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Abstract

RATIONAL APPROXIMATION NEAR ZERO
SETS OF FUNCTIONS

PETER V. PARAMONOV

The paper deals with the relation between global rational approximation
and local approximation off the zero set. Also connections with the pro-
blem fz

E R(X) => f E R(X) are studied.

The main result of this paper (Theorem 2 in §2) was obtained in Moskow and
was discussed in some seminars and conferences in USSR. It was announced in
the proceedings of the 1983 Kiev conference on complex analysis, but no proof
was provided . The other results were found while the author was visiting the
CRM in Barcelona in the fall of 1987 .

1 . Let X be a compact in C, and R(X) the closure in C(X) (with sup-norm)
of the space of functions which are holomorphic on X .

For f E C(X) we will write f E R(X,x) for some x E X, if these exists
neighbourhood U of x such that

f ¡y,--u- E R(X n U) .

a

We let N(f) stand for {x E X I f(x) = 0} - the zero set of f.
We will consider the following two closely related problems .

Power problem (P-Pr) . Is it true that for any function f E R(X)
the condition fa E C(X) implies fa E R(X) (same fixed branch)? .
Zero set problem (Z-Pr) . Let f E C(X) and f E R(X,x) for
X \N(f) .

Is it true that f E R(X) ? .
It is clear that these problems are trivial for N(f) = 0, and that a positive

answer to the Z-Pr implies the same answer to the P-Pr. Also it is not difficult
to see, that P-Pr and Z-Pr are equivalent for f in the class

L(X) = U,>o Lip(P, X) .

andq>0

all x E
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For the P-Pr the simpler case q > 1 was considered in [51 . It was proved
there that this problem has a positive answer for all X and all f E L(X), but
really the proof presented in [5] works only under the additional assumption
fq-' E L(X). One can find a simple example (X C_ R), for which f E L(X ),
q > 1, fv and fv-1 E C(X), but fv and fq-1 are not in L(X) (the branches
are fixed and corresponding) .
Given two compact sets X and Y, Y C X and h(z) E C(X) . We will write

h(z) E LX(Y)

if there exist p > 0 and a constant c > 0, such that for every z E X and w E Y
we have

Jh(z) - h(w)j < ciz - wiP .

The following Theorem has a proof absolutely like Theorem 1 in [5], except
for a small change, wich will be described below.

Theorem 1 . Leí f E R(X), h E LX (N(f)) and h E R(X, x) for all x E
X \ N(f) .

	

Then f(z) - h(z) E R(X).

Corollary. Le¡ f E R(X) fl LX (N(f)), then for every q > 1 , f9 E R(X) is
equivalen¡ to fq E C(X) .

The corollaxy follows applying Theorem 1 to h = fq-1 .

To prove Theorem 1 we proceed as in [5] observing that we just need to worry
about the squares (coming from the Vitushkin localization procedure) which
intersect N(f). To deal with these squares we use Lemma 3 in [5, p. 416] which
turns out to be true under our weaker hypothesis . Concretely what we need is
the following Lemma.

Lemma. Leí h be as in Theorem 1 . There exisi p = p(h) > 0 and A = A(h),
such that for every square T6 with side length 6, T6 fl N(f) and every
function g(z) E Có(T6), we have

11
T

-1 h(z) "gdzdz) <Ab11Vgll.(6Pa(T6\X)+M1+P(T6nN(f)))

where a(-) is C-analytic capacüy and M1+p( .) is the Hausdorf content of order
1 -f- p (see 16], p. 145) .

We close this section by stating an open problem dealing with RP(X), the
closure in Lip(p, X) of the space of holomorphic functions on X .
Problem. Let f E RP(X ), and assume that f9 E lip(p, X) for some q > 1. Is
it true that fq E RP(X)? .



2. In [3,4] we proved, that the Z-Pr has a positive answer for all X and
all functions f E Lip(p, X) , p > z . Now we are going to prove one theorem
concerning this problem for all p > 0, but for some special compact sets X.
This result points in the direction that the Z-Pr has a positive answer also for
all X and all f E L(X) . We need some notation .

Let X be compact and x E X. We say that x is a point of stability (of the
capacity of C \X) if one of the following two conditions holds.

i) There exists lim log6(a(T(x, 6) \ X)), where T(x, 6) (here and below) is
6-.0

the square with center x and side length 6 .
ii) lim inf log6 (ce(T(x, d) \ X)) > 2.

