NOTE ON THE DEGREE OF C⁰-SUFFICIENCY OF PLANE CURVES

ANTONIO F. COSTA

Abstract .

Let f be a germ of plane curve, we define the ∂ -degree of sufficiency of f to be the smallest integer r such that for any germ g such that $j^{(r)}f = j^{(r)}g$ then there is a set of disjoint annuli in S^3 whose boundaries consist of a component of the link of f and a component of the link of g. We establish a formula for the ∂ -degree of sufficiency in terms of link invariants of plane curves singularities and, as a consequence of this formula, we obtain that the ∂ -degree of sufficiency is equal to the C^0 -degree of sufficiency

0. Introduction

Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be a germ of a plane curve. Given $\varepsilon > 0$, we shall let S_{ε} denote the sphere of radius ε centered at the origin of \mathbb{C}^2 . By [M], there is $\eta > 0$ such that for each $0 < \varepsilon < \eta$, $(S_{\varepsilon}, S_{\varepsilon} \cap \{f = 0\})$ is a link ambient isotopic to $(S_{\eta}, S_{\eta} \cap \{f = 0\})$. We shall call the ambient isotopy class of the link $(S_{\eta}, S_{\eta} \cap \{f = 0\})$ the link of f and write it L_f .

If r is an integer, we let $j^{(r)}f$ denote the r-jet determined by f. There is a classical invariant of the germ f that is called the "C⁰-degree of sufficiency of f". The definition of this invariant is the following: the integer r is the C^{0} -degree of sufficiency of f if r is the smallest integer that satisfies the condition: for any germ g such that $j^{(r)}f = j^{(r)}g$, then $L_f = L_g$.

The usual definition of degree of C^0 -sufficiency of f is given in terms of the topological type of the germ of f at 0. Remark that the link $(S_\eta, S_\eta \cap \{f = 0\})$ is ambient isotopic to the link $(S_\varepsilon, S_\varepsilon \cap \{g = 0\})$ if and only if there is an orientation preserving homeomorphism $h: S_\eta \to S_\varepsilon$ which carries $S_\eta \cap \{f = 0\}$ to $S_\varepsilon \cap \{g = 0\}$ (see for example [B-Z]). Applying the above result and the ones of [M], one can prove that $L_f = L_g$ if and only if f and g are topologically equivalent germs. Then the definition of C^0 -degree of sufficiency that we give and the usual one are equivalent.

Suppose that r is the degree of sufficiency of f, and that g is a germ such that $j^{(r)}f = j^{(r)}g$. Let $\eta > 0$ be a real number such that if $0 < \varepsilon < \eta$, then $(S_{\varepsilon}, S_{\varepsilon} \cap \{f = 0\} \cup S_{\varepsilon} \cap \{g = 0\})$ is a link of constant topological type. By the definition of the C^0 -degree of sufficiency we can say that in $S_{\varepsilon}, 0 < \varepsilon < \eta$,

 $S_{\varepsilon} \cap \{f = 0\}$ and $S_{\varepsilon} \cap \{g = 0\}$ have the same topological type, but what can we say about the relative position of the two links, i.e., which is the topological type of the link $S_{\varepsilon} \cap \{fg = 0\}$? and how is $S_{\varepsilon} \cap \{f = 0\}$ linked with $S_{\varepsilon} \cap \{g = 0\}$?

The purpose of this paper is to describe this relative position of the two links. By one of our results (i. e. corollary 1.2), there is a set of disjoint annuli in $\3 whose boundaries consist of a component of the link of f and a component of the link of g.

Two germs whose links are as above will be called ∂ -equivalents. Accordingly we shall define the ∂ -degree of sufficiency of f to be the smallest integer r such that: for any germ g such that $j^{(r)}f = j^{(r)}g$, then f is ∂ -equivalent to g.

In this paper we establish a formula for the ∂ -degree of sufficiency in terms of link invariants of plane curves. This formula takes the same values as the formula for the C^0 -degree of sufficiency obtained in [K-L] (see also [T] and [Li]). Consequently we have the equality:

 ∂ -degree of sufficiency = C^0 -degree of sufficiency.

