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LEAVES OF MARKOV LOCAL MINIMAL SETS IN
FOLIATIONS OF CODIMENSION ONE

Abstract

JOHN CANTWELL, LAWRENCE CONLON

The authors continue their study of exceptional local minimal sets with
holonomy modeled on symbolic dynamics (called Markov LMS [C- C 1]) .
Here, an unpublished theorem of G . Duminy, on the topology of semipro-
per exceptional leaves, is extended to every leaf, semiproper or not, of a
Markov LMS . Other topological results on these leaves are also obtained .

Introduction

Let M be a compact, orientable manifold, ,F a transversely orientable CZ
foliation ofM of codimension one . Each component of 8M, if there are any, is
to be a leaf.

Let X be a local minimal set (LMS) of F. That is, there is an open, connec-
ted, .P-saturated subset U C_ M and X is a minimal set of FlU. A special class
of such sets, called Markov LMS, was introduced in [C-C 1] . These are excep-
tional LMS such that the holonomy pseudogroup of the foliated set (X, .FIX)
is, in a certain sense, generated by a subshift of finite type (see §1) . We will
see, in §6, that every such subshift can occur for suitable Markov minimal sets
in suitable C°°-foliated 3-manifolds .

Let E(L) denote the set of ends of a leaf L C X, a compact, totally discon-
nected metrizable space of ideal points of L at infinity. Let E*(L) denote the
closed subspace of ends that are asymptotic to L. In case X is a minimal set
of F (i.e ., we take U = M), it is clear that E(L) = E*(L).

The first author was partially supported by N.S.F. Contract DMS - 8420322, the second by
N .S.F . Contract DMS - 8420956 . The second author would also like to thank the Centre de
Recerca Matématica de Institut d'Estudis Catalans, Barcelona, under whose hospitality this
paper was completed .
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Theorem 1. Le¡ X C M be a Markov LMS of .F and let L be any leaf of
.FIX . Then £*(L) is homeomorphic to the Cantor set.

G . Duminy has proven Chis for semiproper leaves in an arbitrary exceptional
LMS (unpublished) . It is unknown whether his result extends to all leaves of
the LMS.

Definition . A leaf L is resilient if it has a holonomy contraction and if L
itself is captured by this contraction .

Definition . A handle in L is a compact; connected, nonseparating subma-
nifold H of codimension one, áH = 01 . The genus of L is the maximal number
of pairwise disjoint handles in L that are linearly independent in H* (L; R) .

Theorem 2. Le¡ X C M be a Markov LMS of .F. Then X contains exactly
a countable infinity of resilient leaves . Furthermore, either genus(L) = 1, for
each resilient leaf L C Jr', the remaining leaves of.FAX having genus 0, or every
leaf L C X has infinity genus and every end E E £*(L) is a cluster point of
handles.

It was shown in [C-C 1] that each semiproper leaf in X is resilient, but that
there are only finitely many such leaves .

1 . Markov LMS

Let m >_ 2 be an integer and let lC denote the Cantor set {1, 2, . . . , m}N with
typical element L = (i1,i2 . . . . ) . Let P = (pij) be an m x m matrix with entries
from the set {0,1} . For many choices of P, the set

Kp = {G E lC I pi ¡ i¡ +1 = 1,1 < j < oo}

is also a Cantor set . In any case, the map u : ÍCp -> lCp, defined by

0'(¡1,22,23, " . .) = (22,23, " . .)

is called a subshift of finite type, or a topological Markov chain [Wa] . A subs-
hift of finite type is locally a homeomorphism . The pseudogroup I'o on 1Cp,
generated by the local one-one restrictions of a, is said to be generated by the
subshift a .

If .1' C M is an exc_eptional LMS for .F, fix T C R, a finite union of open,
bounded intervals, let T denote the closure of T, a compact one_ manifold, and
fix an imbedding p : T -> U, transverse to F and such that C = X fl p(T)
is a Cantor set . Here, of course, U is an open, connected, .F-saturated subset
of M such that X is a minimal set for .FIU . Let I' denote the pseudogroup
on T induced by the holonomy of the foliation .F and let I'IC be the induced
pseudogroup on C . H'y an abuse, we suppress all mention of p hereafter .
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Definition . Suppose that the above choices can be made so that there is a
subshift of finite type o : 1C p -> Kp and maps r : C -+ C and : C -> Kp
having the following properties :

(1) T is locally a homeomorphism and I'IC is generated by the local one-one
restrictions of r ;

(2) 77 is a continuous surjection ;
(3) rl -1 (97(x)) is either a singleton or the pair of endpoints of a gap of C, for

every x E C ;
(4) 17or=uor7 .

Then T is said to be essentially a subshift of finite type generating FIC, C is
called a Markov I'-minimal set, and X is called a Markov LMS of P .
The constructions of Sacksteder [Sa 1], Raymond [Ra], Hector [He], Ghys

and Sergiescu [G-S], Inaba [In], and others provide examples of Markov mi-
nimal sets of a foliation P . It is not hard to modify these to produce Markov
LMS that are not minimal sets of .P .

Various elementary properties of Markov LMS were treated in [C-C 1,§1] .
For the sake of completeness, we review these briefly.

Definition .

	

Let S = ({I 1 , . . . , I�Z }, {h 1 . . . . , h�t }, P), where P is an m x
m matrix of 0's and 1's, Ij C R is a compact, nondegenerate interval, hj
D(hj) --> R(h;) is an orientation preserving homeomorphism between open,
bounded intervals, and Ij C R(hj), 1 _< j < m . Set Xj = hj-1(Ii) . Let rS
denote the pseudogroup generated by { hj}T 1 . If the following properties hold,
then S is a Markov system and rS is a Markov pseudogroup :

(1) R(hi) n R(h;) = 0, z =~ j ;
(2) pij = 1 implies that Ij C X; ;
(3) pis = 0 implies that Ij n D(h.i) = 0.
Assume that S as above is a Markov system . Let {i 1 , 72, . . . , i n} C_ {l, 2, . . .,

m} and let pi,;ik+ , = 1, for 1 <_ k <_ n - 1 . Then w = hi> o . . . o hi � is defined in
rS and Xi,, C D(w) . For all such elements tu, set jwj = n a.nd set Iw = w(Xi. ) .
Finally, set

Zo = Z \ int(Z) .

For x E R(hi), set t(x) = h,1
(x) E D(hi). This well defines

m

	

na

t : U R(h i ) -> U D(hi),
i=1

	

i-1

locally a homeomorphism, such that t(ZO) C Zo . Set

rS = t iZo : Zo -) Zo >
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a continucus map that is locally a homeomorphism, and remark that I'SIZO is
generated by Ts .

