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LEAVES OF MARKOV LOCAL MINIMAL SETS IN
FOLIATIONS OF CODIMENSION ONE

JOHN CANTWELL, LAWRENCE CONLON

Abstract

The authors continue their study of exceptional local minimal sets with
holonomy modeled on symbolic dynamics {called Markov LMS [C- C 1]).
Here, an unpuhlished theorem of G. Duminy, on the topolegy of semipro-
per exceptional leaves, is extended Lo every leaf, semiproper or not, of a
Markov LMS. Other tapological results on these leaves are also obtained.

Introduction

Let M be a compact, orientable manifold, J a transversely crientable C?
fohation of M of codimension one. Each component of M, if there are any, is
to be a leaf,

Let X be a local minimal set (LMS) of F. That is, there is an open, connec-
ted, F-saturated subset I/ C M and X is a minimal set of F|U. A special class
of such sets, called Markov LMS, was introduced in [C-C 1]. These are excep-
tional LMS such that the holonomy pseudogroup of the foliated set {X, F|X)
1s, in a certain sense, generated by a subshift of finile type (see §1). We will
see, in §6, that every such subshift can occur for suitable Markov minimal sets
m suitable C'*°-foliated 3-manifolds.

Let £(L) denote the set of ends of a Jeaf L C X, a compact, totally discon-
nected metrizable space of ideal points of L at infinity. Let £*{L) denote the
closed subspace of ends that are asymptotic to L. In case X is a minimal set
of F (i.e., we take U = M), it is clear that £(L) = £*(L}.
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N.S.F. Contract DMS - 8420956. The second author would also like to thank the Centre de
Recerca Matématica de institut d'Estudis Catalans, Barcelona, under whose hospitality this
paper was completed.



462 J. CANTWELL, L. C‘ONLON

Theorem 1. Lel X C M be a Markov LMS of F and let L be any leaf of
F|X. Then £7(L) 1s homeomorphic to the Cantor sel.

G. Duminy has proven this for semiproper leaves in an arbiirary exceptional
LMS {unpublished). It is unknown whether his result extends to zll leaves of
the LMS.

Definition. A leaf L is resilient if it has a holonomy contraction and if L
itself is captured by this contraction.

Definition. A handle in L is a compact, connected, nonseparating subma-
nifold H of codimension one, 3H = . The genus of L is the maximal number
of pairwise disjoint handles in L that are linearly independent in H.(L; R).

Theorem 2. Lel X C M be a Markov LMS of F. Then X containg ezactly
a countable infinity of resilient leaves. Furthermore, erther genus{L) = 1, for
each resilient leaf L C X, the remaining leaves of F|X having genus 0, o7 every
leaf L C X has infinite genus and every end € € £¥{L) i3 a cluster poini of
handles.

It was shown in [C-C 1] that each semiproper leaf in X is resilient, but that
there are only finitely many such leaves.

1. Markov LMS

Let m > 2 be an integer and let X denote the Cantor set {1,2,...,m} with
typical element ¢ = (iy,22,... ). Let P = {pi;) be an m x m matrix with entries
from the set {0,1}. For many choices of P, the set

}CPI{LE"C Ipijij-;.i =115} SOO}
is also a Cantor set. In any case, the map ¢ : Kp — K p, defined by
0(?‘-1!?:231-31"'):(3‘213-3”"')

is called a subshift of finite type, or a topologicel Markov chain [Wa]. A subs-
hift of finite type is locally a homeomorphism. The pseudogroup T'y on Kp,
generated by the local one-one restrictions of o, is said to be generated by the
subshift ¢.

I X C M is an exceptional LMS for F, fix T C R, a finite union of open,
bounded intervals, let T denote the closure of T, a compact one-manifold, and
fix an imbedding p : T < U, transverse to F and such that C = X N p(T)
is a Cantor set. Here, of course, I/ is an open, connected, F-saturated subset
of M such that X is a minimal set for F|U/. Let T' denote the pseudogroup
on T induced by the holonomy of the foliation F and let I'|C be the induced
pseudogroup on C. By an abuse, we suppress all mention of p hereafter.
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Definition. Suppose that the above choices can be made so that thereis a
subshift of finite type 0 : Kp — Kpand maps7: L — Candnp: C — Kp
having the following properties:

(1} T is locally 2 homeomorphism and I'|C is generated by the local one-one
restrictions of 7
(2) n 1s a continuous surjection;
(3) n~'(n(z)) is either a singleton or the pair of endpoints of a gap of C, for
every z € C, :
(4) noTr =gox.
Then 1 1s said to be essentially a subshift of finite type generating T'|C, € is
called a Markov I-minimal set, and X is called a Markov LMS of F.

The constructions of Sacksteder [Sa 1], Raymond [Ra], Hector [He], Ghys
and Sergiescu {G-8), Inaba [In], and others provide examples of Markov mi-
nimal sets of a foliation 7. It is not hard to modify these to produce Markov
LMS that are not minimal sets of F.

Various elementary properties of Markov LMS were treated in [C-C 1,81].
For the sake of completeness, we review these briefly.

Definition. Let § = ({5),.... I}, {k1,. ... hn}, P), where P is an m X
m matrix of 0's and 1's, I; C R 15 a compact, nondegenerate interval, by
D{h;} — R(h;) is an orientation preserving homeomorphisma between open,
bounded intervals, and I, C R{h;), 1 < j < m. Set X, = h;*(I;}. Let T's
denote the pseudogroup generated by {h; };":1 If the following properties hold,
then & 1s a Markov system and I's is a Markov pseudogroup:

(1) Rhi) N R(R;} =0, #j;

(2} pi; = 1 imples that I; C X;

(3} pi; = 0 implies that I; N D{h;} = 8.

Assume that § as above is a Markov system. Let {iy,42,...,:,} C {1,2,...,
m}andlet py 4, =1, for 1 <k<n-—1 Thenw=h; o --oh; isdefinedin
I's and X, C D(w). For all such elements w, set |w| = n and set I, = w{X, ).
Finally, set

z=N{ U &)
=1 *|w|=n
Zo = Z~int{2).

For z € R(h;), set t(x) = h7'(2) € D(&,). This well defines
t:{J Rk — | D(ha),
=1 i=1

locally a homeomorphism, such that +{Z,) C Zg. Set

T = tl.Zo : Zg b ZQ,
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a continuous map that is locally a homeomorphism, and remark that ['s|Z; is
generated by 5.

Let ¢ = (1n)5%, € Kp, and let w,, be defined inductively as wp~; 0 ky . Then
Iy €1y, andtheset I, = ﬂ‘:’:l I, iseither a singleton or a nondegenerate,
compact interval. Let I, denote the set-theoretic boundary of I, , & set with
one or two elements. It ‘is clear that Z = ULE:‘CP I, and Z; = U!.EK,P I, . Define
ns 1 Zog — Kp by ns{l,} = ¢ and remark that ns o 75 = o o ns. Thus, we can
say that 75 is essentially a subshift of finite type.