The author would like to thank Professor C. Weber for helpful conversations.

1. Definitions and results

Let $f, g: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be two germs of plane curves. We will say that "f is ∂ -equivalent to g" if the link of f is isotopic by disjoint annuli to the link of g. More precisely, let S_{ε} be the sphere with center the origin and radius ε . The above condition means that there is an $\eta > 0$, such that for every $0 < \varepsilon < \eta$ there is a set of disjoint annuli $S \subset S_{\varepsilon}$ such that for each annulus $A \in S$, ∂A consists of a component of $\{f = 0\} \cap S_{\varepsilon}$ and a component of $\{g = 0\} \cap S_{\varepsilon}$ (the orientation of A does not induce the orientation of each component, see figure 1).

Figure 1

Example 1. Consider the germs at the origin given by the polynomials $y^2 + x^3 + x^7$ and $y^2 + x^3 + 4x^7$. They are ∂ -equivalent and in figure 2 we show

the annulus between the two corresponding knots.

Example 2. Consider now the germs given by the polynomials $y^2 + x^3$ and $y^3 + x^2$. They have the same topological type but they are not ∂ -equivalent (see figure 3).

Figure 3

The link $\{f = 0\} \cap S_{\varepsilon}$ is an iterated torus link. That is to say, $\{f = 0\} \cap S_{\varepsilon}$ is obtained by successive satellizations of torus links (see [M-W]). Let $\{T_i\}$ be the minimal collection of satellization tori (unique up isotopy by the results of Jaco-Shalen and Johannson, see [E-N]). We split along $\{T_i\}$ the link exterior to obtain a finite set of pieces $\{P_i\}$. Each of one P_i has a Seifert fibered structure. More precisely, each piece P_i can be considered as S^3 with a Seifert fibration with two exceptional fibers and where we have suppressed a finite number of fibers.

We denote the resolution tree of the germ f by $\Gamma(f)$ and we label the strict

transforms of the branches by an arrow (\uparrow) . If two arrows start on a same vertex then the corresponding components of the link $\{f = 0\} \cap S_{\varepsilon}$ are general fibers in a same piece P_i . Then there is an annulus such that its boundary consists of the two considered components. Let $\Gamma(fg)$ be the resolution tree of the product fg, we label the strict transforms of the branches of f with an arrow (\uparrow) and the strict transforms of the branches of g with a star (\uparrow) . If the same number of arrows and stars are attached at every vertex of $\Gamma(fg)$ then f and g are ∂ -equivalent (see fig. 4).

Figure 4. Exemple of $f \partial$ -equivalent to g

Let φ be a branch of the germ f. If $\Gamma(f)$ is the resolution tree of f we call v the vertex of $\Gamma(f)$ where the arrow of φ start. We define $\tilde{\varphi}$ as the germ such that the resolution tree, $\Gamma(f\tilde{\varphi})$, of $f\tilde{\varphi}$ is obtained from $\Gamma(f)$ by adding a star at the vertex v (see fig. 5).

In other terms, assume that the Puiseux expansion of φ is the following:

$$\begin{split} & \sum_{i=1}^{k_1} a_{1i} t^i + b_1 t^{q_1/p_1} + \sum_{i=1}^{k_2} a_{2i} t^{(q_1+i)/p_1} + b_2 t^{q_2/p_1p_2} + \dots \\ & \dots + b_{g-1} t^{q_{g-1}/p_1p_2\dots p_{g-1}} + \sum_{i=0}^{\infty} c_i t^{(q_g+i)/p_1\dots p_g} \end{split}$$

Replacing c_j by $c_j + \varepsilon$, $\varepsilon > 0$, we get another branch which we denote by $\varphi(j,\varepsilon)$. Then $\tilde{\varphi}$ will be the branch $\varphi(k,\varepsilon)$ where $k \ge 0$ is the minimal integer such that there exists ε such that we have $I(\varphi(k,\varepsilon),\varphi') = I(\varphi,\varphi')$ for every branch φ' of f, where I denotes the intersection number.

