo — Opy, in the
manifold My is an unfolding of any family of foliations by curves X : £ — O,
on M, 7 : M — A; € C a smooth holomorphic map such that #71(0) = M,
and X)p, = Xo. If My is compact, we assume that the map 7 is proper.

The singular set S of the family of foliations by curves defined by (5.1} is the
subspace of M defined locally by the ideal {X;,...,X,) C Oy, where

i ; a
(5.2) X = J;A}-(t, 2)3—%

is an expression of X in local coordinates of IJ C M, after having trivialized L,
L = Oy. We may form two short exact sequences from (5.1}

(5.3) 0~ F 50, — Q,/0(F) — 0
and

{5.4) 0 — QJAF) — L — CokX* — 0
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where Q;/&{F)} = ImX* is locally isomorphic to the ideal generated by
(X1,...,X,) C Oy = £y, where we are using the expression (5.2). CokX* is
a sheaf supported on 5.

Recall that a complex analytic subspace V C M in the complex manifold
M has depth at least r at p if we may find germs fi,..., fr of holomorphic
functions at p belonging to the ideal defining ¥ such that they form a regular
sequence, namely for ;7 = 2,... ,r we have that f; is-not a divisor of zero in

Cp/(fy,- -+, F5-1), (see [G-H], p. 688, or [H], p. 36).

.Theorem 5.2, Lei X : L — O define a family of holomorphic foliations
by curves @ . F — Qn inw: M — A; C €. If the singular set §$= {X =0}
has depth at least § in M, then:

(5.5) Eet (/o F), 7t Qa ) =0
and _ ' .
{5.6 Ext! (M;Q,/o(F),n"Qa, ) = HY(M, L)

I} we further assume that 7 is a proper map and H*{My, Ly) = 0, where Ly is
the restriction of L to My = w~1(0), then every unfolding of X s trivial

Proof: Let U be an open subset of M where the foliation is defined by the
vector field X as in (5.2}, Denote by T the sheaf of ideals on U generated by
(X1,...,X,). The hypothesis that S has depth at least 3 is equivalent (seé
[H], p.39) that for j = 0,1,2 we have on U

Extly, (Ou/I,0y)=0.

Consider the long exact sequence of £xt—sheaves associated to the funcior
Hom{+, Ou) applied to

0-—7T 0Oy — OylT —0.

From it, and the above observation, we deduce that Ext'(Z,0y) = 0. This
proves (5.5, We deduce now (5.8) from {5.5) and (4.3).

The last assertion follows from (5.6}, since by upper—semicontinuity of co-
homology for flat families of sheaves, (see [H-2], p. 288 and 250) and the
hypothesis H{(My, Lo) = 0 implies H}(M,L) =0. N

Theorem 5.3. Let Xo : Lg — Oy, be a foliation by curves with isolated
singulerifies in the compact manifold My. Assume thet My has dimension ot
least § and H(My, Lo) = O; then every unfolding of Xy 13 trivial

Proof: Let X . £ — O, be a family of foliations by curves that extend X,
and let X, be its restriction to M,;. The singular set § of X has dimension 1,
since its intersection with the fibres M, is a finite number of points ((G—H], p.
862). Hence § is locally a complete intersection, and so Theorem 5.2 applies. N

As a particular case we obtain:
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Corollary 5.4. Let Xy be a homogeneous polynomial vector field inducing
o foliation by curves in the projective space CP™, n > 3, with wsolated singula-
rities; then eny unfolding of Xy s frivial

Proof: By a Theorem of Serre (|[H-2], p. 225) for any mvertible sheaf Ly on
CP?, n > 2, we have HY(CP™®, £Ly) = 0. Hence Corollary 5.3 applies. @

We say that a singulanty p of a foliation by curves Xy @ £ — Opy, n
My has non-vanishing frace if the trace of the linear part at p of a vector
fleld Y, defining the foliation 1n a neighbourhood of p is non-zero; i.e., if Y5 =
Z 1 Yi(2)3 i then Z;:l %(po) # 0. We also say that the singularity p
a,bove has multsphczty 1 if the ideal generated by ¥1,...,¥, in the local ring
Owu, » of germs of holomorphic functions on My at p is the maximal 1deal.

Theorem 5.5. Let Xg 1 Lo — Oy, be & foliation by curves with is0-
lated singularities in the compact compler 2-dimensional manifold My, such
that every singular poini has multiplicily 1, non-vanishing irace, and we have
HY( My, Lo) = 0; then every unfolding of Xg is triviel.

We will first prove the following:

Lemma 5.6, Let Xy be o germ of o holomorphic vector field in (C?,0),
having O as a critical point of multiphcity I and having non-vanishing trace.
Then, any germ of an unfolding of Xo as a foliation is trivial

Proof: A germ of a family of foliations by curves may be described by a
germ of a family of vector fields X, = B(z), zz,t)az — A(=1, zg,t)a Since by
hypothesis Xy has multiplicity 1, we may after a change of coordinates assume
that 0 is the only singular point of X; and it has multiplicity 1. This may also
be stated by saying that the ideal generated by 4 and B in Ogs g is (21, 22).

A germ of an unfolding of the family of foliations X, may be described
by a germ of a holomorphic 1-form w = A(zy,22,t)dzy + B2y, 22,¢)de2 +
({21, 22,t)dt which satisfies the integrability condition w A dw = (. Writing
out the integrability condition, we obtailn:

a8  oC 0A  OC a8
whdw = |A(- —+ —) (_-5t_+a_z1 (— +——) dzyAdzaAdt = 0

Restricting now to the singular set S of the fan'uly of fohations X, defined
by A = B = 0, we obtain on § the equality C{— az ) Observe that
the factor within the parventhesis is the trace of X}, a.nd smce we are asswmning
that it is non—zero, we obtain that C = 0 restricted to 5. In terms of ideals,
this means that C is a section of the ideal defining 5 (since S is reduced), so
that we may find germs of holomorphic functions P and @ in (C3,0) such that
C = PA + QB. Now, define a germ of a holomorphic vector field in (C*,0) by
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V= —Pa—‘zl - Q% + 3‘%. We then have that w(Y') = 0, which means that ¥ is
a vector field tangent to the unfolding. Arguing now as we did in Theorem 3.3,
we deduce that the germ of the unfolding is trivial. This proves the Lemma. W

Proof of the Theorem: Let w be an unfolding of the foliation by curves Xj.
By Theorem 4.1, this unfolding is trivial if and only if the associated extension
class ¢ in Ext!(M;§2, /@(F), 7" 0a,) is 0. We use the sequence (4.3) to show
that it 15 0.

First, ple) € HO(M; Ext* (R /o(F), 7*8a,)) is 0, since by Lemma 5.6 the
vnfolding is locally trivial as a germ at every singular point, and this section
measures exactly this local obstructions. But then by the exactness of (4.3)
we have that e is 1n the image of H(M,7T). By the upper semicontinuity of
cohomology groups in flat families (see [H—2], p. 288) we have H!(M;, L;) =0,
and then using the degenerate speciral sequence associated to the higher direct
image functors of 7 (see (H-2], p.250), we have that H'(M,7) = 0. This then
shows that e = {, and so the unfolding is trivial. This proves the Theorem. B

Corollary 5.7. Let Xy be a homogeneous polynomial vector field inducing
e foliation by curves in the projective plane CP?, with only singularities of
multiplicity 1 and non-vantshing trace; then any unfolding of Xy s trivial

Proof: By a Theorem of Serre ((H—2], p. 225) for any invertible sheaf £, on
CP?%, we have HY{CP?, Ly) = 0. Hence Theorem 5.5 applies. B
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