1.1. Lemma. The set Kp 13 o Canior setl and Uy -mintmal if and only if
there erists o I's-mintmal Contor set C C Zy such that ns(C) = Kp. In this
case Zg \ C ts o unton of at most countably many ['s-orbits, eack of which
eccumulates exactly on C.

For the elementary proof, see [C-C 1, (1.1}]. If, in fact, I's is of class at
least C? , it is true that Z¢ \ € is a union of at most finitely many I's-orhits,
but this follows from a much more difficult theorem {C-C 1, (6.1)].

1.2. Lemma. Let X be a Markov LMS of Fand let C, T, P, Kp, 1, and
7 be as in the definition of such a set. Then this date can be chosen so thai
there exists o Markov sub-pseuvdogroup ['s C I', defined relative to the mairiz
P, such that C C Z4, 5s5|C =n: C — Kp, 75|C =7, and T'5|C =T|C.

This was essentially proven in [C-C 1, (1.2)]. The relatively minor adjust-
ments that are needed for the above formulation are left as an exercise.

Let X C U be a Markov LMS. Thus € = X N 7T is a2 Markov [-minimal set.
We fix 2 Markov sub-pseudogroup I's C T as in {1.2).

Let z € C and let iI'g{z}| denote the digraph of the orbit I's{z} relative to
the set {hy,... h,} of generators. Here, each positively oriented edge denotes
an application of some h;, I £ ¢ € m, hence moving backward along an edge
denotes an application of 7. By elementary symbolic dynamics, it is easy to see
that this graph contains at most one cycle and that, if v € |I'(z)| is a vertex not
on a cycle, every positively directed edgepath out of v of infinite length meets
no cyele. Moreover, infinitely many vertices of such an edgepath are“branch
points”, in the sense that at least two distinct, positively directed, infinitely
long edgepaths of |'s{2}| emerge from each of them. These observations have
certain easy consequences.

1.3, Lemma. The space E(|Ts{z}]) of ends of the graph {Ts{z)| is a Cantor
set.

We will prove Theorem 1 by showing that, under the hypotheses of that
theorem, if L, is the leaf of F|X passing through z € TN X = C, then there
is & homeomorphism E(|Fs(x)}) = £*{L;).
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Definition. For x € C, let I', C T denote the isotropy pseudogrdup of z.
The group
Ho(Ly, X) = H (T(2),C) = HI(I‘S(r)‘C’}

of germs at » of elements ¢ € [';|C is called the holouomy group (at z) either
of the leaf L, relative to X or of the orbit ['(z) relative to C.

1.4. Lemma. The holonomy group Ho(s(2}, C) of I'z) relative to C is
etther trivial or infintfe cyclic and generated by o coniraction thet is unigue in
a switable newghborhood of z in C. The nontrivial cases are precisely the ones
in whick |Dg(z)| contains a cycle, the contraction being the holonomy produced
by a positively directed loop around this cycle.

The proof 1s an exercise in elementary symbolic dynamics and, at any rate,
will be found in [C-C 1, (3.2))].

1.5. Corollary. A leaf L of F|X 15 vesilient of and only if the holonomy
group of L relative to X 15 infinite cyclic.

Qur proof of Theorem 2 will show that the above holonomy contractions are
compactly supported. Such a contraction determines a compactly supported
cocycle on the leaf L that is nontrivial in H*{L;Z}. That is, if the graph II's{z)|
has a cycle, that cycle is Poincare dual to a handle on the leaf through z.

Remark that so far in this section we have not needed smoothness hypotheses.
For the following, smnoothness of class at least C? seems to be necessary.

1.6. Lemwma. If F is of class C? and X C M is o Markov LMS, then
the Markov system S of (1.2) can be chosen so that I, 15 a singleton, for each
¢ € Ap. In particuler, 3 : ¢ — Np is o homeomorphism.

Proof: We modify the Markov system & of (1.2). If I, is a nondegenerate
interval, then [C-C 1,(3.4)] implies that ¢+ = {Jo,J1,/r,...,J1,...), where
Jo and Jy are finile sequences of elements of {1,2,...,m}. By applying a
sultable nonnegative power of 7 to I,, we may assume that Jy = §. We set
Jio= (1 d2s--sdg). I I, and 757Y(1,) share an endpoint x, delete {z} U
5= 1(int(£,)} from I;,. Otherwise, delete the interval ¥~ (int(1,}) from I,,.
Similarly, delete {7(z)} Ur*(int{],)} or 7*{int{[,)) from X, . These operations
should be performed for 1 < & < g. This breaks each I, and X, into a
finite number of subintervals [,1,... . [ m, and Xj1,.. .. X} m, (remark that
possibly 7x = ji, & # 1). The generator hj, of I's is then broken into hj,; :
Xpi — L4, 1 €6 < myg, 1 €k < g Tt ois elementary to check that this
modification of & is again a Markov system for the Markov LMS X. Finally,
again because of the C? hypothesis, there arc only finitely many I's-orbits in
Zy that are semiproper [C-C 1, (6.1)], so the above procedure only needs to
be repeated finitely often to produce the desired Markov system. W
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1.7. Corollary. If F is of class C*, if X C M is « Markov LMS, and if
€ > 0 15 given, then the Markov system & of (1.2) can be modified to a Markov
system &*, for the same LMS X, such that the intervals X end IT are all of
length less than € and each generalor k] 1s the resiviciion of o suitable generaior
hyy from §.

Proof: Apply [C-C 1, (4.1)] in conjunction with {1.6). B

2. The combinatorial arguments.

The dynamical description of F is given via a suitable choice of open cover
{Uqs }aea of M by Frobenius coordinate charts. Each U, is to lie in the interior
of some Frobenius chart and an F-plaque in I/, is to meet at most one F-plague
in Ug, for all a, 8 € A.

The set of {closed) F-plaques in Uq can be identified with a compact, im-
bedded, F-transverse arc R, — M, the preimage R, being, itself, a cormpact
submterval of R. We arrange that these subintervals be disjoint in R with dis-
joint images in M. i F, € K, and Pg € R are interpreted as closed plaques,
we will write

7,[30(}):1) = PB

if and only if P, and Pj overlap in the sense that
int{P,) Nint(Pg) £ .

This defines the set of generators G = {vgq }a,pe4 of the holonomy pseudo-
group ' of F, a pseudogroup on the compact one-manifold Ry = |J ¢ 4 Ra-
Thus, a word of length n in these generators, when applied to a plaque P € Ry,
amounts to a chain {P = Py, Py, ..., P,) of plaques such that P;_; and P; over-
lap, 1 < i < n.