Let ¿ = (i,,)°°_ 1 E lCp, and let wn be defined inductively as wn _1 o hi� . Then
Iw�+1 C Iw� and the set I, = n°°_ 1 I�, � is either a singleton or a nondegenerate,
compact interval . Let I, denote the set-theoretic boundary of I, , a set with
one or two elements . It is clear that Z = U¿EKP I¿ and Zo = U¿EKP I¿ . Define
i7s : Zo -Kp by rls(ij = t and remark that rls o -rs = o- o 91s. Thus, we can
say that Ts is essentially a subshift of finite type .

1 .1 . Lemma. The set Kp is a Cantor set and ro-minimal if and only if
there exists a rS -minimal Cantor set C C_ Zo such that g1s(C) = Kp . In this
case Zo \ C is a union of at most countably many rs-orbits, each of which
accumulates exactly on C.

For the elementary proof, see [C-C 1, (1 .1)] . If, in fact, rs is of class at
least C2 , it is true that Zo \ C is a union of at most finitely many rs-orbits,
but Chis follows from a much more difficult theorem [C-C 1, (6.1)] .

1 .2 . Lemma. Let X be a Markov LMS of Pand let C, r, P, Kp, T, and
rl be as in the definition of such a set. Then this data can be chosen so that
there exists a Markov sub-pseudogroup rs C_ r, defined relative to the matrix
P, such that C C Zo, rlsIC = al : C -> Kp, TsIC = T, and rsIC = FIC .

This was essentially proven in [C-C 1, (1 .2)] . The relatively minor adjust-
ments that are needed for the above formulation are left as an exercise .

Let X C U be a Markov LMS. Thus C = X n T is a Markov Ir-minimal set .
We fix a Markov sub-pseudogroup rs C r as in (1.2) .

Let x E C and let Irs(x)i denote the digraph of the orbit rs(x) relative to
the set {h1, . . . , h�z } of generators . Here, each positively oriented edge denotes
an application of some hi, 1 _< i <_ ni, hence lnoving backward along an edge
denotes an application of T. By elementary symbolic dynamics, it is easy to see
that this graph contains at most one cycle and that, if v E IF(x)l is a vertex not
on a cycle, every positively directed edgepath out of v of infinite length meets
no cycle . Moreover, infinitely many vertices of such an edgepath are"branch
points", in the sense that "at least two distinct, positively directed, infinitely
long edgepaths of 1rs(x)1 emerge from each of them . These observations have
certain easy consequences .

1 .3 . Lemma.

	

The space £(Irs(x)I) of ends of the graph JIrs(x)I is a Cantor
set.

We will prove Theorem 1 by showing that, under the hypotheses of that
theorem, if Lz is the leaf of XIX passing through x E T fl X = C, then there
is a homeomorphism £(Irs(x)I) - £*(Lx) .
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Definition . For x E C, let I', C I' denote the isotropy pseudogroup of x .
The group

7-c,: (L,:, X) = x. (r(x), C) = I-í,: (rs(x), C)
of germs at x of elements y E h x 1C is called the holonomy group (at x) either
of the leaf Lx relative to 11

, or of the orbit F(x) relative to C .

1 .4 . Lemma. The holonomy group

	

C) of r(x) relative lo C is
either trivial or infinite cyclic and generatod by a contraction that is unique in
a suitable neighborhood of x in C .

	

The nontrivial cases are precisely the ones
in which Irs(x)j contains a cycle, the contraction being the holonomy produced
by a positively directed loop around this cycle.

The proof is an exercise in elementary symbolic dynamics and, at any rate,
will be found in [C-C 1, (3.2)] .

1 .5 . Corollary . A leaf L of FIX is resilient if and only if the holonomy
group of L relative to X is ininite cyclic .

Our proof of Theorem 2 will show that the above holonomy contractions are
compactly supported . Such a contraction determines a compactly supported
cocycle on the leafL that is nontrivial in H*(L ; Z) . That is, if the graph irs(x)j
has a cycle, that cycle is Poincaré dual to a handle on the leaf through x .
Remark that so far in this section we have not needed smoothness hypotheses .

For the following, smoothness of cases at least C2 seems to be necessary.

1 .6 . Lemma. If F is of cases C2 and X C M is a Markov LMS, then
the Markov system S of (1 .2) can be chosen so that I, is a singleton, for each
c E Kp . In particular, 77 : C,Kp is a horneomorphism.

Proof.. We modify the Markov system S of (1 .2) . If I¿ is a nondegenerate
interval, then [C-C 1,(3.4)] implies that t = (Jo, J1 , J 1 . . . . , J 1 . . . . ), where
Jo and J1 are finite sequences of elements of {l, 2, . . .,ni} . By applying a
suitable nonnegative power of r to I,, we ma.y assume that Jo = 0 . We set
J1 = (j1,j2, . . .,j9) . If Iik and T k-1 (Ij share an endpoint x, delete {x} U
r k-1(int(IJ) from IB A, . Otherwise, delete the interval rk-1 (int(IJ) from Ii,
Similarly, delete {r(x)} UT k (int(IJ) or rk'(int(I,)) from XjA, . These operations
should be performed for 1 _< k <_ q . This breaks each Ij,_ and Xik into a
finite number o£ subintervals I1,` 1 ,

	

. . , I7k ?nk and X1 A, 1 , . . . , Xjkn,k (remarle that
possibly jk = jj, k

	

l) . The generator hj,_ of I'S is then broken into hjk i

X;ki
---,

Íjki, 1 < i < " 1 r., 1 < k _< q. It is elementary to check that this
modification of S is again a. Markov system for the Markov LMS X . Finally,
again because of the C2 hypothesis, there are only finitely many rs-orbits in
Zo that are semiproper [C-C 1, (6.1)], so the above procedure only needs to
be iepeated finitely often to produce the desired Markov system .
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1 .7 .

	

Corollary. If P is of class C2 , if -X C M is a Markov LMS, and if
e > 0 is given, then ¡he Markov system S of (1 .,2) can be modified to a Markov
sysiem S*, for the same LMS 1X, such that ¡he intervals X; and Ii are all of
length less than c and each generator h; is the restráction of a suitable generator
hi(i) from S.

ProoL Apply [C-C 1, (4 .1)] in conjunction with (1 .6) .

2 . The combinatorial arguments .

The dynamical description of .Pis given via a suitable choice of open cover
{Uj,,E .A ofM by Frobenius coordinate charts . Each Ua is to lie in the interior
of some Frobenius chart a.nd an .'F-plaque in Ua is to meet at most one .P-plaque
in Up, for all a, 0 E A .
The set of (closed) P-plaques in Ua can be identified with a compact, im-

bedded, P-transverse arc Ra �> M, the preimage Ra being, itself, a compact
subinterval of R . M7e arrange that these subintervals be disjoint in R with dis-
joint images in M. lf Pa E Ra and Pp E Rp are interpreted as closed plaques,
we will write

713a(Pa) = P/3

if and only if Pp and Pp overlap in the sense that

int(Pa ) n int(Pp) qÉ 0 .

