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EXPLICIT SOLUTIONS FOR NON
HOMOGENEOUS
STURM LIOUVILLE OPERATOR PROBLEMS

Lucas JGDAR

Abstract

In this paper we study existence and uniqueness conditions for the solu-
tions of Sturm-Liouville operator problems related to the operator diffe-
rential equation X — QX = F{t). Explicit solutions of the problem in
terms of a square root of the operator Q are given.

1. Introduction

Throught this paper H denotes a complex Hilbert space and L{H) denotes
the algebra of all bounded linear operators on H. If T lies in L{ ), its spectrum
o(T") is the set of all complex numbers z such 21 — T is not invertible in L{(H}.

Secend order operator differential equations with constant operator coeffi-
cients appear in the theory of oscillatory and vibrating systems, [6,10,12].
Sturm-Liouville operator problems have been studied by several authors and
with several techniques ([13,14,15,16]). For the scalar case these problems are
completely studied [1,7). In a recent paper [3] we studied the homogeneous
Sturm-Liouville operator problem.

X - AQX () =0
Ey X0+ B X(0) =0
(1.1) FX(@)+RXMa)=0 0<t<a

where X is a complex parameter and X(t}, @, E;, F;, for 1 = 1,2, are in L{H}.
The method proposed in [§] is based on the existence of square roots for the
operator M. The existence of square roots of matrices is treated in (3] and for
the infinite-dimensional case a recent paper [2] studies this problem. In [4] and
[8] methods for obtaining solutions of more general equations of polynomial
type are given.
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By differentiation in (2.9) and considering (2.8) one gets
XB(t) = X exp(tXo)C(t) + X2 exp(—tXo)D(t) + F(t)
Thus we have |
(2.10) X)) - AQX(2) =
= (X5 — AMQ) exp(1Xo)C(1) + (X3 — AMQ) exp(—tXo)D(2) + F(t) = F(2)

and X(t) given by (2.3) is a solution of (2.2} if C(t) and D(t) satisfy (2.5).
Considering the equality

[I I ]—1= I/2 X;I/zl

211) Xo —Xo Ij2 -x;'/2

by integration in (2.5) and taking into account (2.6} one gets

gg%] gggﬁ] f [exP( o) exp({\}ng)] zg —X.;Z};,_I/??][F?s ]ds

[ (o) + ifo X5 exp(—sXo)F(s )d.s]
D(0) — 1 f X5 exp(sXo)F(s)ds

From (2.3) and (2.9) the operators C{0) and D(0) must verify
(2.12) C{0Y+ D0}=Co , XoC{0)— XoD(0)=C,

Taking into account {2.11) and solving {2.12) we have

C0) = (3)(Co+ X7C1) , D) = (2)(Co - X37C)

Hence, the result is proved.

Theorem 1 of [9] gives a sufficient condition for the existence of one unique
solution of problem (1.1), the trivial one X{t) =0 for all £ € [0,a], when A #
and @ is an invertible operator such that

(2.13) c(AQ) = {2; z belongsto (@)} C D,

for some a € [0,2x]. If Xy = exp(log,(AQ)/2}, this condition is the invertiblity
of the operator

(214) B+ E2X0 E; - Ex Xy ]

5= [(Fl + FgXo)exp(an) (FI — Fng)exp(—aXo)

Next result shows that the same condition ensures the existence of only one
solution for the non-homogeneous problem (1.2). Also a sufficient condition for
the existence of solutions for {1.2) and explicit expressions of them in terms of
data are given.
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Theorem 2. Let Q an invertible cperator such that condition {2.13} 13 sa-
tisfied and let Xo = exp(log, (AQ)/2). Let us consider the operators P,Q and
Y defined by the expressions

P=—(}) [ (XX F@)s 5 @=(3) [ exp(-sXo)Xi Fle)ds

(215) Y= —(Fi — F‘;X{]) = exp(—an )P — (Fl + FgXo)exp(an)Q

(i) Problem {1.2) is solvable, if and only if, the system

w0 s{4]-12)

where S is given by (2.14) admits a solution [g] Under this hypothesis the

solution set of problem (1.2} is given by the operator function (2.3) where C(t)
and D(t) are defined by (2.4) and U = C(G), V = D(0).

(it} If S is invertible, then problem (1.2) has only one solution given by
the operaior function X(t) defined by (2.9) where C(t), D(t) are determined

by (2.4) and

i G} =519]

Proof: From theorem 1, the general solution of the operator differential equa-
tion (2.1} is given by {2.3)-(2.4). Note that from the proof of th. 1, one gets

(2.18) XU(8) = Xgexp(tXo)C(t) — Xo exp(~t X )D(t)

Thus, we have the following relationship between Co = X(0), C; = XV(0)
and the operators C(0), D{0},

Co = C(0) + D(0)
C1 = XoC(0) — XoD(0)

or

= AR PR

In order to find solutions of (1.2), we are going to impose to the operators
C(0}, D(0), that X{f} = exp{t X, )C(t}+ exp{—tX,)D(t)}, satisfies the boundary
value conditions of {1.2). From th. 1, we have