Let X be a Markov LMS of F. We can assume that the imbedding T «
U, relative to which X 1s of Markov type, is the imbedding of a compact
submanifold T € Ry induced by Ry <« M.

By (1.2), there is a set G5 = {hi}1<i<m, generating a Markov sub-pseudo
group I's € T'x, such that Tz|C = Ts|C. Eachk k; is locally a composition of
Yap 5. By {1.7), we can break each k; up into finitely many of its restrictions to
disjoint, open subintervals of D(A;), on each of which h, is a pure composition
of vap5’s. Thus, wlog, we assume that each k; is a reduced word in the generators
Gr.

We must take into account the structure of the foliated manifold (U F)
obtained by completing (U, F|U) relative to any Riemannian metric inherited

from M {Di]. Let
U=KuWu---uV,
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be a decomposition inte a compact nuclens K (a foliated manifold with convex
corners) and arms V; (foliated interval bundles), as déscribed in [Di] {also, see
[C-C 2}, [H-H], [Go]). Let B C A be the subset such that U, C int(X) if and
only f @ € B. Let R=J,.5Ra-

The nucleus can be chosen large enough to engulf any specified compact
subset of /. Thus, without loss of generality, we can assume that the Frobenius
cover {Us}aca has been chosen so that T C R and the expressions for the
generators f; of I's as words in the generators v,p of I'r involve only indices
a, B € B. Let G = {vs5}apen and let I be the pseudogroup on R generated
by the set G. Thus, I's|C = I|C.

Definition. The foliated manifold (M’ F’) is defined by setting M’ =
Usesn U, and F' = F|M’'. The subset X' C M' is the F'-saturation of C.

Remark. Even if the fclhated manifold (M, F) has some degree of smoot-
hness, @M' is only piecewise smooth, being divided by corners of various des-
criptions into smooth pieces that are each either transverse or tangent to F'.

In light of our discussion so far, the following is an exercise.

2.1. Lemma. The set X' is an exceptional minimal set of F'. Each leaf L'
of F'| X' is contained in a unique leaf L of F|X and the correspondence L — L'
13 one-one between the legves of F|X and of F'|X'.

For 6 € B and x € Ry N X', we can choose v, € I to be a word of shortest
length in the elements of G such that y.(z) € C. By compactness of Rs and of
Rgn X', there are finitely many compact subintervals with interiors covering
int{ Rs}, each meeting X' in a set that lies entirely in the domain of some such
72 and is carried by v, into C. That is, as § ranges over B and z ranges over
Rs N X', we can arrange that only finitely many -y, are distinct. Remark that,
if z € €, then ¥, is an identity.

Finally, whenever &, § € B and z € D{y,p) N X', we can write

Yop(Z) =y =, 0 wls o v.{2),

where -y, and -, are as above and wl 8 is a reduced word in the generators Gs.
Again, by compaciness, there will only be finitely many distinct words wi,
that oceur as « and f range over B and ¢ ranges over D{va.g).

Definition. For w € ['s a pure reduced word in the generators G's, the
length of that word is JJw||s. Similarly, for a pure reduced word v € I in the
generators &, the length is denoted by ||v||.

1t is clear from the above discussion that we can fix a choice of N € Z7 that
is simultaneously an upper bound tc each of the following :

(a) lz|l, foreachz € XN R,

(b) A0, 1 <5 < my

(¢} llwgglls. for each x € C and for all &, F € B.
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Remark also that this implies

(d) llwish < N2

Let L be a leaf of F|X, 2 € LNT, and let L’ be the corresponding leaf of
F'|X' s in (2.1). Then the graphs |I'(z)| and |Us{z)| will be defined relative
to the generators G and (s, respectively, and so will be quite different. Alsc,
Since Ygo = 'y;;, we will agree that both v, and y.p are to label the same
edge with opposite directions. By contrast, each edge of |[I's(z)| has been given
& unique label k; and a corresponding preferred direction (cf. §1).

The graph |I'(z)| is the 1-skeleton of the nerve of the plague-cover of L',
hence the first of the following lemmas is evident,

2.2, Lemima, The spaces E{L'} end E(|T{z}|) are hemeomorphic.
2.3. Lemma. The spaces E({T{z}}) and E£(|Ts{z}|) are homeomorphic,

Proof: For o, € B, let z € LN D{vy,p) and let y = v45{z). Recall that

Yoa{z) = 15 0wl 07:(2),

where 1. ||, |lv, Y|, and ||w&ﬁ||s are all bounded above by the integer N and
1w} 51l is bounded above by N?.

The vertices of [I's(z}] are contained in the set of vertices of |I'{z}| and
this inclusion extends to a mapping [Tg{z}| — |T(2)|, not of graphs but of
topological spaces. Indeed, an edge of |I's{z)| labeled by #; is carried onto
an edgepath in |I'(z){ corresponding to the expression for h; in terms of the
generating set G.

The above mapping induces A : £(|T's{z)]} — E£({T{z}]), 2 continuous map.
This 15 a surjection since every vertex of |[['(z)| can be joined to a vertex of
ITs{z)| by an edgepath in |T'(x)| of length at most N.

We must show that A is one-one. Let ¢ and ¢ be distinct elements of
E(ITslz}]). Let {2}32, and {2152, be sequences of vertices of |[s{z)| con-
verging to € and ¢ respectively. Then, there is a vertex z. of this graph such
that, for k sufficiently large, any edgepath in |['s(z)| joining zi and z, must
pass through z,. Indeed, r, will be one of the points at which the graph
“branches”. '

Let D(z.,v) C |T{z)| be the set of vertices that can be joined to z, by an
edgepath of this graph of length at most v. In order to show that Ae) # AMe),
1t will be sufficient to find an integer v > 0 such that, for k sufficiently large,
every edgepath in [I{x)| joining z; and 2}, must meet D{z.,v). For simplicity of
notation, let z = z; and z* = z{. An edgepath joining these points corresponds
to a word

T = Yoo @ 2 Tayeyp
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such that (2} = 2'. Let 2(0) = z and

Z(p) = 70‘»&;-1 Qe 070100(2)}

1<p<gq Sincez € Cand 2’ = :{g) € C, we see that 7y, and v, are identities,
hence that

Hg— 0
1(z) = w(z) = wa(:iqu}l 0.0 w;(‘o}o(z).

:—1 . . .
Here, each wé{;'c,,.")l i1s a word in the generators G5, hence the above expression

represents an edgepath in {[5{2}] joining z and z’ and, as such, passes through
z,. Let us say that wé?o,;]_)l represents a segment meeting z,. It follows that
z{p) € D{z.,N* + N).