This defines the set of generators Gw = {ypa}a,pEA of the holonomy pseudo-
group rp of F, a pseudogroup on the compact one-malifold RF = U,,EA R,
Thus, a word of length n in these generators, when applied to a plaque P E RF,
amounts to a cha.i n (P = PO , P,, . . . , Pn) of plaques such that P2_ 1 and P4 over-
lap,1<i<n.

Let X be a Markov LMS of P. We can assume that the imbedding T -->
U, relative to which X is of Ma.rkov type, is the imbedding of a compact
submanifold T C RF induced by Rw �> Dil .
By (1 .2), these is a . set Gs = {hi},<;<., generating a Markov sub-pseudo

group r, C FF , such that FFIC = rsrC . Each hi is locally a composition of
yap's . By (1 .7), we can brea.k each hi up into finitely many of its restrictions to
disjoint, open subintervals of D(hi ), on each of which hi is a pure composition
óf yap's. Thus, wlog, -,ve assume that each lii is a reduced word in the generators
Gs .
We must take into a.ccount the structure of the foliated manifold (U, .P)

obtained by completing (U, .P1U) relative to any Riemannian metric inherited
from M [Di] . Let

U=KUVi U . . .UV.
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be a decomposition into a compact nueleus K (a foliated manifold with convex
corners) and arms Vi (foliated interval bundles), as déscribed in [Di] (also, see
[C-C 2], [H-H], [Go]) . Let B C_ A be the subset such that Ua C int(K) if and
only if a E 8. Let R = UaEG R« .
The nueleus can be chosen large enough to engulf any specified compact

subset of U . Thus, without loss of generality, we can assume that the Frobenius
cover {Ua}aE .4 has been chosen so that T C_ R and the expressions for the
generators hi of I'S as words in the generators yaa of F.,F involve only indices
a�Q E 13 . Let G = {yap}a,QEti and let I' be the pseudogroup on R generated
by the set G . Thus, I's 1C = I'1C .

Definition .

	

The foliated manifold_	(M',Y) is defined by setting M' _
U-EB Ua and Y = FIM' . The subset X' C M' is the .r'-saturation of C .
Remark. Even if the foliated manifold (M, .F) has some degree of smoot-

hness, aM' is only piecewise smooth, being divided by corners of various des-
criptions into smooth pieces that are each either transverse or tangent to .'F' .

In light of our discussion so far, the following is an exercise .

2.1 . Lemma.

	

The set X' is an exceptional minimal set of Y. Each leaf L'
of .F'lX' is contained in a unique leaf L of .FIX and the correspondence L +--> L'
is one-one between the leaves of FAX and of .T''jX' .

For b E Ci and x E Rb fl X', we can chosee y,; E I' to be a word of shortest
length in the elements of G such that -y,,: (X) E C. By compactness of R6 and of
R6 fl X', there are finitely many compact subintervals with interiors covering
int(R6), each meeting X' in a set that lies entirely in the domain of some such
yx and is carried by yx into C . That is, as ó ranges over Ci and x ranges over
R6 fl X', we can arrange that only finitely many yx are distinct . Remark that,
if x E C, then yx is an identity.

Finally, whenever a�Q E Ci and x E D(yo) fl A", we can write

-Y.,3(x) = y = yv 1 o w«,3 o -Y.(x),

where yy and yx are as above and w.0 is a reduced word in the generators Gs.
Again, by compactness, there will only be finitely many distinct words wa,
that occur as a and /3 range over 8 and x ranges over D(yaR) .

Definition . For w E I's a pure reduced word in the generators Gs, the
length of that word is llwils . Similarly, for a pure reduced word -Y E I' in the
generators G, the length is denoted by ¡¡y¡¡ .

It is cleax from the above discussion that we can fix a choice of N E Z+ that
is simultaneously an upper bound to each of the following

(a) Ilyxll, for each x E X fl R ;
(b) IIhj il,1 < j < ni ;
(c) 11wa¡ilis, for each x E C a.nd for all a, 0 E B.
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Remark also that this implies

(d) Ilwápll <_ N2 .

Let L be a leaf of FIX, x E L fl T, and let L' be the corresponding leaf of
F'IX' as in (2.1) . Then the graphs Ir(x)I and II's(x)I will be defined relative
to the, generators G and Gs, respectively, and so will be quite different . Also,
since y&, = y0,á, we will agree that both 7p,,, and yapare to label the same
edge with opposite directions . By contrast, each edge of II's(x)I has been given
a unique label hjand a corresponding preferred direction (cf. §1) .
The graph Ir(x)I is the 1-skeleton of the nerve of the plaque-cover of L',

hence the first of the following lemmas is evident .

2.2 . Lemma. The spaces £(L') and £(IF(x)I) are homeomorphic .

2.3 . Lemma . The spaces £(IF(x)I) and £(II7s(x)I) are homeomorphic .

Proof. For a, 0 E G, let z E L n D(yap) and let y = ya,9(z). Recall that

-Yap(z) = yy 1 O wa/i O 7z(z),

where IIy.II, Il yy' II, and IIwáp11s a.re all bounded above by the integer N and
IIwáj is bounded above by N2 .
The vertices of Irs(x)I are contained in the set of vertices of Ir(x)I and

this inclusion extends to a mapping Irs(x)I -+ ¡F(x)l, not of graphs but of
topological spaces . Indeed, an edge of Irs(x)I labeled by hj is carried onto
an edgepath in IF(x)I corresponding to the expression for hj in terms of the
generating set G .
The above mapping induces a : £(II's(x)I) -> £(IF(x)I), a continuous map.

This is a. surjection since every vertex of IF(x) I can be joined to á vertex of
II's(x)I by an edgepath in IF(x)I of length at most N .
We must show that A is one-one . Let e and e' be distinct elements of

£(Irs(x)I) . Let {xk}' 1 and {x'}~ 1 be sequences of vertices of Irs(x)I con-k=

to e and e' respectively . Then, there is a verter x* of this graph such
that, for k sufficiently large, any edgepath in II's(x)I joining xk and x' must
pass through x* . Indeed, a: * will be one of the points at which the graph
"branches" .

Let D(x* , v) C IF(x)I be the set of vertices that can be joined to x* by an
edgepath of this graph of length at most v . In order to show that A(e) :~ A(e'),
it will be sufñcient to find an integer v > 0 such that, for k sufficiently large,
every edgepath in IF(x)I joining x,. and x' must meet D(x*, v) . For simplicity of
notation, let z = xk and z' = x' . An edgepath joining these points corresponds
to a word

y = y6y ay_ 1 0 " - O yalap
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such that y(z) = z' . Let z(0) = z and

z(p) = -Yavav-i p . . . p ^Yalao(z),

1 <_ p < q . Since z E C and z' = z(q) E C, we see that 7, and yz , are identities,
hence that

y(z) = w(z) ='tva9á4r) o . . . o wz(ea) o ( z ) .