(2.20) Cla)=C(0)-Q@ , D@=DO)+P
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Taking into account (2.18), the boundary value conditions of {1.2) {ake the
form

(2.213 Ey(C(0) + D(0)) + B> X, (C(0) — D(0)) = 0
Fi{exp(aXo)C(a) + exp(—aXo)D(a))+
+ F(Xo exp{aXo)C(a) — Xo exp{~aXo)D{a)} = 0

From (2.20), second equation of {2.21) may be written
(222) (F1 + FgXo)eXp(aXu)C(O) + (F] — Fng)exp(—an)D(O) =Y

where Y is given by (2.153). Thus the boundary value conditions of {1.2) are
equivalent to obtain operators C(0) and D(() such that

@) {5 Bkstera (5 - Agent-oxy] (5] = 7]

Hence and from (2.14) the proof of theorem 2 is concluded. W

Remark 1. Note that given the operators C{(0), D(0) such that X(f} =
exp{t X )C(t) + exp(—1X;)D(#) satisfies (1.2), the explicit expression of the
operator functions C(t) and D{t) are given by (2.4), and from (2.19), it is
equivalent to solve the Cauchy problem (2.2) with the initial conditions Cp =
C{0) + D(0} and C; = Xo(C(0) — D(0)). In order to compute the solution of
problem {1.2), it is necessary to solve (2.16). For the finite dimensional case it
is an easy matter; for the infinite-dimensional case, and under the invertibility
hypothesis of S, an explicit expression of $~! is given in Lemma 1 of [9].

Theorem 2 provides a sufficient condition for the existence of only one so-
lution of problem {1.2} in terms of the invertibility of the operator matrix §
given by (2.14). In order to obtain a more concrete condition, in terms of data
and a square root of A}, the following corollary is an easy consequence of the
above theorem 2 and lemma 1 of [9].

Corollary 3. Let us consider Problem (1.2) where A # 0, Q is an invertible
operator which satisfies the condition (2.13) and let S be defined by (2.14),
Xo = exp (log,(AQ)/2). Then the following results hold:

(i) If F1 — F,Xo i3 dnvertible in L{H) and the operator
(2.24) :
K= (E1 + EQXQ) — (El — EzXQ) exp{an)(Fl — FQXQ)_I(FI + F?X{]) exp(an)

is tnvertible in L{H), then problem (1.2} has only one solution X(1) given by
(2.8)-(2.4), where

(2.25)
C(0) = —K Y B — By Xo) exp(aXo Y FL — F,X)”'Y
D(0) = {exp(aXo)(F\ — F2Xo) 7"}
{I + (F] + FgXo)exp(aXo)K_I(El - Eng)exp(an)(F; - FzXo)_l}Y



NON HOMOGENEOUS STURM LIOUVILLE PROBLEMS 53

(it) If B + Ey Xg i3 invertible in L{H) and the operaior
(2.26}
W = (F] —Fng) exp(—an)—(Fl +F2Xg)exp(an)(E1 +E2Xg )_I(El "'EZX{])

is invertible in L(H)}, then problem {1.2) has only one selution X(t) given by
(2.8)-(2.4), where

(2.27) C(0) = —(By + B2 Xo) By — BaXo)W 'Y
D(0y = W~y

Next example provides a lot of cases where the uniqueness property and an
explicit expression of the solution of problem {1.2) are available.

Example 1. Let us consider Problem (1.2) where E; = F; =1, i = 0,1,
a = 1 and H is a complex separable Hilbert space with orthonormal basis
{eq;n 2} and let {u,},>; be a sequence of complex numbers convergent te a
complex number u, such that for A # 0 the following properties are satisfied

(2.28)
Oan)® £ kri, Q) £ kri, (M)t # +1, Q) # +1, Finteger, n 2 1

Then the operator @ defired on H by Q(e;) = uje;, for j 2 1, is invertible
because from (2.28), u, £ 0, and u # 0, for all n 2 1, and the spectrum of ¢
is the set

(2.2} o(Q) = {un, n 21} U {u}

and a square root of AQ is defined by the diagonal operator Xy defined by
Xolej) = (;\u‘,-)%, for j 2 1. So, the operator F; —F3 Xy = I— X, is invertible in
L{H) because from {2.8), the spectrum ¢{J—X;) = {I—w, w belongs to ¢(X¢}}
does not contains to the complex number 0. Also, the operator K defined by
(2.24) takes the form

K = (I+Xo)— (I - Xo)exp{Xo)(I = Xo) (I + Xo) exp(Xo)

and from the commutativity between I — Xy, {7 — X;)7! and exp{X,), it
follows that
K =(I+ Xo)(I — exp(2Xy))

From the spectral mapping theorem, {5, p. 569, the spectrum ¢(X,) is defined
by

o{K) = {(1 + {1 — exp(2z)); z belongs to o{Xo)} =
= {14211 —exp(22});2 = (Aw)%,w belongs to o(Q)}

and from the hypothesis (2.28) one concludes that 0 ¢ o(K}. Thus K is
invertible in L(H) and from corollary 3, for any continucus function F(¢},
Problem (1.2} has only one solution given by (2.3)-{2.4} and (2.25)}, considering
the corresponding data of our problem.
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3. The case A =20

We begin this section with an analogous result to theorem 1 of section 2,
corresponding to the case A = U, It may be considered as a variation of the
parameters method for the operator differential equation X(®)(¢t) = F(¢).