Since endsets are compact Hausdorff spaces, we conclude that X is & homeo-
morphism. B

2.4. Corollary. The space E(L') is homeomorphic to the Cantor set.
Proof: By (2.2} and (2.3}, there is a homeomorphism
E(L') = £(|Ts(=)])
and, by {1.3). the space £(|T's{z)|) is a Cantor set. W

2.5. Corollary. If X is a Markov minimal set of F, then the conclusion of
Theorem 1 15 true.

Indeed, we can take U = M = M', F = F', X = X', L = L' and apply
(2.4).

2.6. Lemma. If X C M is ¢ Markov LMS of F, then X confains ezactly
a countable infinity of resilient leaves.

Proof: By (1.1}, Kp 1s a I';-mimimal Cantor set. An elementary consequence
is that exactly a countable mfnily of {iy,12,...,%, ... } ave of the periodic form
(J,d,...,J,...) J being a finite string of integers from {1,...,m}. By (1.4)
and (1.8), the Markov LMS X contains exactly a countable infinity of resilient
leaves. W

2.7. Lemma. Let X C M be ¢ Markov LMS of F, let L C X be a resilient
leaf, and let + € LNT C C. Then, the holonomy coniraction thet represents
the generator of Ho (L' X'y = H{L X)= T is compuctly supported on L'

Proof: We can assume that © € |[g(z)| lies on the unique cycle w of that
graph and we view w as an edgeloop based at z. let D{w,v) C [T(z)| denote
the set of vertices that can be joined to a vertex of w by an edgepath in this
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It is a consequence of Theorem 3 that, for a suitable (open} normal neighbor-
hood W of F in U, each component F of X NW is diffeomorphic to Fy, in such
a way that the projection p: F — F, defined by projection along the normal
fibers in W, is identified with « ; Foo — F. Here W will be diffeomorphic to
the manifold @ which is obtained from Fy x [z,}] by the identification map

w: Hy x|z, 8] — H_ x|z,¥,

99(3:+at) = (1'—’f{t))

The manifold € is naturally foliated by leaves diffeomorphic to F, and the
natural projection p: (F —— F restricts to 7 on each of these leaves. The dif-
feomorphism W =  carries each component of X NW onto one of these leaves
and identifies p with projection along the normal fibers of W. This picture and
the proof are, by now, standard in geometric foliation theory. For example,
see [C-C 2, §6] for the completely analogous situation of totally proper leaves
winding in on leaves at lower levels. The situation there is precisely the cne
described here, but with X replaced by a single leaf.

Let Fi, ..., F, be the components of 60 on which X accurnulates, let Hy,...,
H, be the respective handles, and let W, ... W, be the corresponding normal
neighborhoods just described. Let F,4,,..., F, be the remaining components

of 80 and Wo41,..., W, respective normal neighborhoods of these in U that
do not meet X. We can assume that, for g+ 1 € 7 < p, W; N K is a finite
union of closed Frobenius charts for F. Finally, let M’ = K ~ UISRSP W;:. By
Theorem 3, F|X has no holonomy outside of M'. At this point, the following
is clear.

3.1. Claim. The Frobenius cover {Ug}aea for the folicted manifold (M, F}
can be chosen so that the manifold M', as described above, coincides wnth the
manifold M' constracted in §2.

As in §2, we set F' = F|M', a foliation with exceptional minimal set X'.
Let L be a leaf of F|X and let L' be the unique leaf of F'|X' contained in L
(2.1). Because the foliated manifold {M', F') has been fashioned with greater
care than in §2, the leaf L' is a manifold with boundary, but with no corners.
Indeed, (M', F') 1s a foliated manifold with corners of various descriptons, and
these corners divide A, as usual, into a part tangent to F, denoted 8, M,
and a pari transverse to F, denoted dnM’. The components of 8L are exactly
the components of L N 940, each being & copy either of H;, 1 < i < ¢, or
of 3B,;, 1 < j < r. There are infinitely many such components. Finally, each
component of L ~ int{L') has as boundary exactly one component of 8L' and
either lies entirely in W, 1 <{ < g, orinsome V,, 1 <5< r.

3.2. Proposition. The inclusion L' — L induces an imbedding A : E(L'} —
E{L) with image £*(L}.
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Proof: Since (L'} = £*(L'), the image of A is contained in £*(L). We must
show that A maps £(L') one-one onto £*(L).

Let € and ¢ be distinct ends of L'. Let A C int{L’) be a compact subset
separating € and €. Since the components of L ~ int{L') correspond one-one
to the components of L, it is clear that A, as a compact subset of L, also
separates A(e) and A{¢'), hence these ends are distinct in £*(L).

Let e € £(L). Let .- C U, Cc Uy, C - C U; C L be a fundamental
system of neighborhoods of e. Since 0§ # Uy N M = Uprn L' (the second
equality is a consequence of (2.1)) we can choose 2x € Ur M L'. By passing to a
subsequence, if necessary, we can assume that the sequence {z; }i";] converges
to an end n € £(L'). Tt follows that A(n} =c. ®

3.3. Corollary. Theorem 1 13 true.
Proof: Apply (2.4) and (3.2). W

3.4. Proposition. Let L be o resilient leaf of F|X. Then the holonomy con-
traction that represents the generator of H (L, X )2 7 is compuctly supported
on the leaf L.

Proof: As usual, the contraction on L defines a nontrivial cohomology class
6 € HYL;Z). If we view this class as a homomorphism

8:m(L,2) — Z,

we see, by the geometric consequences of Theorem 3, that it vanishes on any
loop that is freely homotopic to a loop on L ~ int(L'). Thus, & is supported in
int{ L'} where, by (2.7), it is compactly supported. B

At this point, the proof of {2.8) applies without change.

3.5. Corollary. Theorem £ is true.

4. The fundamental contraction.

Let X be an exceptional LMS, not necessarily of Markov type, and let F be
any proper or semiproper leaf of the foliation F. By transverse orientability,
F has two sides, denoted F* and F~. Assume that X is asymptotic to F
on at least one side, say on F*. Let 0 € F and let [0,€] be a parametrized,
F-transverse arc, issuing from 0 on the side F*. Let Ja, 4| be a component of
J0, el N X such that [a,d] € ]0,¢[.

Asn §3, h, denotes holonomy in [0, €] defined by a loop ¢ on F, based at 0,
and ¢ * f{ denotes the homological intersection number of o with a handle H,

Definition. Let ¢ : [0,1) — L be a loop based at ¢(0) = #(1) € H. If
o|]0, 1] is in general position with respect to H., if ¢|]0,8] and ¢| [1 — §, 1] both
lie on the same side of H for small 8, and if ¢ always crosses H in the same
direction, then we will say that ¢ is in normal position with respect to H.
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4.1. Theorem.{Duminy). If ¢ > 0 15 sufficiently smell, then there 1s @
handle H C F and o loop ¢ on F, based at Q, such that o+ H =1 and he = f
is a contraction of [0,¢€] to 0. Furthermore, for some inleger £ > 0 and every
loop T on F, based at § and in normal position with respect to H,

he(f(0)) = £ ),
for each integer k > &, provided that R (F5(B)) is defined and < b.