	

If we denote the lim in (i) by .\(x),
6-0

then (i) is equivalent to

and (ii) . is the same that

a(T(x, 6) \X) = Za(=)+a( 1)

	

as

	

6 -) 0,

a(T(x, 6) \ X) = 0(62-f )

	

for any fixed s > 0 as 6) 0 .

Let now X* = {x E X 1 x is unstable} .

Corollary 1. Le¡ f E L(X) and assume f E R(X, x) for all x E X \ N(f) .
Then f E R(X, x) also for all x E X \ (N(f) nY*) .

The proof of Theorem 2 and the main idea in the proof of Lemma 2 [5] allow
to get also the following corollary :

Corollary 2. Let f E Lip(p, X) , p > 0, and assume f E R(X, x) for all
x E X\N(f). If

We remark that for p >

	

the last hypothesis is automatically satisfied andz
so we obtain the main result of [3,4] .
Some preliminary results and remarks. For T6 = T(z, 6) we will write
r - T6 = T(z, r - 6), for each r > 1 . As in [4] we will need the following

Theorem 0. Let T be a square and 0 < T < 1. If f E C(4T), llfIl4T < 1
and f is analytic on 4T° \ ME (f ), where ME(f) = {z E 4TI lf(z)l < e}, then
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Theorem 2 . IfX* = 0 then the Z-Pr has a positive answerfor all f E L(X) .

M11(1-°+f)(N(f) n Y*) = 0

	

for some e > 0, then f E R(X) .

1,1T
f(z)dz1 < C(T) - el-T . a(ME(f) n T) .
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Remark 1 . Assume D is Jordan domain with rectifiable boundary 8D, and G
any open neighbourhood of D. If the estimate of the integral due to Melnikov
and Vitushkin ([6], p. 158) is satisfied in D, then it is easily seen that we also
have

(2)

	

I ~~ f
(z)dz1

< C(D,
G, -r)

	

el-r

	

lif lJca(ME(f) n D)

where ME(f) = {z E G1 lf(z)j < e},

	

f E C(G) andfis analytic on G\ME(f) .
Problem. Is estimate (2) true if we take G = D?.

In applications to rational approximation we really don't need the condition
G = D, but it seems useful to have (2) with T = 0.
As it tums out estimates (2) and (1) are not true for r = 0. We present an

example here .
Let S be a compact with m(S) > 0 (where m(.) is plane Lebesgue measure),

with empty interior and with connected complement . Set W(z) = f dm(C)
s z-(,

so that cp E C(C),

	

ep(oo) = 0, and cp is analytic on C \ S. Let now T be a
square, containing S. Then

cp(z)dz = 27ri lim zcp(z) = 27rim(S) ~ 0 .
aT

	

zoo

By the Mergelian's Theorem [2] for any e > 0 there exists polynomial P(z)
such that 11w(z) - P(z)lis < e.

Applying (2) with f = cp - P, D= T, G = 4T (and r = 0) we would get

27rm(S) =

	

J

	

f(z)dz1 _< C - e ,
aT

which is a contradiction for e small enough .
We will use also two theorems of Vitushkin ([6], p. 158; for Theorem V1 see

[3], p. 104) .

Theorem V1 . Le¡ f E C(C). Then f E R(X) provided there exist r >_ 1
and a(6) ) 0 as 6 -> 0, such that for any square T6 of side length 6 we have

lJ

	

f(z)dzl < a(6)[a(rT6 \ X) + 62] .
aT6

Conversely if f E R(X) we obtain (3) with a(6) = cw(f, 6), r = 1 and without
62 in the right hand-side.

Theorem V2. Leí E be a bounded set with a(E) = a > 0, and {Ej}w1 a
finite number of sets Ej CE such that any square Ta with side a intersecis at
most p (p > 1 is a fixed integer) Ej '.s . Then for come absolute constant c



Proof of Theorem 2: Now we fix a compact X with X* = 0, a function
f E Lip(p, X), p > 0, and let us suppose, that f 1 R(X) . After several lemmas
we will have a contradiction.
We will denote by C an absolute constant and by A a constant depending

only on f (on p) .
Both of them may vary from an inequality to another .
Let T6 be any square with side 6 and put a(5T6 \ X) - 5 -6 13 . Then fl > 1 .
Take al = 6,6 and consider a non-overlapping family {Tj } of squares of side 61

and centers {zj }, covering the plane. Let (p j E Có(2Tj ), IV~pj j < C611 and
Ej cpj = 1 on C. We denote by j' the indexes j for which f l3Tj E R(X n 3Tj)
and 3Tj C 5T6.
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N
a(Ej) < c - p - a(E) .

j-1

Lemma 1 . Let t be a point in 4T6 such that

a((T(t,e)n5T6)\X) <C .e1

for some, v,

	

0 < v < 1, and all e,

	

61 < e < 106.
Then we have

a(2Tj,\X) < Cb°
j ao3Tj,

	

(t-zj,

	

1

Proof. Inequality (4) will follow from Theorem V2 and the following elemen-
tary result .

