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INVARIANTS OF ANALYTIC CURVES

Hans J. ZWIESLER

Abstract

In this article we imtroduce a complete system of geometric invariants
for an analytic curve. No restrictions are imposed on the curve and the
invariants can be easily computed.

1. In differential geometry the usual system of invariants of a curve ¢ in R®
consists of the curvature functions {[2, p. 94]}. Their definition involves the

assumption that the derivatives ¢,..., ¢®~1) are linearly independent. This
excludes curves (in R®) like straight lines or (¢ +¢2,#%,¢*). In the following we
will show how to overcome these difficulties in the context of analytic curves.

The key hies in the observation that the linear dependence of successive deri-
vaties ¢',..., ¢™) in a {(non-degenerate) interval is equivalent to the fact that
¢ is contained in a linear manifold of dimension at most m (Proposition 1}.
This statement is false for C°°—curves as an example in section § shows; and
this explains why we restrict our attention to analytic curves which include the
vast majority of natural, regular curves.

The linear dependence can be determined using Gram-determinants, and
these determinants (suitably normalized} turn out to furnish a complete set of
invariants for every analytic curve {Theorem 1 and Theorem 2).

2. A curve _c' : I - R"® {(n > 2, fixed) is called enalytic if I C R is an interval
with interior points, ¢ can be expanded in a convergent power series at each

point lying in some open I/ D I and ¢’ # 0 onl.

Denote by C(i1,...,1;) the matrix [¢ (), ..., ¢} where ¢y,...,1; € N, and
let
Gi(S)= det (CT(4,....,5)-C(L,.., i)/ N E PYUHY for1<j<n—1and
Grlc) = det (C(1,...,n))/ || " ||t /2

In the case of linearly independent derivatives ¢',..., ¢ ® 1 they are related
to the usual invariants by the formulae

= \/Gm(?)G;—x(?)/GJ-(E’) (1<j<n—2)and

a1 = Gn(€) G ra(€)/Gn-1{c) with the convention G, = 1
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({2, p. 94]). E.g. in R® we obtain the curvature x = / Ga(<)/G1(¢) and the
torsion T = G3{€ )/ G1{<C )/ G2 ().

First we want to discuss how these expressions change if ¢ is exposed fo a
motion or a change of parameter. Here a motion M : R® — R" is given by

M(Z)=Rz + m with fixed m € R™ and an orthogonal matrix R with
det R = 1; and a change of parameter is an analytic, bijective function ¢ :

I' — I with ¢' > 0 on I' (it respects orientation). Defining ¢ = M o ¢ ¢ ¢ one
immediately verifies

Theorem 1. Gj(¢) = Gj(c)o ¢ (1 < j < n), i.e. these funciions are
tnvariant under motions and changes of parameter.

In order to show that they in fact constitute a complete system of invariants
we first exhibit some of their properties.

3. The dimension of the curve ¢ is the dimension of the smallest linear
manifold or flat ([1, p. 142]) containing {c{f) : ¢ € I}. With the convention
Gpy1 = 0 we obtain

Proposition 1. The following statements are equivelent:
(i) € has dimension m.

(ii) The vectors ¢'P(t) (1 < j < oo} span an m-dimensional subspace of
R™ for each t € I.
(111) Gm i 0, Gm+1 =0.

Proof: (i} = (ii): ¢(t) can be written as C(a)+E™ a,(8)b, wherea € I, b,
are a fixed orthonormal system and a,(t) = {¢(t) — c{a)) - b, are analytic on
I. Thus the derivatives ¢ ¥(t) {1 < j) lie in the space spanned by by,..., bn.
Hence, their span has dimension m' < m.

Let ¢@)(a},..., clm(a) be linearly independent then we obtain the for-
mula ¢{t) = ¢(a) + 7o, a,(t) ¢ ¥}{a) from the Taylor expansion where the
a,{t) are power series which converge near a. Integrating ¢’ we find that ¢
has dimension at most m'. Hence m = m’.