Remark. If F happens to be a semiproper leaf that lies in X itself and if
F?* is the nonproper side of F, this theorem leads rather easily to the result
that £*{F} contains no isolated points, hence is a Cantor set.

Let I/ be an open, connected, F-saturated set such that X is a minimal set
of FIU. Let F be a component of 87 on which X accumulates in . Our
main application of (4.1} will be to this situation, the side F'* being the side
bordered by U, so F* will be a proper side of F. The conclusion of {4.1) will
be our starting point for the proof of Theorem 3.

Unfortunately, Duminy has never made his proof of (4.1} available to the
mathematical public. The result is crucial for current research into the struc-
ture of exceptional minimal sets, so we have prepared an account [C-C 3] for
informal circulation.

Definition. The handle # C F, given by {4.1), will be called 2 holonomy
handle.

5. The proof of Theorem 3

As in §3, the decomposition J=FKu ViU - UV, induces 2 decomposition
F = AUB; U---UB,;,, where F is a component of aU. By suitably renumbering,
we take B, = B;, 1 €i <&

Let z; € B, and let J; be the fiber over x; of the interval bundle V; — B;,
1 <i<1{ Let Py denote an F-plaque containing the point 0 € A. Edgeloops
on |Tx(0}, based at 0, induce a holonomy sub-pseudogroup I'r C ['z, defined
on open neighborhoods of 0 in [0, ¢[ and fixing 0. The usual holonomy group
Ho{F) is the group of germs at 0 of the elements of T'p.

We say that a chain p = (Po, P, ..., Py) of plagues, without repetitions, is a
simple chain at Py, as is the holonomy element k, € T'r that it induces. A chain
o = (P, P,..., Py, P) and the associated h, € ['p will be called a stmple loop
at Py if (Fy, Pi,.. ., P,)is a simple chain. Finally, if p = (5,..., P} is a simple
chain and 0 = (P,, Pyy1...., Pyys, P,) is a simple loop at P, , then

'-":{)(J'p‘_] =[P(h'"quan+]\”<an+squ:‘"rP[!)

and
h,-:h.;ltahgohpérp
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are called basic loops at Fy. Every clement of I'p, restricted to a suitable
neighborhood of 0 in [0, €[, can be written as 2 composition of basic loops at
Py. Thus, the (germs of ) basic loops generate Hg( F').

Let A = 43 € A, € .- € A; € .- C F be an exhaustion of F by
compact, connected submanifolds with boundary. These should be chosen so
that the components of F'\ Ay are not relatively compact in F and so that these
components correspond one-one to the compouents of d4,. Let Gy denote the
set of basic loops at Py which, as plaque chains, consist entirely of plaques
meeting Aq. Inductively, suppose that G has heen defined, some & > 0. Then
Gryr N G s to be the set of basic loops of the form h;l o hy 0 h,, where p
is a simple chain at Py that involves only plaques that meet 4, and contains
just one plaque that meets 84, 1 £ j < k, and ¢ is a basic loop that involves
only plaques that meet Apy; ~ 4. View each G as a subset of I'p and let

G: = U:‘f‘;{] Gk (_: FF.

5.1. Lemuma. For € > 0 suffictently small, and for ench g € Gy, either g
or g~ is defined on [0,¢] and maps that interval into itself. Furthermore, Gy
generates Ho{ F).

Proof: Since Gy is finite, choose ¢ > 0 so small that both ¢ and ¢} are
defined on [0, ¢] with mmages in [0,¢ + &[, for some 8 > 0 and each g € Gy.
Either g{€) or g7 {e€) € [0,¢]. Making ¢ smaller, if necessary, we make sure that
h, 1s defined on {D,¢), for each simple chain p at P in 4. Since V] is a foliated
interval bundle over B;, 1 € i < ¢, it is true that either g or ¢~ sends [0, ¢] to
itself, for each g € Gy \ Gy

The fundamental group 7y { ¥, 0) can be defined via the nerve of the plaque co-
ver of F (provided the Frobenius cover of M has been suitably chosen), Clearly
the set of edgeloops in |'g(0)|, corresponding to Go, generates m1{4y,0). By
the Van Kampen theorem and induction on k, the set of edgeloops, corres-
ponding to G, generates m;{4;,0), hence those corresponding to Gy generate
w1 F,0). The natural surjection 7 {F,0} — Ho{F) is then used to prove that
Gy generates Hy(F). W

Definition. Let g € Gy~ Gi. The k-representation of g is h;l o hy o hy,
where p is a simple chain in 4; and ¢ is a basic loop involving only plagues
that meet F' \ Ayg.

Such a k-representation always exists and is unique. Its usefulness lies in
the fact that, while Gy ~ G is generally an infinite set, the k-representations
involve only finitely many of the simple chains &,.

5.2. Lemuma. Let 0 < » < 1 < 5. Then there is an inieger & > 0 such
that, whenever ¢ € Gy\ G and g = h;' oh, 0 b, is the k-representation, then

r < b () <s, for each ¥ € R {Dig})

This lemma is just a slight variation on [C-C 2, {2.9)], so we omit the proof.
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5.3. Lemnma. fe > 0 and § > 0 ere suitebly chosen, each as small as
desired, then cvery ¢ € Gy defines g+ [0,¢] — [0,e + &[. Furthermore, given
n >0, k can be chosen so large ihat lg(u} — u| < %, for cach g € Gy~ Gy,
0<uge

Proof: ‘Let ¢ be as small as desired with the property ascribed to ¢ in (5.1).
Let 7 » 0. The generalized Kopell lemma [C-C 2, (2.8)] is a consequence of
{5.2) (¢f. [C-C 2, p. 180]) and implies that, if k is sufficiently large and if
g € Gy~ G maps [0,€] into itself, then |g{u) — u| < 7,0 < u < €. By taking
7 < € /2, we see that ¢! maps [0,¢/2] into [0, €] and that
1

o™ () — ul = g™ () — glg™ )l < m,

G < u<é/2 Thatis, both g and ¢~ send {0,€¢'/2] into {0, ¢’] end satisfy
lg{ee) = ul <7 > lg ™ {u) —ul.