Here, each wa(, á . i ) is a word in the generators Gs, hence the above expression
represents an edgepath in irs(x)j joining z a.nd z' and, as such, passes through
x, . Let us say that wáná y

i)j represents a segment meeting x* . It follows that
z(p) E D(x, NZ + N).

Since endsets are compact Hausdorf spaces, we conclude that A is a homeo-
morphism .

2.4 . Corollary . The space £(L') is honaeomorphic to ¡he Cantor set.

Proof.. By (2 .2) al-id (2.3), there is a. homeomorphism

(Í(L') = S(irs(x)1)

and, by (1 .3), the space S(II's(x)1) is a Cantor set .

2.5 . Corollary . If X is a Markov minimal set of F, then the conclusion of
Theorem 1 is true .

Indeed, we can take U = M = M', F = .P, -X = X', L = L' and apply
(2 .4) .

2.6 . Lemma. If X C M is a Markov LMS of F, then X contains exactly
a countable infinity of resilient leaves .

Proof. By (1 .1), 1CP is a F,-minimal Cantor set . An elementary consequence
is that exactly a countable infinity of (i I , iZ, . . . . ik, . . . ) are of the periodic form
(J, J, . . . , J, . . . ) J being a finite string of integers from 11, . . . , m}. By (1.4)
and (1 .5), the Markov LMS X contains exactly a. countable infinity of resilient
leaves .

2 .7 . Lemma. Leí X C 117 be a Markov LMS of F, leí L C X be a resilient
leaf, and let x E L fl T C C. Then, the holonomy coníraction that represents
the generator of h,; (L', X') = 7Í � (L, X) - Z is compactly supported on L' .

Proof.. We can a.ssume that a, E Irs(x)j lies on the unique cycle w of that
graph and we view w as an edgeloop based at x . let D(w, v) C IP(x)j denote
the set of vertices that can be joined to a. vertex of w by an edgepath in this
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It is a consequence of Theorem 3 that, for a suitable (open) normal neighbor-
hood W of F in U, each component F of Jr' fl W is diffeomorphic to F,, in such
a way tha_t the projection p : F --> F, defined by projection along the normal
fibers in W, is identified with 7r : F,,. -> F. Here W will be diffeomorphic to
the manifold Q which is obtained from Fq x [x, b] by the identification map

cp : H+ x [x, b] ----> H- x [x, b],

w(x+,t) = (x-,f(t)) .

The manifold Q is naturally foliated by leaves diffeomorphic to F,,, asid the
natural projection p : Q --+ F restricts to 7r on each of these leaves . The dif-
feomorphism W - Q carries each component of X fl W opto one of these leaves
and identifies p with projection along the normal fibers ofW. This picture and
the proof are, by now, standard in geometric foliation theory. For example,
see [C-C 2, §6] for the completely analogous situation of totally proper leaves
winding in on leaves at lower levels . The situation there is precisely the one
described here, but with X replaced by a single leaf.

Let Fi, . . . , Fq be the components of aU on which X accumulates, let Hl , . . . ,
Hq be the respective handles, and let VVi, . . . ,Wq be the corresponding normal
neighborhoodsjust described . Let Fq_

	

+1, . . . , Fp be the remaining components
of aU

	

_andWq+1, . . . , 4Vp respective normal neighborhoods of these in U that
do not meet X . We can a.sstune that, for q + 1 < j <_ p, Wi fl K is a finite
union of closed Frobenius charts for F. Fina.lly, let M' = K \ U,<i<p Wi . By
Theorem 3, FIX has no holonomy outside of M' . At this point, the following
is clear .

3.1 . Claim. The Frobenius cover {Ua},EA for the foliated manifold (M, .F)
can be chosen so that the manifold M', as described aboye, coincides with the
manifold M' construcied in §2 .

As in §2, we set .F' = .F1AP, a foliation with exceptional minimal set X' .
Let L be a leaf of FIX and let L' be the unique leaf of .F'IX' contained in L
(2.1) . Because the foliated manifold (M',,F') has been fashioned with greater
care than in §2, the leaf L' is a manifold with boundary, but with no corners .
Indeed, (M', F) is a. foliated manifold with corners of various descriptons, and
these corners divide OM', as usual, into a part tangent to .F, denoted a,M',
and a parí transverse to F, denoted afiM'. The components of aL' are exactly
the components of L fl BnhM', each being a copy either of Hi, 1 < i <_ q, or
of aBj , 1 <_ j < r . There are infinitely many such components . Finally, each
component of L \ int(L') has as boundary exactly one component of aL' and
either lies entirely in T4ji, 1 < i < q, or in some V� 1 < j < r .

3.2 . Proposition . The inclusion L' --> L induces an imbedding,\ : E(L) ~->
E(L) with image S*(L).
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Proo£ Since £(L') = £ * (L'), the image of A is contained in £*(L) . We must
show that A maps £(L') one-one onto £*(L) .

Let e and e' be distinct ends of L' . Let ~k C int(L') be a compact subset
separating e and e' . Since the components of L \ int(L') correspond one-one
to the components of áL', it is clear that 0, as a compact subset of L, also
separates \(e) and A(e'), hence these ends are distinct in £*(L) .

Let e E £*(L) . Let . . . C Uti C Uk_ 1 C . . . C L 7 1 C L be a fundamental
system of neighborhoods of e . Since (b 9É Uk f1 1V1' = Uk (1 L' (the second
equality is a consequence of (2 .1)) we can choose xk E Uk fl L' . By passing to a
subsequence, if necessary, we can assume that the sequence {xk}k1 converges
to an end rt E £(L') . It follows that A(17) = e .

3 .3 . Corollary . Theorem 1 ás true .

Proof.. Apply (2 .4) and (3.2) . a

3.4 . Proposition . Let L be a resilient leaf of .FAX . Then ¡he holonomy con-
traction that represents the generator of H,;(L, X) - Z is compactly supported
on ¡he leaf L .

Proof. As usual, the contraction on L defines a nontrivial cohomology class
0 E H1 (L ; 7L) . If we view this class as a homomorphism

3 .5 . Corollary . Theorem 2 is true .

0 : 7r, (L, ti) -+ 7L,

we see, by the geometric consequences of Theorem 3, that it va.nishes on any
loop that is freely homotopic to a loop on L -, int(L') . Thus, 0 is supported in
int(L') where, by (2 .7), it is compactly supported .

At this point, the proof of (2.8) applies without change .

4 . The fundamental contraction .

