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Abstract

EXPLICIT SOLUTIONS FOR NON
HOMOGENEOUS

STURM MOUVILLE OPERATOR PROBLEMS

LUCAS JÓDAR

In this paper we study existence and uniqueness conditions for the solu-
tions of Sturm-Liouville operator problems related to the operator diffe-
rential equation X" - QX = F(I) . Explicit solutions of the problem in
terms of a square root of the operator Q are given .

1 . Introduction

Throught this paper H denotes a complex Hilbert space and L(H) denotes
the algebra of all bounded linear operators on H. If T lies in L(H), its spectrum
u(T) is the set of all complex numbers z such zI - T is not invertible in L(H).
Second order operator differential equations with constant operator coeffi-

cients appear in the theory of oscillatory and vibrating systems, [6,10,12] .
Sturm-Liouville operator problems have been studied by several authors and
with several techniques ([13,14,15,16]) . For the scalar case these problems are
completely studied [1,7] . In a recent paper [9] we studied the homogeneous
Sturm-Liouville operator problem.

X (2) (t) - ~XQX(t) = 0
E,X(o) + E2X(')(0) = 0

F,X(a) + F2X(1)(a) = 0

	

0 < t < a

= 1, 2, are in L(H) .where A is a complex parameter and X(t) , Q, E¡, Fi, for i
The method proposed in [9] is based on the existence of square roots for the
operator AQ. The existence of square roots of matrices is treated in [3] and for
the infinite-dimensional case a recent paper [2] studies this problem. In [4] and
[8] methods for obtaining solutions of more general equations of polynomial
type are given .
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By differentiation in (2 .9) and considering (2 .8) one gets

Thus we have

X(2)(t) = Xó exp(tXo )C(t) -{- Xó exp(-tXo)D(t) + F(t)

(2.10)

	

X(2)(t) - ~XQX (t) =
_ (X0 - AQ) exp(tX o)C(t) + (Xó - AQ) exp(-tXo)D(t) + F(t) = F(t)

and X(t) given by (2.3) is a solution of (2.2) if C(t) and D(t) satisfy (2.5).
Considering the equality
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by integration in (2.5) and taking into account (2.6) one gets

C(t) _ c(0)

	

, exp(-sxo)

	

0

	

I/2 X 1 /2

	

0
D(t)

	

-

	

D(0)

	

+l

	

0

	

exp(sXo )1 1 I/2

	

-Xo 1/21 [ F(s) ] ds
i[C(0) + 1 fo Xo1 exp(-sXo )F(s)ds

D(0) - 2 foX~
1 exp(sXo)F(s)ds

From (2 .3) and (2.9) the operators C(0) and D(0) must verify

(2.12)

	

C(0) + D(0) = Co	,

	

Xoc(0) -XOD(0) = C1

Taking into account (2.11) and solving (2.12) we have

C(0) = (2)(Co +Xo1 C1)

	

,

	

D(0) = (2)(co - Xo 1 C1)

Hence, the result is proved .
Theorem 1 of [9] gives a sufficient condition for the existence of one unique

solution of problem (1 .1), the trivial one X(t) = 0 for all t E [0, a], when \ :~ 0
and Q is an invertible operator such that

(2.13)

	

o(AQ) = {z ;

	

z

	

belongs to o(Q)} C D<,

for some a E [0, 27r[ . If Xo = exp(loga(AQ)/2), this condition is the invertiblity
of the operator

(2.14)

	

S=

	

El +E2Xo

	

El - E2Xo

	

l
1(F1 +F2Xo )exp(aXo )

	

(F1 -F2Xo)exp(-aXo)J
Next result shows that the same condition ensures the existence of only one
solutionl for the non-homogeneous problem (1.2) . Also a sufficient condition for
the existence of solutions for (1 .2) and explicit expressions of them in terms of
data are given.



Theorem 2. Let Q an invertible operator such that condition (2.13) is sa-
tisfied and le¡ Xo = exp(log«(AQ)/2) . Let us consider the operators P, Q and
Y defined by ¡he expressions

1
P = -(_) j exp(sXo)X0 1F(s)ds

	

;

	

Q=(
1 )la

exp(-sXo)X0 1 F(s)ds
2 0

	

2

(2.15)

	

Y= -(F1 - F2Xo) = exp(-aXo)P - (F1 + FZXo) exp(aXo)Q

(i) Problem (1 .2) is solvable, if and only if, the system

(2 .16)

(2.17)
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where S is given by (2.14) admits a solution
[
U ] .