Lemma 4. Letl us consider the Cauchy problem
(3.1) X =F@e) ;5 X(O=¢C , XV =¢
where Cj, for i = 0,1, are operators in L{H) and F(t) is e continuous L{H)
velued operator function. Then the only solution of Problem (3.1) is given by
the eperator funciion
(3.2) X(t)=C@) + D)
(3.3}

Cit)= C(O)—-[o sF(s)¥s, C{0)=Cy, D{) = D(O)—/ F(s)ds, D{0}y=Cy

Proof: From the unigueness for the solution of a Cauchy problem of the type
(3.1} [11], it is sufficient to prove that X{#} given by (3.2)-(3.3), satisfies the
problem (3.1). Let us consider operator functions C(f) and D(#) satisfying the
system

- HRIEEARKN]

As [é ‘tr] - = [g _It], condition {3.4) implies that C(¢}, D(t)} satisfy
(1) - -

(59) el =lo T1lee] = Tre |

From {3.2) it follows that

(3.6) Co = X{(0) = C{0)

and by differentiation of {3.2), and taking into account that first equation of
(3.4) implies CV(¢) + t DU} (¢) = 0, one gets X{V(t) = D(1), and taking t = 0,
(3.7) C1 = XW(0) = D(0)
If we integrate in (3.5) and we consider {3.6)-(3.7), it follows that C(¢), D(#)
must be defined by {3.3). Note that by differentiation in {3.2) and taking into
account {3.4), we have X{(t) = D(t), X)) = DIt = F(#), thus X(¢)
given by {3.2)-(3.3), is the solution of {3.1}.

Next result concerns with the boundary value problem
(3.8)
Xt = F(t), Bx X(O)+E,XV(0) =0, A X(a)+RXM(a)=0,0<t<a
where F(1) is a continuous L{H) valued operator function defired on [0,a},a >
0.
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Theorem 3. Lel us consider Problem (8.8), let M, N R be the operators
defined by

(39) M=- ] sF(s)ds, N = / F(s)ds, R= —Fi(aN + M)~ /N

and let T be the operator mairiz

(3.10) T=[g ort FQ]
(i) Problem {3.8) is solvable, if and only if, the system
U
(3.11) T[] = [ ]

admils a solution [TL;] Under this hypothesis, the solution set of problem {3.8)

is given by ($.2)-(8.3) where U = C; and V = (4.
(ii) If the operator T given by (8.10) is inveriible, then Problem (3.8) has
one unique solution X({t) given by (3.2)-(3.3) where

w2 FRERTH

Proof: From Lemma 4, the general solution of the operator differential equa-
tion X{(t) = F(¢), is given by {3.2)-(3.3). Note that operators C(a} and D{a)
and C(0) D(0), are related by the expressions
(3.13) Cla)=C{0y+ M , Dia)=D(0)+ N

where M and N are defined by {3.9). Taking into account that the operator
functions C(t) and D(t) satisfy (3.4), and X{(t) = D(¢), by impossing to the
operator function X (¢} given by (3.2}, that the boundary value conditions of
{3.8) are satisfied, one gets

{3.14) EyC{0)+ E;D{0}=0
Fi{C(a) +aD(a)) + FyD(a) =0
Considering {3.13), second equation of {3.14) may be written
(3.15) FCO)+ (aF, + B)D({0) = -Fi(eN+ M)- PN =R

Thus Problem (3.8) is solvable, if and only if, there are operators U = C{0),
V = D(0) such that

(3.16) (7 aramllv]= (2]

Hence parts (i) and (ii) are established.

Next corollary provides sufficient conditions in terms of data, in order to
obtain the uniqueness of solution for Problem {3.8), as well as an explicit ex-
pression of the solution.
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Corollary 6. Let us consider Problem (3.8) and let R be the operaior in
L(H) defined by (3.9)
(i) If By is tnvertible in L{H), then Problem (8.8) has only one solution,
if the operator V = (aFy + Fy) — Ry E{ By is invertible in L(H), Under this
hypothesis the unigue solution of the problem iz given by (3.2)-(3.9), where

(3.17) C(0)=-E*E, V'R, D(0)=V'R

(i) If the operator aFy + F is invertible, then Problem (3.8) has only one
solution if the operator W = E; — Ep{aF + F3)"1Fy is invertible in L{H).
Under this hypothesis, the unique solution is given by (3.2)-(8.3), where C{0)
and D(0} ere given by

C(0) = -W I EyaF: + F2) 'R, D(0) =
(3.18) (aFy + B)TTRW T By (Fy +oF)" ' + IR

Proof: It is an easy consequence of Lemma 1 of [9] and of the previcus th. §
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