Let X be an exceptional LMS, not necessarily of Markov type, and let F be
any proper or semiproper leaf of the foliation F. By transverse orientability,
F has two sides, denoted F+ and F-. Assume that X is asymptotic to F
on at least one side, say on F+ . Let 0 E F a .nd let [0, e] be a parametrized,
.F-transverse arc, issuing from 0 on the side F+ . Let ]a, b[ be a component of
]0, e[ \ X such that [a, b] C ]0, e[ .
As in §3, h o denotes holonomy in [0, e] defined by a loop o on F, based at 0,

and o * H denotes the homologica.l intersection number of o with a handle H.
Definition . Let a : [0,1] ---+ L be a. loop based at o(0) = o(1) E H. If

o¡ ]0,1[ is in general position with respect to H, if o¡ ]0, b] and o¡ [1 - b, l[ both
lie on the lame side of H for small b, and if o always crosses H in the same
direction, then we will say that a is in normal position with respect to H.
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4.1 . Theorem.(Duminy). If e > 0 is sufáciently small, then there is a
handle H C F and a loop u on F, based at 0, such that o, * H = 1 and ho = f
is a contraction of [0, e] to 0. Furihermore, for some integer r£ >_ 0 and every
loop T on F, based at 0 and in normal position with respect to H,

hr(.fk(b))
= fk+r*N(b),

for each integer k > n., provided that hr(f k(b» is defined and < b.

Remark. If F happens to be a semiproper leaf that lies in X itself and if
F+ is the nonproper side of F, this theorem leads rather easily to the result
that £*(F) contains no isolated points, hence is a Cantor set .

Let U be an open, connected, .F-sa.t_urated set such that X is a miniimal set
of FIU. Let F be a . component of r7U on which X accumulates in U . Our
main application of (4.1) will be to this situation, the sitie F+ being the sitie
bordered by L 1 , so F+ will be a. proper sitie of F. The conclusion of (4.1) will
be our starting point for the proof of Theorem 3 .

Unfortunately, Duminy has never made his proof of (4.1) available to the
mathematical public . The result is crucial for current research into the struc-
ture of exceptional minimal sets, so we have prepared an account [C-C 3] for
informal circulation .

Definition . The handle H C F, given by (4.1), will be called a holonomy
handle .

5 . The proof of Theorem 3

As in §3, the decomposition U = K U Vi U . . . U_1;. induces a decomposition
F= AUBj, U. . . UBj,, where F is a component of DU . 13y suitably renumbering,
we take Bj; = Bi, 1 < i < t.

Let xi E Bi a.nd let Ji be the fiber over xi of the interval bundle Vi --~ Bi,
1 <_ i <_ t. Let Po denote a .n F-plaque containing the point 0 E A. Edgeloops
on jFw(0)j, based at 0, induce a holonomy sub-pseudogroup rF C ry , defined
on open neighborhoods of 0 in [0, e[ and fixing 0 . The usual holonomy group
xo(F) is the group of germs at 0 of the elements of FF .

We say that a chain p = (Po , P,,..., Pf ) of pla.ques, without repetitions, is a
simple chain a,t Po, as is the holonomy element h,, E F_F that it induces . A chain
u = (Po , P,,... , Pq , Po ) and the associated ho E rF will be called a simple loop
at Po if (Po , P,,...,Pq ) is a simple chain . Finally, if p = (Po, . . . , Pq ) is a simple
chain and a = (P9 , Pq+1, . . . , Pq+9,Pq) is a simple loop at Pq , then

and

T=PuP =(Po, . . .,Pq,Pq+i, . . .,Pq+9,Pq, . . .,Po)

h r =hp1 oho ohp EFF
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are called basic loops a.t Po . Every element of FF, restricted to a suitable
neighborhood of 0 in [0, e[, can be written a.s a composition of basic loops at
Po . Thus, the (gerins of) basic loops generate ho(F) .

Let A = Ao C_ A 1 C_ . . . C_ Ak C_ - - - C F be ara exhaustion of F by
compact, connected submanifolds with boundary . These should be chosen so
that the componente of F\ Ak are not relatively compact in F arad so that these
components correspond one-one to the componente of c9Ak . Let Go denote the
set of basic loops at Po which, as plaque chairas, consist entirely of plaques
meeting Ao . Inductively, suppose that Gk has been defined, some k >_ 0 . Then
Gk+1 \ Gk is to be the set of basic loops of the form hp 1 o hQ o hp , where p
is a simple chaira at Po that involves only plaques that meet Ak and contains
just one plague that meets egAj, 1 <_ j < k, a.nd o, is a basic loop that involves
only plaques that meet Ak+1 \ Ak

	

View each Gk as a subset of FF and let
Go = U'0 Gk C FF.

5 .1 . Lemma. For e > 0 sufccientlg small, and for each g E GI, either g
or g-1 is defined ora [0, e] and maps that interval into itself. Furihermore, Gp
generates ho (F).

Proof.. Since Go is finite, choose e > 0 so slnall that both g and g-1 are
defined ora [0, e] with images in [0, e -{- b[, for some b > 0 and each g E Go .
Either g(e) or g-1 (e) E [0, e] . Making e smaller, if necessary, we make sure that
hp is defined ora [0, e], for each simple chaira p a.t Po in A. Since Vi is a foliated
interval bundle over Bi, 1 < i _< t, it is true that either g or g -1 sends [0, e] to
itself, for each g E G t \ Go_

The fundamental group 7r, (F, 0) can be defined via the nerve of the plaque co-
ver ofF (provided the Frobenius cover of 1V1 has been suitably chosen) . Clearly
the set of edgeloops in 1FF(0)1, corresponding to Go, generates 7r1(Ao,0) . By
the Van Kampen theorem and induction ora k, the set of edgeloops, corres-
ponding to Gk, generates 1r 1 (Ak, 0), hence those corresponding to Gtt generate
7r 1 (F,0) . The natural surjection 7 1 (F,0) -> I-to(F) is then used to prove that
GI generates Ho(F) .

Definition .

	

Let g E Gp \ C=k .

	

The k-representation of g is hp1 o hQ o hp,
where p is a simple chaira in Ak and o- is a. basic loop involving only plaques
that meet F \ Ak .
Such a k-representation always existe a.nd is unique . Its usefulness lies in

the fact that, while Gq \ Gk is generally ara infinite set, the k-representations
involve only finitely many of the simple chairas hp .

5 .2 . Lemma. Let 0 < r < 1 < s. Then there is a.n integer k >_ 0 such
that, whenever g E G g \ Gk and g = hp 1 o ho o hp is the k-representation, then
r < há(x) < s, for each .r E hp(D(g)) .

This lemma is just a . slight variation ora [C-C 2, (2 .9)], so we omit the proof.
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5.3 . Lemma. If e > 0 and. ó > 0 are suitably chosen, each as small as
desired, then every g E Crq defines g : [0, e] -> [0, ¬ + 6[ . Furthermore, given

0 > 0, k can be chosen so large that jg(u) - uj < 17, for each g E Gl \ Gk,
0<u<e .