Since G is finite, we can choose ¢ € ]0,¢ /2] so small that g sends [0, €] into
[0, €], for each ¢ € C;\, hence for each g € Gy. Take § € J¢' — ¢, ¢'( and obtain
all assertions. W

" 5.4. Corollary. Let0 <r <1< s Thene and & can be chosen as in {5.8)
and k > O can be chosen so that, for all ¢ € Gy~ Gy and for 0 € u £ ¢, the
inequalities r < ¢'(u) < s hold. If, furthermore, {g;,...,ga} € Gi is o subset
such thal no g; is germinally equivalenl fo a conlraction o 0, then the choice
of € can be made so small that 7 < gi{u) <5, 1 <i<n, 0<u<e

Proof: By (5.2}, we choose k¥ > 0 such that, for ¢ € Gy ~ Gy with k-
representation g = h;l 0 hg © hy, we have

V< R (R(u)) < Vs,
0 € u € &. By elementary calculus,

hipluihy (ho(u))

9 = = o)

0 < u < ¢, and each of the finitely many functions h; is continuous. By making
e {and, if desired, &} small encugh, we guarantee that

. p{u)
V< i <V

0 < u < ¢, hence
r < g'(u} < s,
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0 €« < ¢. There remain the elements g, € G, 1 <1 < n. Since none of these
restricts to a contraction to 0 on any neighborhood of 0 in [0, €], we see that
gi(0) =1, 1 € ¢ < n. Thus, by making € > 0 possibly smaller, we complete the
proof W

At this point, we consider a Markov LMS, X € M, assumed to be a minimal
set of F|U and to accumulate on £ C A in U. We let Ja, b be a component of
18, €[~ X, as in §4, and consider the holonomy handle H C F and the holonomy
contraction f = h, given by {4.1). For each integer n > 0 and for u € D{f),
we set u, = f*(u).

5.5. Claim, Without loss of generality, we can assume that the F-iransverse
I-manifold T, as in §1, is |a;, by|. This implies that € C [by, ag].

Proof: (1) We construct a holonemy imbedding ¢ : € — Jay,bg[. I this
has image X N]ay. by[, the first assertion follows. We will consider the contrary
possibility in step (2},

i there 1s an integer k € {1,...,m} such that p, =0, 1 € ¢ < m, assume
wlog that & = m. The Markov system § can be replaced by a Markov system
&', indexed by {1,...,m — 1}, without loss of information. This replaces the
subshift with one on a Cantor subset of {1,...,m — 1}™ and replaces C with a
Cantor subset {’. By finite repetition of tlis process, we assume that, for each
mdex k =1,...,m, there is an index ¢ € {1,...,m} with p; #0.

From the above paragraph and elementary symbolic dynamics, it follows that
the points y € C such that n(y} is a periodic point in {1,...,m}™ are dense
mCnNi,!<k<m Since only finitely many periodic points can pertain
to a semiproper [-orbit [C-C 1, (6.2)], we choose y, € C N Iy such that €
clusters on y; from both sides and w(y ) is periodic. Then there is a holonomy
coniraction 8 of I to yi. Let v be an element of holonomy of F|U that
carries yp 10 Tg € Jay, by It is easy to arrange that zy,. ..,z all be distinct.
For a suitably large integer n, 3y = 08p is definedon allof I;, 1 € & < m,
and {¥x({x)}i, is a set of disjoint subintervals of |aq, bo[. Set

"

o= {Jwl(CNnL): C— lay, b,

k=1

the desired holonomy imbedding. Clearly, ¥{C') is an open-closed subset of
X Nay, byl

(2) We now assume that C Clay,b|. I A = X 0]a;, by~ C # 0, then K
is a Cantor set. For each x € /', choose v, as in §2, a holonomy element with
Ye(x) € €. As remarked in §2, we can arrange that only finitely many v, be
distinct, Thus, {R{7,)}.en is actually a finite set of open intervals.

By {1.7), we can assume that the Markov system & is such that, for each
z€ KNandl<:<m,either X,NR(vy,) =0 or X; C R{v,). Select an open
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intervat I; about each X; with these same relations to the intervals Ry, ). One
then enlarges § by adding the generators 7 '|U; and the intervals v, (X;).
This Markov system generates the Cantor set X N ey, bs], so we can take
T= ]al ¥ bﬂ[

(3) Since Ja1, 0[N X =8 =lag, &[N X, it follows that C C [by,ae] X

As in §1, I" denotes the psendogroup on T = |a;, [ that is induced by I'z.
We have a Markov system

S=it{h,. .. Lah {h, o ke P

and associated pseudogroup Us C T, such that D€ = T's|C. Since C C [by, s,
we can take I; C [by,d], 1 < j < m. Let F§ denote the set of words in
nonnegative powers of the generators {hy,..., 1}

We can assume that A C int(A), hence by cuiting A along H we produce
a compact, connected manifold A'. It is fairly obvious how to select a subset
of basic loops in A that should be thought of as the basic loops on A'. Let
Gy = {¢,---,9m} C Gp be the elements of holonomy corresponding to the
basic loops in A’. Then, if k > 0 is sufficiently large, the set { f} UG} generates
the same holonomy on [0, 5] as does &g, By renumbering, replace by with by.
Thus, if G} = GuUGLU--- UG, U---, we can assume that Gy = Gy U {f}.

In order to prove Theorem 3, it should be clear that proving the following
two proposttions will suffice,

5.6. Proposition. For & 2 0 sufficiently large, Gy fizes every point of
X N[0, by

5.7. Proposition. It is pessible to choose the decomposition of U so that
the total holonemy of the folinted interval bundle J; <« V; — B, fizes every
potnt of X N J;, 1 <1 < 4.

Proof: {Using {5.8)) By [C-C 1, Theorem 1], each of the semiproper leaves
L ¢ X has a holonomy contraction on its nonproper side, say on LT | and
this contraction is unique relative to X. Apply {4.1) to the side LT so as to
conclude that this contraction is compactly supported. By [C-C 1, Theorem 2|,
there are only finitely many semiproper leaves in X, so we choose the customary
decomposition U=KuU Vid- UV, in such & way that X engulfs the holonomy
handle on each of them.

Parametrize J, as (0,1}, 1 € : < . By (5.8), the loops on B;, based at
xi, fix every point of X N [0,6), for some § € ]0,1]. The subset of X n]0,1],
fixed by these loops, is closed in ]0,1[, hence, if it is not all of X N]0,1], we
can choose the above § € X N0,1] in such a way that some loop on B; at z;
induces a germinally nontrivial element of holonomy on (6,6 + €[N X that fixes
6. Again appealing to [C-C 1, Theorem 1], we see that, for ¢ > 0 sufficiently
small, the holonomy around this loop gives a contraction of [6,8 + €[ to §.
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But this loop also fixes each point of [0,8] N X and, in a Markov LMS, each
holonomy contraction to & contracts a whole neighborhood of 6 in |0,1{N X to
§ {elementary symbolic dynamics). Thus, é must lie on a semiproper leaf and
this contradicts the fact that the holonomy handle on that leaf does not meet
Vil

In order to prove {5.6), we first review certain points from [C-C 1, §6], where
the finiteness of the number of semiproper leaves in X was established.