Sublemma. Let 0 < al < a2, . . . , and al < a . If a sequence {an, a� >_ 0}
satisfes ¡he conditions Er1 ap < am for all m > 1 and rn 1%< a, then

00 M
m

p
-

	

m2 + m ~
p=1

	

m=1

where M is defined by am < a < a,y+1 .

In particular, if ani < a for all m > 1, then
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Proof. The sum rP 1 ñ is maximized by

ap - ap _ 1	forp :5 M and ao = 0,
ap =

	

~ a-am

	

for p=M-}-1,
0 forp>M+1 .

A computation now gives the sublema. To prove Lemma 1 let
Dp = T(t, (p + 4)81) \ T(t, p81)) , p > 1, and ap = a(Dp n 5T6 \ X)161 .
By Theorem V2

E

	

a(2T), ',i) < C1p«p

j :2Ti , CD,

Now we use the sublemma with a = C1 and an, = C181 1 [(m -f- 4)]811
Lemma 1 is proven .
We will construct by induction squares Sn such that f 1 R(Xn), where

X,, = X n Sn, and for any square T6 we will have

(5)

	

fdz ( < a(8) - [n(5T6 \ Xn) + 6 1-B 1 ,
aT6

with a(6)

	

0 as 6

	

0, and On > 01 + 'p,

	

01 < 2.

For some large n : 1len > 2, and so Theorem Vl will imply f E R(Xn),
which is the desired contradiction.
For n = 1 we let S1 be any square such that f J R(X1), where X1 = S1 nX.

For any square T6 we have (since f E Lip(p,X))

~

	

fdzl < A81+p = a(6)61+p/2 = a(8) . 61
1
91 ,

J 8T6

where 01 = 1 . So (5) is satisfied for n = 1 .
For the inductive step we need two lemmas .

Lemma 2. Let Q'1 be a square,and

f 0 R(X n Q1) - R(Y1 ),

	

where Y1 = X n Q1

Suppose, that there exist some 0, 0 < 0 < 1, and a1(8) -+ 0 as 8 -> 0
such that for any square T6 we have (5) with Xn = Y1 and Bn = 0 . Fix any 0',
0<01 <0.

Then there exists a square Q2 C_ Q1 such that f¡y, q R(Y2 ), where Y2
= Y1 n Q2 = X n Q2, and for every square TE C_ Q2, satisfying the condi-
tion



we have f E R(Tf (1 Y2) .
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Proof. If for some square T6 inequality (3) is not true (for Yl instead of X),
then using (5) with Xn = Yl and 0,, = 0, we get

a point t E YI such that

a(T6 \ Y1) <_ 611a

But if Lemma 2 is not true, then, using (6) and (7), by induction, we will find

lánf(log6(a(T(t, 6)\Y,)) <_ 1 1 e, < 1 1
9
<lim up(log6(a(T(t,6)\Y,)))

As 0 in (5) is less than 1 (otherwise f E R(Y1) by Theorem V1), we have
t E Yi C X* :~ 0, contradincting our assumption X* = 0.

Lemma 3 . Let Q2 be ¡he square in the statement of Lemma 2, e.g.
(a) flys q R(Y2), where Y2 =X fl Q2 .
(b) For some 0 < 0 < 1 we have for any square T6 :

laTJ

	

f(z)dzl < a(6) [a(5T6 \ Y2) + 61'0]
6

(c) Any fixed 0',

	

0 < 0' < 0, has the following properiy : for any square
TE C_ Q2 and satisfying (6) we have f E R(T, fl Y2) .

	

Then for any fixed r,
0 < r < 1, there exist al (6) -) 0 as 5 -> 0 such that for any square T6 :

(5')

	

f(z)dzl <_ a,(6)[a(5T \ Y2) + 6
aT6

Remark. The meaning of Lemma 3 is that (5) holds with X� replaced by Y2
and en by 0(2) = (0' + p)(1 - -r) > 0 + p/2 for T and (0 - B') small enough .
Before going on the proof of Lemma 3 we complete the proof of Theorem 2.
By induction we find compacts Xn with f 1 R(Xn), Xn = X fl Sn (put
Sn_1 = 131 and Sn = Q2 in Lemmms 2 and 3), for which (5) holds with
en = 01 + n2l1 p . When 2 < Bn < 1 we have a contradiction .