Proof. Let e' be as sma .ll as desired with the property ascribed to e in (5.1) .
Let r/ > 0 . The generalized Kopell leinma [C-C 2, (2.8)] is a consequence of
(5.2) (cf. [C-C 2, p . 190]) and implies that, if k is sufficiently large and if
g E G# \ Gk maps [0, e'] into itself, then Ig(u) - u¡ < il, 0 < u <_ e' . By taking
17 < e'/2, we see that g -1 maps [0, e'/2] into [0, e'] and that

Ig -1 (u) - 11 1 = Ig -1 (u) - g(g-, (U»1 < 77,

0 < u < e'/2 . That is, both g a.nd g-1 send [0, e'/2] into [0, e'] and satisfy

100 -'u1 < q > Ig -1 (u) - u1 .

Since Gk is finite, we can choose e E ]0, e'/2[ so small that g sends [0, e] into
[0, e'], for each g E Gk, hence for each g E Gp . Take 6 E ]e' - e, e'[ and obtain
all assertions .

5.4 . Corollary . Le¡ 0 < r < 1 < s. Then e and 6 can be chosen as in (5.3)
and k > 0 can be chosen so that, for all g E Gtt \ Gk and for 0 <_ u <_ e, ¡he
inequalities r < g'(u) < s hold. If, furthermore, {g1 , . . . , gn } C Gk is a subset
such that no gi is germinally equivalent lo a contraction lo 0, then ¡he choice
of e can be made so small that r < gi(u) < s, 1 < i < n, 0 < u < e .

Proof.- By (5.2), we choose k > 0 such that, for g E Gt \ Gk with k-
representation g = h. 1 o ho o hp, we have

0 < u < e . By elementary calculus,

< hó(hp(u)) < f,

h'(u)hó(hn(u))
g,(U)

__

	

n
h'(g(u))

0 <_ u < e, and each of the finitely many functions h' is continuous . By making
e (and, if desired, b) small enough, we gúarantee that

0 < u < e, hence

hv( u )
~< hp(g(~)) C

	

'

r < g 1(u) < s,
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0 _< u <_ e . There remain the elements gi E G k , 1 <_ i <_ 71 . Since none of there
restricts to a contraction to 0 on any neighborhood of 0 in [0, e], we see that
gi(0) = 1, 1 <_ i <_ n . Thus, by making e > 0 possibly smaller, we complete the
proof

At this point, we consider a Markov L_MS, _X C M, assumed to be a minimal
set of FlU and to accumulate on F C aU in U . We let ]a, b[ be a component of
]0, e[ \ X, as in §4, and consider the holonomy handle H C F a.nd the holonomy
contraction f = ho given by (4 .1) . For each integer n >_ 0 and for u E D(f),
we set un = fn(u) .

5 .5 . Claim.

	

Without loss ofgenerality, we can assume that the .'F-transverse
1-nianifold T, as in §1, is ]a l , bo[ . This implies that C C [b1,ao] .

Proof.. (1) We construct a holonomy imbedding 0 : C --+ ]a l , bo [

	

If this
has image X n ]a l , bo [, the first assertion follows . VVe will consider the contrary
possibility in step (2) .

If there is an integer k E {1, . . . , m} such that Pik = 0, 1 <_ i <_ 7n, assume
wlog that k = 7n . The Markov system S can be replaced by a Markov system
S', indexed by {1, . . ., 7n - l}, without loss of information . This replaces the
subshift with one on a Cantor subset of 11 �. . . , 7n. - 1 } ' and replaces C with a
Cantor subset C' . By finite repetition of this process, we assume that, for each
index é = 1, . . . , nz, there is an index i E {1, . . . ,m} with pik :,~ 0 .
From the above paragraph and elementary symbolic dynamics, it follows that

the points y E C such that 77(y) is a periodic point in {1, . . . ,nz}' are dense
in C n Iti, 1 _< k <_ 7n . Since only finitely many periodic points can pertain
to a semiproper I'-orbit [C-C 1, (6.2)], we choose yA E C n Ik such that C
clusters on yk from both sides and 7)(yti) is periodic . Then there is a holonomy
contraction 9R of Ik- to yk . Let cp ti be an element of holonomy of .FIU that
carries yti to x,k E ]a l , bo [ .

	

It is easy to arrange that x 1 , . . . , x,k all be distinct .
For a suitably large integer 7a, Ok = cp 1, o 0

	

is defined on all of Ik., 1 <_ k _< m,
and {Ok(IR)}k1 is a set of disjoint subintervals of ]a 1 ,b o [ . Set

U7Ptii(Cnh.) :C-]a,,bo[,
k-1

the desired holonomy imbedding . Clearly .

	

is a.n open-closed subset of
Xn ]al, b o [ .

(2) We now assume that C C ]al, bo[ . If K = X n]al,bo[ \ C Y 0, then K
is a Cantor set . For each a, E K, choose y, as in §2, a holonomy element with
y,;(x) E C . As remarked in §2, we can arrange that only finitely many y,, be
distinct . Thus, {R(y,)},El< is actua.lly a finite set of open intervals .
By (1 .7), we can assume that the Markov system S is such that, for each

x E K and 1 < i < 7n, either Xi n R(-y,;) = 0 or Xi C R(y, ) . Select an open
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interval U, about each Xi with these same relations to the intervals R(yx) . One
then enlarges S by adding the generators -y, 1 jUi and the intervals y.'(Xi) .
This Markov system generates the Cantor set Jr' n ]a l , bo [, so we can take
T =]al,bo[ .

(3) Since ]a l , b1 [nX =

	

_ ]ao, bo [ n X, it follows that C C [bl , ao].

As in §1, I' denotes the pseudogroup on T = ]a l , bo [ that is induced by I,W.

We have a Markov system

S = ({I1, . . . , I�1}, {h1 . . . . , h�1},P)

and associated pseudogroup I's C I', such that P1C = Fs1C . Since C C [bl, bo[,
we can take Ij C [b1,bo[, 1 <_ j _< 7n . Let I'; denote the set of words in
nonnegative powers of the generators {h1,... ,11

h�}.

We can assume that H C int(A), hence by cutting A along H we produce
a compact, connected ma.nifold A' . It is fairly obvious how to select a subset
of basic loops in A that should be thought of as the basic loops on A' . Let
Gó = {g1, . . . , g.m} C Go be the elements of holonomy corresponding to the
basic loops in A' . Then, if k >_ 0 is sufficiently large, the set {f } U Gó generates
the same holonomy on [0, bti,] as does Go . By renumbering, replace bo with bk .
Thus, if Gy = Gó U G1 U . . . U Gs U - - - , we can assume that Gt = Gá U {f }.

In order to prove Theoreln 3, it should be clear that proving the following
two propositions will suffice .

5.6 . Proposition . For k >_ 0 sufficiently large, Gy ftixes every point of
X n [0, bti ] .