By the parametrization of T as the subinterval Ja;, b[ € R, we view I's as a
pseudogroup on R and place the following definition.

Definition. A point z € R is ['}-uniform if there is an open neighborhood
V of 2 in R and a number v > § such that ¢'(u}/g'{v} < v, for each g € '}
and for all u,v € ¥V N D(g). The set of I'}-uniform points is denoted by U+
and its complement in R by Bt,

Remark. Since U* is open in R and, by default, contains R \ Ja,, bol, the
set BY is compact.

In the following, 7 again denoctes the essential subshift that generates ['|C.
A 7-cycle is a subset {z,7(z),...,7%(z)} C C such that k> 1 and 75(z) = z.
The mimmal such k is the length of the 7-cycle.

5.8. Lemma. The set B* N C is the union of at most finitely many 7-
cycles. Furthermore, BT meels at most finitely many components of TN C and
the points of C bordering these components fall into finilely many 7 -cycles,

Proof: This was essentially proven in [C-C 1]. Indeed, by [C-C 1, (6.8),
(6.18), and (6.19}] the set B¥ NC and the set of components of T\ € that meet
Bt are both finite. Let 2 € B and let V be 2 neighborhood of z in R. For
each integer N > 0, let Wy be the set of words of length N in positive powers
of {hy,...,hn}. By [C-C 1, (6.5)], we see that | J{g{V N D(g)) | g € Wn}
meets B%, for all choices of V and N. From these facts the assertions follow
easily. W

Definition. The set { consists of all ¢ € T such that

{a) g maps [b, by| diffecinorphically onto itself;

{b}) ¢g|C has fixed points p < ¢ with ¢'(p) = 1 = ¢'(g) and such that C N

o, gl # &; :
(¢} f 2 € CNp,g| and if g{x) = z, then g'(z) # 1.

5.9. Lemima. There are constants B >0 and 0 < ry < 1 such that, if g€ G
and p, g are as in the above defintiion, there i3 a choice of R € {g,67'} and of
x € |p, g for which one of the following holds.

(1) A{z) = = and R'{z)} <.

(2} p< h(z) <z and {2 — p)/{z - hiz))

< B.
3y z <h(z)<qandlg-x}f{h{z)-2z) < B.
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Proof: {1) Let m; = min(C' N [;} and M; = max{(C N 1;), 1 <¢ < m. These
points border gaps of C, so we fix n; < m; and Ny > M; in these gaps such
that n; and N; € R(h;}. Let

~ N. — AL —
B=max1$,-5,,,{ : b ! n'}.

.Ng - i\/f,' ’ my — 1y

The points m; and M, lie on semiproper ['s-orbits, hence there are con-
tractions v; and 1, € T5 to m, and M,, respectively, defined or the nonproper
sides of these orbits and generating the infinite cyclic, relative holonomy groups
H(Ts(m;}, C) and H{['g{M,},C} [C-C 1, Theorem 1].

Let 0 < o < 1 be such that, for each value of ¢ = 1,...,m, if ¥{{m;) and/or
ni(M;) are not equal to 1, then they are less than rg. If all of these derivatives
are 1, then O < rg < 1 can be fixed arbitranily.

(2} If BY # §, let A be the length of the longest of the r-cycles given by (5.8)
and let g = A% If BY = ¢, fix g arbitrarily. :

Forw="h; o -0h; € I‘;, let wy, =k, 0--r0h;, 0 <k < n Here welet
wg = td.

Let W;, 1 < i < m, denote the set of all w € F;‘: such that

(a} [; C D{w}

{b) either Jw| < pt or wu{I;)N BT =4,

By the definition of BT, we can chouse the points n; and N; of step (1) and
a comstant B > 0 such that w'(u)/w'(v) < B, for each w € W; and for all
u,v € [ng, NN DHw), 1 <¢ <m.

Finally, set B = B-B.

(3} Let g € G and p, ¢ be as above. Since C N|p,g[ # @, there is a unique
shortest w € I'}, possibly the identity, such that [p,¢] C D(w™?), w™(p) =
pe € L, w Hg) = q. € I;,and t # j. Let g = w™ ogow with D{g.) = [pe, ¢.])-

Clearly m, and M; both he in [p,, ¢.] C D{w). Let m = w(m;) € [p,4] and
M = w(M;) € [p,g]. Since p. € I, and ¢. € I; and I, 0 I; = §, it is also clear
that '

M, <N; < gx,

Pa <N; <My,

and we set 72 = w{n;) € {p,q), N = w(N;) € [p,q].

(4} Suppose that either m or M is a fixed point of g. We will show that
property (1) in the statement of the lemma follows.

For definiteness, suppose that g{Af) = M, the argument in the alternative
case being completety paraliel. There are two cases.

Case 1. Suppose that p, = M, hence p = R_:I Since C Np, g[ # B and since
M; is the left endpoint of a gap of C, so is M = p. We take z € |p,q[ to be
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the other end of the gap. Then the fact that w™{p) = p, = M; implies that
wl(z) = my, some k € {1,..., m}. Also, g{M) = M implies that ¢(z) = z,
while z € C N )p, ¢ then mplies that ¢'(2) # 1. Either ¢ or g7! will be a
contraction to 2z and we choose h = g% to be that contraction. Finally, let
he =w lohow =g Then 1> h'(x) = &l{my), so h. is a positive power
of 41 and step (1} implies that h'(z) < »q, as desired.

Case 2. Suppose that p. < Af,. Then, if we take » = w{M;) = M € |p,df,
we can argue exactly as in Case 1.

(5) By step {4), we can assume that neither /2 nor M is fixed by g. We will
show that either property (2) or {3} in the statement of the lemma follows. We
consider three possible cases.

Case 1. Suppose that w € W;. Again choosing h = g*! appropriately, we
see that A,(N;) < M; and A(N} < M < N. From step (3), M and N € [p,¢),

w(M;} = M, and w{N;) = N. By these remarks and the mean value theorem,

N-p < N-p __w'(ﬁ)_(N,-—p,)
}\_f-h(fv)_]\_f—ﬁ:fuw’(a}} N, — M,

with € and 7 both € Jp,, N;[. Since w € W;, we see that w'(£)/w'(n) < B.
Also, N; — p, < N, —m,, sc

N—p . N — my I
P a—— <B' . <B‘B:B-
N—k(N) - (N,—.M,') -

Thus, z = N satisfies property (2) in the statement of the lemma.

Case 2. Suppose that w € W;. An argument completely parallel to that in
Case 1 shows that 7 < (R} < ¢ and that (¢ — A)/{A{R) — ri}) < B, so we take
T = 7, obtaining property {3) in the statement of the lemma.

Case 8. Suppose that w ¢ W, and w ¢ W,. This cannot actually happen, as
we now show.