Proof of Lemma 3: Fix any square T6 with side length 6, assuming also that
T6 is diadic [1] . The cases 5T6 1 Q2 or a(5T6\Y2) >_ 61-6 1 are trivial, so we
will consider the case

5T6 C Q2

	

and

	

a(5T6 \Y2) = 55 13 < 61-B'

So we have 56 ,6 << 5 if 6 is small enough .
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Now we divide 5Tó into equal diadic squares {T(j1)} with side length 61,
160 <_ 61 < 60 . We call a square T(ji ) "good" and write j1 = ji if T(j1)
satisfies the following condition (for n = 1, Jn' = ji):

For the remaining "bad" squares we use the notation T(j") . We will continue
our procedure only with "bad" squares, for which (6) gives

Evidently, as 6n < (80)19B' , we have

Then

fl4T(Jn) E R(4T(Jn) nY2 ) .

a(4T(jr) \Y2) < (461)1 ?9, < 1661
a' .

Assume that the squares {T(ji , . . . ,jri_1, jn} have been constructed .

	

For
short we put

For the "good" squares T(Jn), which satisfy (8) we use T(Jn) and they will
not be divided again . Every "bad" square T(Jn) will divided into equal diadic
squares {T(Jn",jn+1)} - {T(Jn+1)} with centers {zjn+1} and side lenght 6n+1
satisfying

Using (6) we find that, for every 2T(J;,%

(9)

	

a(2T(Jn) \X) < a(4T(J') \X) < (46n) 1 'e

	

< 166n+1 .

We stop this procedure when 6N < (60) 1 < 6N-1-

N

l .in-1,7n) = (Jn)

2
8n <_ 8n+1 < 8n

1B,

N<1+ 1-e <2 .

P P

5Tó = [UN 1 U(Jn)T(Jn)] U [ U( .Pv) T(Jn)]

By a lemma of Harvey and Polking ([1], p . 43) there exists a partition of unity
{(pijn 1 U {cpjrv } with Supppin C 2T(Jn ),

	

IVWJnl <

	

and
n

cp Jn +

	

(pJ, = 1

	

on

	

4T6 .
n-1 (Jn)

	

(Jiv)

Let fin (z) = 21ri f f
f(~( -

z

(z) acp~~«) d(. A d( . By Vitushkin Theorem ([6],

p. 148) we have fin E R(Y2),

	

11fin 11 ~ < c8ñ, and for t 1 3T(jn)



Consider the function

Let S2 be a set of nonanalyticity ofF in 4T6, then 2 belong to 45N-neighbour-
hood of N(f) ([6], p . 148) .

and t 1 3T(J,'j for n < N.

To estimate G(z) on 9 we use Lemma 1 (with v = 0 for n = N and v = 0' for
all 1 <_ n <_ N -1), Theorem V2 (see also (9)), and we recall that the induction
procedure is finite (N < 2) .

then

We get IIGII4T6 < AbP and

Hence

and al (b) ) 0 as 6

	

) 0.

RATIONAL APPROXIMATION

	

67

N
G(z) = E 1: fi., (z) E R(X) ,

	

and
n=1(J;,)

F(z) = f(z) - G(z) .

For every t E 9 and bn < e < 105 we have by (6) and (9) :

a(T(t, e) f1 5T6 \ Y2 ) < ce 1 19'

N

IIGIIíl < c6Ñ + 1: An bñ " be' < A(60 )P+B' .
n=1

Since IIf~In < A(bn)P < A60 < A(5a)P+6', (the case p = or 0' >á

IIFI19 < AOP+B') .

By Theorem V1 (as G(z) E R(Y2)), we have

laT6
Gdz1 < AáPa(T6 \ Y2 ) < A8P -6 13 ,

and by Theorem 0 (for Tl = -r/2) we have I f8T6 Fdzl < A(7- , p) [0(P+B')] 1-

	

b .

1
2 is evident),

Finally, if /3 <_ fi(p+9')(1-T)+1 then (5') holds, but if ,0 > ,0(p+g')(1-T)+1,
that is, 0 > 1/[1 +(p+0')(1 -T)], we also have (5') : Lemma 3 and Theorem 2
are proved .
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