5.7 . Proposition . It is possible to choose ¡he decomposition of U so that
the total holonomy of the foláated interval bundle Ji ---> Vi -----> Bi faxes every
point of 11' n Ji, 1 < 2 < t.

Proof.. (Using (5 .6)) By [C-C 1, Theorem 1], each of the semiproper leaves
L C X has a holonomy contraction on its nonproper side, say on L+ , and
this contraction is unidue relative to X. Apply (4.1) to the side L+ so as to
conclude that this contraction is compactly supported . By [C-C 1, Theorem 2],
there are only fi_nitely many semiproper leaves in X, so we choose the customaxy
decomposition U = K U Vi U . . . U V,. in such a way that K engulfs the holonomy
handle on each of them .

Parametrize J; a.s [0,1], 1 <_ i < t. By (5.6), the loops on Bi, based at
xi, fix every point of X n [0, b], for some 6 E ]0,1] . The subset of X n ]0,1[,
fixed by these loops, is closed in ]0,1[, hence, if it is not all of X n ]0,1[, we
can choose the above 6 E X n ]0,1[ in such a way that some loop on Bi at xi
induces a germinallyy nontrivial element of holonomy on [b, b + e[ n Jr' that fixes
6 . Again appealing to [C-C 1, Theorem 1], we see that, for e > 0 sufficiently
small, the holonomy around this loop gives a contraction of [S, 6 +e[ to 6 .
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But this loop also fixes each point of [0, S] fl X and, in a Markov LMS, each
holonomy contraction to b contra,cts a whole neighborhood of 6 in ]0,1[ fl X to
b (elementary symbolic dynamics) . Thus, ó must lie on a semiproper leaf and
this contradicts the fact that the holonomy handle on that leaf does not meet
vi .

In order to prove (5.6), we first review certain poüzts from [C-C 1, §6], where
the finiteness of the number of semiproper leaves in X was established .
By the parametrization of T as the subinterval ]a l , bo [ C R, we view I'S as a

pseudogroup on R and place the following definition .
Definition. A point x E R is rs-unifoim if there is an open neighborhood

V of x in R and a number v > 0 such that g'(u)/g'(v) < v, for each g E rs
a .nd for all u, v E V fl D(g) . The set of rs-uniform points is denoted by U+
and its complement in R by B+ .
Remark . Since U' is open in R and, by default, contains R \ ]al, bo[, the

set Ci+ is compact .
In the following, T again denotes the essential subshift that generates I'IC .

A T-cycle is a subset {x,T(x), . . .1Tk(x)} C C such that k >_ 1 and r''(x) = x .
The minimal such k is the length of the T-cycle .

5.8 .

	

Lemma. The set B+ fl C is the union of at most finitely many T-
cycles . Furthermore, B+ meez<s at mosi finitely many componente of T\ C and
the points of C bordering these componente fall finto finitely many T -cycles.

Proof. This was essentially proven in [C-C 1] . Indeed, by [C-C 1, (6.8),
(6.18), and (6.19)] the set B+ flC and the set of componente of T \ C that meet
B+ are both finite. Let x E !3+ and let V be a neighborhood of x in R. For
each integer N > 0, let WN be the set of words of length N in positive powers
of {h1, . . .,h,n}_ By [C-C 1, (6.5)], we see that Uf g(V n D(g)) 1 g E WN}
meets B+, for all choices of V and N . From these facts the assertions follow
easily .

Definition. The set 9 consists of all g E P such that
(a) g maps [b 1 , bo[ diffeolnorphically onto itself;
(b) giC has fixed points p < q with g'(p) = 1 = g'(q) and such that C fl

]p, q[ 7É 0 ;
(c) if x E C fl ]p, q[ and if g(x) = x, then g(x) 7É 1 .

5 .9 . Lemma.

	

There are constante B > 0 and 0 < ro < 1 such that, if g E 9
and p, q are as in Me abone definition, there is a choice of h E {g, g-1 } and of
x E ]p, q[ for which one of the following holds .

(1) h(x) = x and h'(x) < ro .
(2) p < h(x) < x and (:i - p)/(x - h(x)) < B .
(3) x < h(x) < q and (q - x)1(h(x) - x) < B.
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Proof.. -(1) Let mi = min(C n Ii) and Nli = max(C n Ii), 1 <_ i _< m . These
points border gaps of C, so we fix ni < mi and Ni > Mi in these gaps such
that n i and Ni E R(h i ) . Let

Ni - n2i

	

Mi -ni
B=maxl<t<~r~

	

Ni- Mi,rni-niJ, .

The points mi and Mi lie on semiproper I's-orbits, hence there are con-
tractions -yi and ili E rs to mi snd Mi, respectively, defined on the nonproper
sides of these orbits and generating the infinite cyclic, relative holonomy groups
~-l(Fs(mi),C) and i-l(Fs(1VIi),C) [C-C 1, Theorem 1] .

Let 0 < ro < 1 be such tha,t, for each value of i = 1, . . . , m, if -yi(mi) and/or
r71(Mi) are not equal to 1, then they are less than ro . If all of these derivatives
are 1, then 0 < ro < 1 can be fixed arbitrarily.

(2) If C3+ -~ (0, let A be the length of the longest of the r-cycles given by (5 .8)
and let p, = A2 . If C3+ = 0, fix p arbitrarily .
Forw=hi � o . . . ohi, EF~,letwk=hi,o . . .ohi,,0<k<n.

wo = id .

	

-

	

-

Let Wi, 1 < i < nn., denote the set of all w E I'' such that
(a) Ii C D(w) ;
(b) either IwI < p or tv,,(Ii) n C3+ = 0 .

Finally, set B = B - B.

Ahli <Ni < q.,
p. <nj < mj,

Here we let

By the definition of G+, we can choose the points ni and Ni of step (1) and
a constant B > 0 such that w'(u)/w'(v) _< B, for each w E Wi and for all
u, v E [ni, Ni] n D(w), 1 < i < ni .

(3) Let g E 9 and p, q be as above.

	

Since C n ]p, q( q¿ 0, there is a unique
shortest w E FS, possibly the identity, such that [p, q] C D(w-1 ), w-1 (p) =
p. E Ii ; tv-1 (q) = q. E Ij, and i

	

j . Let g. = w-1 ogow with D(g.) = [p., q.] .

Clearly nao and Mi both lie in [p ., cl .] C D(w) . Let m = w(mj) E [p, q] and
M = w(Mi) E [p,q] . Since p. E Ii a.nd q. E Ij and Ii n h = 0, it is also clear
that

and we set n = w(nj) E [p, q], N = 20(Ni) E [p, q]-
(4) Suppose that either 7n or M is a fixed point of g. We will show that

property (1) in the statement of the lemma follows .
For definiteness, supl5ose that g(Al) = M, the argument in the alternative

case being completely pa.rallel . There are two cases .
Case 1 . Suppose that p . = 1Vli, hence p = M. Since C n ]p, q[ 5A 0 and since

Mi is the left endpoint of a, ga .p of C, so is M = p.