(i) = (i) ¢'5..., ¢(m+1} are always linearly dependent. Thus Guqs = 0.
Then we consider G; {j < m) near a fixed t; € I. By 1, p. 329] we kanow that

det (CT(L,....3)- C(1y-1§)) = BOA DAY, ., 5)

for § < n where D,{1,...,5) is the determinant of some {f,7) - subma-
trix of C(1,...,7). We want to find the first derivative of G; which does
not vanish. Thus we first discuss the derivatives of D,(1,...,7) for fixed
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v and j. Differentiation of a determinant leads to a sum of determinants
each of which is obtained by differentiating one column. Since determinants
with two equal! columns vanish identically D(,,p)(l,”.,j) is a sum of terms
Dy(31,...,4;) with 1 € 4 < --- < i; and p = TI_,(ix — k) € N. This
suggests that we should look for linearly independent derivatives ¢ ) .., (&)
such that Ei:ﬁ.k is minimal. They can be obtained inductively by defining
21 = 1,2x € N as the smallest number such that ?(i*)(a) is linearly independent
of ¢li)(a),..., ¢(*-1){(a) (2 < k < m). That they minimize Bj_, 4, for each
j{1 £ 7 € m) can be seen by looking at a different sequence 1 <} < - < &}
where the vectors ¢Vt are independent. If k is the first index with iy # i}, then
by construction ix < i} and we can repléce one of the derivatives ¢lid} .. 205
by ¢** without destroying the linear independence {1, p. 102]. Hence Ej';:lz"k
was not minimal. Thus we conclude that p; = £J__ (i3 — k) is the first number
such that some D}’ does not vanish. Therefore the first non-vanishing deriva-
tives of G} are G?pj} aslong as j < n and j < m resp. G&» for j = m = n.
Especially Gy, £ 0.

(i) = {i): Let a € I be chosen such that G{a) # 0. Then ¢'(t},..., ¢ (™(2)
are linearly independent near a and from them ¢¢™*1(#) can be obtained as
a linear combination. This is nothing but an m-th order linear differential
equation for ¢’. Thus ¢'{f) lies in an m-dimensional subspace of R® for all
t near a, and hence for all ¢ € I since ¢’ is analytic. This shows that the
dimension of ¢ is at most m. But it cannot be less since otherwise G, =0. B

During the proof we introduced the numbers p;(a} € Ny which denote half
of the (resp. the full) multiplicity of a as zero of G; for j < n {resp. j = n} if
G; £ 0. We also use the convention pp = (.

Proposition 2. The functions Gj(?) have the following properties:
(1) They are analytic on I,

(i) G; >0,6,=1(1<j<n-1),

(1i1) Gi{a) =0=Gi{a) =0 Yk >j,

(iv) A%pi(a) = pj{a) —2pj_1(a) + p;2{a) > 0 for 2<j if G; #0.

Proof: (i),(ii} and (iii) are obvious. And (iv} follows from p;(a} =
¥7_,(i, ~ v) as in the proof of Proposition 1 where the ¢, are strictly increa-
sing. W

4. Now we can show that the functions G; are a complete system of inva-
riants.

Theorem 2. Let the functions G;: I - R*(1 < j < n) have the properiies
stated in Propesition 8. Then there ezists an analytic curve ¢ : I — R"
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parametrized by arclength (ie. || ¢’ ||= 1) with Gi(c)=G; (1 <j<n). 4ny
other such curve is obtained from it by o motion.

Proof: Define a number m € N by G,, £ 0,G gy = 0if G, = 0 resp,
m = n if G, # 0. Then m is well-defined because of properties (ii} and
(iii} in Proposition 2. Fix a € I such that G; # 0 at a for ; € m. Such
a point exists since the zeros of analytic functions {# 0} are isolated. Define

g;{t) = (=1)%1) for 1 £ j £ m where Z;{i) stands for the number of zeros
z of G} in {a,t] resp. [t,a] with A%p;{2) odd {for § < n) resp. with pp_2(z)
odd (for 7 = n). Then we consider the functions k; = €;41/Gi+1G;-1/G;
(1<5<n=2,7<m=1)kn-1=6nGn\/Gn2/Gn_s (ifn=m)and x; =0
(for 7 = m).