We have {w| 2 g and w, (L) NBY # 0 # w, ([;)N Bt 1t follows from (5.8)
that there are points y; € I; and y; € I;, belonging to r-cycles of respective
lengths A(z} < dand A(y) < A, where A Is as in step (2), and w3, ) and w,(y;}
belong to these same 7-cycles. Let k = A¢)A(5) € A* = u. Let g, and g, be
the words of lengths A(Z) and A{j) fixing y; and y; vespectively. It follows that

) _ r}f(ii = h

kY
wE = 4, i =

: @0 ohy,.

But then y; = wi(y.) € I, , so i = 1, while, similarly, y; = wi(y;} € [;, and
1z = 7. This contradicts the fact that : £ 5. W

Proof of {5.6): Choose 8 so that f"{£)/f'(y) < 8, for all £ and 5 € {0,¢].
Choose r € Jry, 1], sufficiently close to 1 that (e?*B)~' > 1 —». Here, of course,
rp and B are as in (5.9).
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By (5.4), choose & 2 0 so large that g'(z) > r, foreach g € Gy, 0 S 2 < b
We want to show that every g € G} fixes every a € X N[0, 5. If not, there
exists g € Gy and n > % so that g moves some points in X' N [bat1, 0n] C [0, 8:)
Fix a choice of such g and deduce a contradiction as follows.

Let go = f " ogo f™ € I’ and note that this carries [by, by] diffeormnorphically
onto itself, fixing b; and ¢ = a. Since the holonomy relative to X of semiproper
leaves in X 1s compactly supported (4.1), we can assume that k is so large that
"gp(b1) = 1 = gi{an). Thus, the closed set Cy of go-fixed points y € X N [by, ap)
with g4{y) == 1 is nonempty. Since g; moves some points of X N [b;, ag), there
is a connected component |p, g[ of [by,ap] \ Co such that X N p, g # &. This
proves that gy € G and we can apply (5.9).

If property (1) of {5.9) hokls, then, for a suitable choice of an element h =
gt ¢ an and a corresponding choice of hy = guﬂ, we obtain the contradiction
that B'{f"(z}) = kh{z) < ro < r, for some f*(z) € f™]p, ¢[ C [T, bx)-

Thus, either property (2) or property (3) of (5.8) holds. We consider the first
case, the second being entirely similar. Let z € |p, ¢[ be such that inequalities
p<y=hgla)<zand{z - p)/{z~y) < B hold. Set

tn = (2
yn = f7(y) = h{zn)
P = §"(p) = h{pa).
By a standard calculation (<f. [Sa 2]),
o2 U (222) <o (32) s 8
Then

-T:r,_yn :1_ yu_pﬂ =1_h;(c)}

1—r < (exp({fe)-B)™! <
’ Tn — Pn In — Pn

so A'{{) < r for suitable { € [pn,2.) C [0,8], again a contradiction. W

The proof of Theorem 3 s complete.

6. Geometry of leaves

Let M be a closed, orientable 3-manifold, F a transversely orientable C?
foliation of M by swrfaces.

6.1. Conjecture. If X C M is a Markov LMS of F, and if X contains no
toral leaf, then there is a Riemannian metric on M relative to which every leaf
of F|X has constani curvature —1.

Indeed, refinements of the methods of this paper, together with standard
facts about Teichmuller space, should yield a proof of (6.1) for the case of
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Markov minimal sets. At higher levels, further techniques from [C-C 4] will
also be needed.

If X is an arbitrary exceptional LMS of F, it seems likely that a sequence
{Fr}i, of folations of M can be found, converging to F in the C2-topology,
each with a Markov LMS X,,, such that X is uniformly well C'*-approximated
by X as n — co. This should lead to the following.

6.2, Conjecture. The previous conjecture is velid for an arbitrary ezcep-
trwonal LMS that does not approach a toral leef.

This, together with the methods of [C-C 4], would give the following.

6.3. Conjecture. If no leef of F ts a forus or a sphere, and if no leaf is
somewhere dense in A, then there is a Riemonnien metric on M relative io
which every leaf of F hos constant curvature —1.

Indeed, we believe the following.

6.4. Conjecture. If no leaf of F is & torus, there ezists ¢« Riemunnian
meiric on M and o choice of v € {—1,0,1} such that every leaf of F has
constent curvature r.

References

([C-C 1] J. CANTWELL AND L. CONLON, Foliations and subshifts, Téhoku
Math. J. 40 (1988), 165-187.

[C-C 2] J. CANTWELL AND L. CONLON, Poincaré-Bendixson theory for
leaves of codimension one, Trans. Amer. Math. Soc. 265 (1981}, 181- 209.

[C-C 3] J. CANTWELL AND L. CONLON, Endsets of exceptional leaves; a
theorem of G. Duminy, (not inteuded for publication, hut available upon
request).

{C-C 4] J. CANTWELL AND L. CONLON, Leafwise hyperbolicity of proper
foliations, to appear in Comment. Math. Helv.

[D] P. DIPPOLITO, Codinension one foliations of closed manifolds, Ann. of
Math. 107 (1578), 403-453.

[G-S] E. GHYS AND V. SERGIESCU, Sur un groupe remarquable de diffeo-
morphismes du cercle, Comment. Math. Help. 62 (1987), 185-239.

[ Go] C. GODBILLON, “Feuilletages, Etudes Geometrigue [17 Publ. Inst. de
Rech. Math. Avancée, Univ. Louis Pasteur, Strasbourg, 1986,

[He] G. HECTOR, Quelques examples de fevilietages — especes rares, Ann.
Inst. Fourier 26 (1975}, 239-264.



484 J. CANTWELL, L. CONLON

[H-H] G. HECTOR AND U. HIRSCH, “Introduclion lo the Geomeiry of
Foliations, Part B,” Vieweg, Braunschweig, 1983.

(Inj T. INABA, Examples of exceptional minimal sets, preprint.

[Ra] B. RAYMOND, Ensembles de Cantor et feuilletages, Publ. Math. 4°Or-
say 181, 75 56. _

[Sa 1] R. SACKSTEDER, On the existence of exceptional leaves in foliations
of codimension one, Ann. Inst. Fourter 14 (1964), 221-226.

(Sa 2) R. SACKSTEDER, Foliations and pseudogroups, Amer. J. Math. 87
(1965), 79-102.

[Wa] P. WALTERS, “An Introduction lo Ergodic Theory,” Graduate Texts
in Math. 79, Springer-Verlag, New York, 1982.

Keywords. Fohation, leal, Markov chain, subshift, pseudogroup, exceptional local minimal
set, endset, Cantor set, genus

J. Cantwell: Saint Louis University
5t. Louis, MO 63103
USA

L. Conlon: Washington University
St. Louis, MO 63130
Usa

Rebut el 3 de Novembre de 1888