	

We take x E ]p, q[ to be
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the other end of the gap . Then the fa.ct that w-1(p) = p* = Mi implies that
w-1 (x) = mk, some k E {1, . . .,lzz} . Also, g(M) = M implies that g(x) = x,
while x E C n ]p, q[ then implies that g'(x) :~ 1 . Elther g or g -1 will be a
contraction to x and we choose lz = gfl to be that contraction. Finally, let
h* = w-1 o h o w = gtl . Then 1 > h'(x) = h*(mk), so h* is a positive power
of yA and step (1) .implies that h'(x) < ro, as desired .

Case ,2. Suppose that p* < Mi . Then, if we take x = w(Alli) = M E ]p, q[,
we can argue exactly as in Case 1 .

(5) By step (4), we can assume that neither liz nor M is fiaed by g. We will
show that either property (2) or (3) in the statement of the lemma follows . We
consider there possible cases .

Case 1. Suppose that w E )/Vi . Again choosing h = gtl appropriately, we
see that h* (Ni) < Mi and h(N) < M < N. From step (3), ÑI and Ñ E [p, q],
w(Mi) = M, and w(Ni) = N. By there remarlas and the mean value theorem,

N - p

	

< N-p

	

Ni -h*
N-h(Ñ) N-A,1 w'(1)) C N, - Mi)

with ~ and q both E ]p *, Ni[ .

	

Since w E Wi, we see that w'(~)lw'(i7)
Also, Ni - p* < Ni - mi, so

N-p
<B

. . Ni -mi
<B-B=B

Ñ-h(N) (Ni-A~fi)

Thus, x = N satisfies property (2) in the statement of the lemina,
Case 2. Suppose that w E Wj . An argument completely pa.rallel to that in

Case 1 shows that ñ < h(ñ) < q and that (q - ñ)/(h(ñ) - ñ) < B, so we take
x = ñ, obtaining property (3) in the statement of tlie lemina-

Case 3. Suppose that -w q Wi and w q Wj . This cannot actua.lly happen, as
we now show .
We have lwi > p and w,,(Ii) n f;+ 7~ 0 7É w,,(Ij ) n 6+ . It follows from (5.8)

that there are points yi E Ii a.nd yj E I;, belonging to r-cycles of respective
lengths A(i) < A and A(j) < A, where A is as in step (2), and lo,,(yi) and w,,(yl)
belong to there same r-cycles . Let k = A(i)A(j) < A' = p . Let gi and gi be
the words of lengths A(i) and A(j) fixing yi a.nd yi respectively. It follows that

wk=91	=gi(i)=h¡,o. . .oh¡, .

But then yi = wti(yi) E Ii,, so ik = i, while, similarly, yi = wk(yj) E Ii, and
ik = j . This contradicts the fact that i qÉ j .
Proof of (5.6) : Choose 0 so that f"(J)1f'(rl) _< 0, for all 1 and q E [0,e] .

Choose r E ]r o , 1[, sufficiently close to 1 that (e6EB)-1 > 1-r . Here, of course,
ro and B are as in (5 .9) .
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By (5.4), choose k >_ 0 so large that g(x) > r, for each g E GÓ, 0 <_ x _< bk .
We want to show that every g E Gb fixes every x E ]r' (1 [0, bk] . If not, there
exists g E G, and n >_ k so that g moves some points in 1r' n [bn+i, bn] C [0, bk] .
Fix a choice of such g and deduce a contradiction as follows .

Let go = f- n o g o fn E I and note that this carries [b l , bol dif%omorphically
onto itself, fixing b l and ao = a . Since the holonomy relative to X of semiproper
leaves in X is compactly supported (4.1), we can assume that k is so large that
gó(b1) = 1 = gó(ao ) . Thus, the closed set Co of go -fixed points y E X n [bl , ao]
with gó(y) = 1 is nonempty. Since g o moves some points of X fl [bi,ao], there
is a connected component ]p, q[ of [b l , ao] \ Co such that X f1 ]p, q[ 7É 0 . This
proves that go E 9 and we can apply (5.9) .

If property (1) of (5 .9) holds, then, for a suitable choice of an element h =
g±l E Gq and a corresponding choice of ho = gol , we obtain the cóntradiction
that h'(fn(x)) = hó(x) < ro < r, for some f n(x) E fn ]p, q[ C [0, bk] .

Thus, either property (2) or property (3) of (5.9) holds . We consider the first
case, the second being entirely similar. Let x E ]p, q[ be such that inequalities
p < y = ho(x) < x and (x - p)/(x - y) < B hold . Set

By a standard calculation (cf. [Sa 2]),

x,i - pn _- (f
n

) /(1) , ~ x -p
l
< exp(BE)

	

~
x
-p

/
< exp(0e) - B .

xn - yn

	

(fn),(,7)

	

ti - y

	

x - y
Then

.C.. = f'(x)
yn = fn (y) = h(xn)

pn. = fn(p) = h(pn) .

1 -
7
, < (exp(OE) , B) _1 < xn - yn - 1 - yn - pn

xn - pn

	

xn - pn

so h'«) < r for suitable ( E [p,,, xn ] C [0, bk], again a contradiction .
The proof of Theorem 3 is complete .

6 . Geoinetry of leaves

Let M be a closed, orientable 3-manifold, F a transversely orientable CZ
foliation ofM by surfaces .

6.1 . Conjecture . If X C M is a Markov LMS of F, and if X contains no
toral leaf, then there is a Riemannian metric on M relative ío which every leaf
of íFIX has constant eurvature -1 .

Indeed, refinements of the methods of this paper, together with standard
facts about Teiclimüller space, should yield a proof of (6.1) for the case of
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Marlcov minimal sets . At higher levels, further techniques
also be needed .

If -X is an arbitrary exceptional LMS of F, it seems
{.Fn}0 1 of foliations of M can be found, converging to
each with a Markov LMS X, such that X is uniformly
by X,z as n --> oo . This should lead to t11e following .

6 .2 . Conjecture. The previous conjecture is valid for
tional LMS that does no¡ approach a toral leaf.

Indeed, we believe the following .

Referentes
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from [C-C 4] will

lilcely that a sequence
.F in the C'-topology,
well C2-approximated

an arbitrary excep-

This, together with the methods of [C-C 4], would give the following .

6 .3 . Conjecture. If no leaf of F is a torus or a sphere, and if no leaf is
somewhere dense in M, then there is a Riemannian metric on Ai1 relative to
which every leaf of F has constant curvature -1 .

6.4 . Conjecture. If no leaf of F is a torus, there exists a Riemannian
metric on M and a choice of r E {-1,0,1} such that every leaf of F has
constant curvature r.
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