	

Under Chis hypothe.s i.s the

solution set of problem (1 .2) is given by the operator function (2.3) where C(t)
and D(t) are defined by (2.4) and U= C(0) , V = D(0) .

(ii) If S is invertible, then problem (1 .2) has only one solution given by
the operator function X(t) defined by (2.3) where C(t), D(t) are determined
by (2.4) and

[D(0)]

	

S-1[Y]

Proof From theorem 1, the general solution of the operator differential equa-
tion (2.1) is given by (2.3)-(2 .4) . Note that from the proof of th . 1, one gets

(2.18)

	

X(1 )(t) = Xo exp(tXo )C(t) -Xo exp(-tXo )D(t)

Thus, we have the following relationship . between Co = X(0), C1 = X(1)(0)
and the operators C(0), D(0),

or

(2 .19)

Co = C(0) + D(0)

C1 = Xo c(0) - XOD(0)

[Cl ] = [Xo

	

-Xo] [D(0)]

In order to find solutions of (1 .2), we are going to impose to the operators
C(0), D(0), that X(t) = exp(tXo )C(t)+exp(-tXo)D(t), satisfies the boundary
value conditions of (1 .2) . From th. 1, we have

(2.20)

	

C(a) = C(0) - Q

	

D(a) = D(0) -f- P
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Taking finto account (2.18), the boundary value conditions of (1.2) take the
form

(2.21)

	

El (C(0) + D(0)) -}- E2Xo (C(0) - D(0)) = 0
F1 (exp(aXo)C(a) + exp(-aXo)D(a))+
+ F2 (Xo exp(aXo)C(a) - Xo exp(-aXo)D(a)) = 0

From (2.20), second equation of (2.21) may be written

(2 .22)

	

(Fl + F2Xo)exp(aX o )C(0) + (Fl - F2Xo)exp(-aXo)D(0) = Y

where Y is given by (2.15) . Thus the boundary value conditions of (1.2) are
equivalent to obtain operators C(0) and D(0) such that

(2 .23)

	

El + E2Xo

	

El - E2Xo

	

fC(0)

	

_ f0
1(Fl +F2Xo )exp(aXo )

	

(Fl -F2Xo)exp(-aXo)1 LD(0)1 - LY~

Hence and from (2.14) the proof of theorem 2 is concluded .
Remark 1 . Note that given the operators C(0), D(0) such that X(t) =

exp(tXo)C(t) + exp(-tXo)D(t) satisfies (1.2), the explicit expression of the
operator functions C(t) and D(t) are given by (2.4), and from (2.19), it is
equivalent to solve the Cauchy problem (2.2) with the initial conditions Co =
C(0) + D(0) and Cl = Xo (C(0) - D(0)) . In order to compute the solution of
problem (1 .2), it is necessary to solve (2.16) . For the finite dimensional case it
is an easy matter ; for the infinite-dimensional case, and under the invertibility
hypothesis of S, an explicit expression of S-1 is given in Lemma 1 of [9] .
Theorem 2 provides a sufficient condition for the existence of only one so-

lution of problem (1 .2) in terms of the invertibility of the operator matrix S
given by (2.14) . In order to obtain a more concrete condition, in terms of data
and a square root of AQ, the following corollary is an easy consequence of the,
above theorem 2 and lemma 1 of [9] .