The power series of the functions @;, property (iv} in Proposition 2 and the
definitions of ¢; show that all x; are analytic on I. Thus the Irenet-—Serret
formulae

rd —x O - - . 0

K1 .

- — - - c ‘

[e's,...,e'r] =11, 0] | 0

. —Kn-1

L0 ST | B b
have a unique solution on w1th e{a) equal to the i —th vector of the canonical
basis [2, p. 96]. Furthermore €1,..., € form a positive orthonormal system.
Thus ¢(t) = f e 1(T)d'r is an analytlc curve with | ¢’ ||= 1 Moreover e =
Ry*ooo Kjo1- e + r where rJ is a linear combination of €1,..., P j—1 {The

empty product is ta.ken to be 1.). Then we compute every G;(¢) whose value is
unchanged if we add a multiple of one occuring derivative to another. This leads
to @;{¢) =114 <207 which is easily seen to be G;(1 < 7 < n—1). Moreover
Gn(c) = I"Z} k27 is analytic, has the same absolute value as G, and the two
coincide at a. Hence G,,(E') = G, (notice that G, # 02t a unless G, = 0).
Now consider another eurve ¢ with the same properties. By Proposition 1
both curves have dimension m and applying appropriate motions to them we
may assume that they lie in R™ x {0}"~™. If m = 1 the curves are subsets
of straight lines where the nature of the subset (bounded, ray or full line resp.
open, closed ete.) is completely determined by I. Therefore 1 can be obtained
from ¢ by a motion and we assume from now on m > 2. For the moment we
restrict our attention to a neighborhood U of ¢ where G; # 0 (for all j < m).
Assume first that m = n. Then the «; are the usual curvature functions [2,
p.93] and the theory of the Frenet—Serret formulae shows that € 1{t) is obtained
from ¢{t) by 2 fixed motion for ¢ € U. But since both curves are analytic, this
must hold consequently for all £ € I. If m < n we try the same approach in the
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space R™ by disregarding the remaining n — m coordinates {which are 0). The
only problem is that the orientation of the vectors ¢(1),..., ¢im} {in R™} may
lead to the conclusion that our x,,_; has the wrong sign. Then we first apply
the rotation R to ¢ which is obtained from the identity-matrix by replacing
the elements in the (1,1)-resp. {m+1,m+ 1)-position by -1’s. If necessary we
do the same to ¢;. Then we can use (in R™) the same reasoning as above. W

This proof shows that, in principle, we continued the functions «; analytically
to all of I. This was also done in [4] but only for curves in R?* by different
methods. The disadvantages of these continued functions «; are that their
cornputation is involved and that their signs depend on the orientation of the
Frenet-vectors €1,..., €n. This was incorporated in our choice of the functions
£ j(i).

5. Our invariants G; are not only easy to compute, but do not depend on
arbitrary normalizations and do still furnish a complete system of invariants
for analytic curves. Furthermorc they occur in natural connection with the
geometric concept of the dimension of the curve ¢. E.g. plane curves are cha-
racterized by G = 0 (Vi 2 3) and straight lines in R? possess the invariants
Gl EI,G‘ZEO, G:;EO

That our considerations cannot be transferred to C'®—curves is demonstrated
by the curves

_C.1={(t,e—1f=’,0) t£0 2, =4 ) t>0
(0,0,0) t=0 (t,0,e"V*) t<o.

They are not linked by a rigid motion, since ¢ has dimension 2, but ¢, has
dimension 3. Yet the corresponding functions G, coincide for all m € N and
t € R, and the same is true for x and 7 whose limiis at ¢t = 0 exist.

I would like to thank K. Nomizu whose stimulating article [3] roused my
interest in these questions and W.B. Jurkat whose comments were of great
help when [ prepared this article.
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