Corollary 3. Let us consider Problem (1.2) where A :~ 0, Q is an invertible
operator which satisfies the condition (2.13) and le¡ S be defined by (2.14),
Xo = exp (log,,(AQ)/2) . Then the following resulis hold:

(i) If F1 - F2Xo is invertible in L(H) and the operator
(2.24)
K= (El +E2Xo) - (El - E2Xo) exp(aXo)(F1 - F2Vo)-1 (F1 + F2Xo) exp(aXo )
is invertible in L(H), then problem (1 .2) has only one solution X(t) given by
(2.9)-(2 .4), where

(2.25)
C(0) = -K-1 (E1 - E2Xo) exp(aX0)(F1 - F2Xo)-1Y
D(0) = {exp(aXo)(F1 - F2Xo) -1 }

{I+(F1 +F2Xo)exp(aXo)Ii -1 (E1 - E2Xo)exp(aXo)(F1 - F2Xo)` }Y
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(ii) If El + E2Xo is invertible in L(H) and the operator
(2.26)
W= ( F1 -F2Xo) exp(-aXo )-(F1 +F2Xo ) exp(aXo)(El +EZXo)-i (E1-E2Xo )
is invertible in L(H), then problem (1.2) has on1y one solution X(t) given by
(°d.3)-(2.4), where

(2.27)

	

C(0) = -(El + E2Xo )-1 (El - E2Xo)W-1Y
D(0) = W-1Y

Next example provides a lot of cases where the uniqueness property and an
explicit expression of the solution of problem (1 .2) are available .
Example 1 . Let us consider Problem (1 .2) where E; = Fi = I, i = 0, 1,

a = 1 and H is a complex separable Hilbert space with orthonormal basis
{en ; n >_} and let {un}n>1 be a sequence of complex numbers convergent to a
complex number u, such that for A :~ 0 the following properties are satisfied
(2.28)

(>'Un) !2

	

2~ k7ri, (Au)' ~ k~ri, (au)1 7É fl, (aun )! q¿ fl, k integer, n >_ 1

Then the operator Q defined on H by Q(e.i) = ujej, for j >_ 1, is invertible
because from (2.28), u n 7É 0, and u :~ 0, for all n >_ 1, and the spectrum of Q
is the set

(2.29)

	

u(Q) = {un, n >-- 1} U {u}

and a square root of AQ is defined by the diagonal operator Xo defined by
Xo(ei) = (Aui) z , for j >_ 1 . So, the operator F1-F2Xo = I-Xo is invertible in
L(H) because from (2.8), the spectrum o(I-Xo) = {1-w, wbelongs to a(Xo)}
does not contains to the complex number 0. Also, the operator K defined by
(2.24) takes the form

K = (I + Xo) - (I - Xo) exp(Xo)(I - Xo)`1 (I + Xo) exp(Xo )

and from the commutativity between I - Xo, (I - Xo ) - 1 and exp(Xo), it
follows that

K = (I + Xo )(I - exp(2Xo))
From the spectral mapping theorem, [5, p. 5691, the spectrum o,(Xo) is defined
by

u(K) = {(1 + z)(1 - exp(2z)) ; z

	

belongs to a(Xo)} =
_ {(1 + z)(1 - exp(2z)) ; z = (Aw)2 ,w

	

belongs to o,(Q)}

and from the hypothesis (2.28) one concludes that 0 1 u(K) . Thus K is
invertible in L(H) and from corollary 3, for any continuous function F(t),
Problem (1.2) has only one solution given by (2.3)-(2 .4) and (2.25), considering
the corresponding data of our problem.
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3 . The case \ = 0

We begin this section with an analogous result to theorem 1 of section 2,
corresponding to the case \ = 0, It may be considered as a variation of the
parameters method for the operator differential equation X(2)(t) = F(t) .

Lemma 4. Le¡ us consider the Cauchy problem

(3.1)

	

X( 2)(t) = F(t)

	

;

	

X(o) = Co	,

	

X(')(0) = Cl

where Ci, for i = 0, 1, are operators in L(H) and F(t) is a continuous L(H)
valued operator function. Then ¡he only solution of Problem (3.1) is given by
the operator function

(3.2)

	

X(t) = C(t) + D(t)

(3.3)

C(t) = C(0) -
JO t

sF(s)ds , C(0) = Co , D(t) = D(0) -
J t

F(s)ds, D(0) = C1
9

Proof. From the uniqueness for the solution of a Cauchy problem of the type
(3.1) [111, it is sufficient to prove that X(t) given by (3.2)-(3 .3), satisfies the
problem (3.1) . Let us consider operator functions C(t) and D(t) satisfying the
system

(3 .4) L0 11 LD(')(t)J = [F(t)]

As [ 0

	

I

	

- [ 0

	

j ] , condition (3.4) implies that C(t), D(t) satisfy

(3 .5)

	

C( ' )(t)l _ I

	

t

	

0

	

_ -tF(t)
1D(')(t)J - 0

	

I LF(t ) l - L F(t)
From (3.2) it follows that
(3.6)

	

Co =X(0) = C(0)
and by differentiation of (3.2), and taking into account that first equation of
(3.4) implies C(')(t) +tD(i)(t) = 0, one gets X(')(t) = D(t), and taking t = 0,

(3.7)

	

Cl =.- ; X(')(0) = D(o)

If we integrate in (3.5) and we consider (3.6)-(3 .7), it follows that C(t), D(t)
must be defined by (3.3) . Note that by differentiation in (3.2) and taking into
account (3 .4), we have X(1)(t) = D(t), X(2)(t) = D(')(t) = F(t), thus X(t)
given by (3.2)-(3 .3), is the solution of (3.1) .

Next result concems with the boundary value problem
(3.8)
X(2)(t) = F(t), ElX(0)+E2X(1)(0) = 0, FiX(a)+F2X(')(a) = 0, 0 < t < a

where F(t) is a continuous L(H) valued operator function defined on [0, a], a >
0.



Theorem 5. Le¡ us consider Problem (3.8), let M, N, R be the operators
defined by

a
(3.9)

	

M = -
J

	

sF(s)ds, N =
J a

F(s)ds, R = -Fi(aN + M) - F2N
0

	

0

and let T be the operator matrix

(3.10)

	

T El E2
- [ Fl	aFl .+. F2]

(i) Problem (3.8) is solvable, if and only if, the system

admits a solution [V ] . Under this hypothesis, the solution set of problem (3.8)

is given by

	

where U = C0 and V = Cl .
(ii) If the operator T given by (3.10) is invertible, then Problem (3.8) has

one unique solution X(t) given by (3.,2)-(3 .3) where

(3.12)

Proof.. From Lemma 4, the general solution of the operator differential equa-
tion X( 2)(t) = F(t), is given by (3 .2)-(3 .3) . Note that operators C(a) and D(a)
and C(0) D(0), are related by the expressions
(3.13)

	

C(a) = C(0) + M

	

D(a) = D(0) + N

where M and N are defined by (3.9) . Taking into account that the operator
functions C(t) and D(t) satisfy (3 .4), and X(1 )(t) = D(t), by impossing to the
operator function X(t) given by (3.2), that the boundary value conditions of
(3.8) are satisfied, one gets
(3.14)

	

EI C(0) + E2D(0) = 0

Considering (3.13), second equation of (3.14) may be written

(3 .15)

	

FI C(0) + (aF, + F2 )D(0) = -Fi (aN -f- M) - F2N = R

Thus Problem (3.8) is solvable, if and only if, where are operators U = C(0),
V = D(0) such that

(3 .16)
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T
[V] - [R]

Fl (C(a) + aD(a)) + F2D(a) = 0

El E2	U _ 0
[Fl	afl-}-F2 ] [V] - [R]

Hence parts (i) and (ii) are established.
Next corollary provides sufiicient conditions in terms of data, in order to

obtain the uniqueness of solution for Problem (3.8), as well as an explicit ex-
pression of the solution.
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Corollary 6 . Let us consider Problem (3.8) and let R be the operator in
L(H) deftined by (3.9)

(i) If El is invertible in L(H), then Problem (3.8) has only one solution,
if the operator V = (aFl + F2) - Fl Ei 1 E2 is invertible in L(H), Under this
hypothesis the unique solution of ¡he problem is given by

	

where

(3.17)

	

C(0) = -El 1 E2V-1 R

	

D(0) =V- 'R

(ii) If the operator aFl + F2 is invertible, then Problem (3.8) has only one
solution if the operator W = El - E2(aFl + F2)-1 F1 is invertible in L(H) .
Under this hypothesis, ¡he unique solution is given by where C(0)
and D(0) are given by

(3.18)

	

(afl + F2 )-1 FlW-1E2(F1 + aF2)-1 + IR

Proof: It is an easy consequence of Lemma 1 of [9] and of the previous th . 5

(1957) .

C(0) = -W-1 E2(aF1 +F2 )
- 1
R, D(0) =
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