In view of a topological interpretation of $\tilde{\varphi}$, let us consider the iterated torus link $L = \{f = 0\} \cap S_{\varepsilon}$ and let $N = \{\varphi = 0\} \cap S_{\varepsilon}$ be one of its components. Then the link $\{f\tilde{\varphi} = 0\} \cap S_{\varepsilon}$ is obtained from L by adding a general fiber of the piece which contains N in the Jaco-Shalen-Johannson splitting (cf. [E-N] and [M-W]). For an easy example see fig. 6.

Figure 6

In this paper we establish a formula relating the ∂ -degree of sufficiency of f with the intersection numbers of the $\tilde{\varphi}$ with f.

Theorem 1.1. Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be a germ of plane curve with branches $\varphi_i, i \in I$. Let m_i be the multiplicity of the branch φ_i . Then the degree of ∂ -sufficiency r is equal to:

$$r = max \left[\frac{1}{m_i} I(f, \widetilde{\varphi}_i) \right].$$

In other words r is equal to the integral part of the largest polar quotient of f in the sense of Lê [Lê].

The proof will be given in section 2.

If we apply the result of [K-L], then we obtain

Corollary 1.2. Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be a germ of plane curve. Then: ∂ -degree of sufficiency of $f = \mathbb{C}^\circ$ -degree of sufficiency of f.

2. Proof of the theorem 1.1.

Let $f: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be a germ of plane curve with branches $\varphi_i, i \in I$, and let $m_i, i \in I$, be the corresponding multiplicities.

We let:

$$r = \max\left[\frac{1}{m_i}I(f,\varphi_i)\right]$$

and

$$s = \partial$$
-degree of sufficiency of f .

By a rotation in \mathbb{C}^2 (that does not modify s) we may suppose that the tangent cone of f does not contain x = 0.

1. Proof that $s \leq r$.

By definition of s there is a germ g of plane curve such that $j^{(s-1)}f = j^{(s-1)}g$ and f is not ∂ -equivalent to g, therefore $j^s f \neq j^s g$.

If the multiplicity of f is different from the multiplicity of g then s is equal to the multiplicity of f and hence f is ∂ -equivalent to his tangent cone. Thus $I(f, \tilde{\varphi}_i) = \sum_{i \in I} m_i m_j$, and

$$r = \max_{i \in I} \left[\frac{1}{m_i j \in I} m_i m_j \right] = \sum_{j \in I} m_j = \text{ multiplicity of } f = s.$$

Hence we may assume that the multiplicity of f is equal to the multiplicity of g.

Claim. If $I(g, \tilde{\varphi}_i) = I(f, \tilde{\varphi}_i)$ for every $i \in I$, there is a germ of irreducible curve ψ such that for some $i \in I$:

- a.- The multiplicity of ψ is equal to m_i .
- b.- $I(g, \widetilde{\varphi}_i) = I(g, \psi) < I(f, \psi).$

Proof: Consider the resolution tree, $\Gamma(fg)$, of fg. We label the branches of

f with an arrow (\uparrow) and the branches of g with a star (\downarrow) . As f is not ∂ -equivalent to g there is some vertex of $\Gamma(fg)$ where the number of arrows and stars is different. Moreover, as f and g have the same multiplicity, there is a vertex P in $\Gamma(fg)$ where there are more arrows than stars. Let φ_i be a branch corresponding to an arrow starting from P. If we consider now the resolution tree of $fg\tilde{\varphi}_i$, the arrows corresponding to φ_i and $\tilde{\varphi}_i$ start from the same vertex of $\Gamma(fg\psi)$ (see figure 7). This is a consequence of the choice of P. We choose ψ to be a branch such that φ_i and ψ have a new common point in $\Gamma(fg\psi)$ (see figure 8). Then it is clear that $I(g,\psi) = I(g,\tilde{\varphi}_i)$ and $I(f,\psi) = I(f,\tilde{\varphi}_i) + 1$.

Figure 8

We shall argue case by case.

1st. case: there is $i \in I$, such that $I(g, \tilde{\varphi}_i) > I(f, \tilde{\varphi}_i)$.

Let
$$\left\{ egin{array}{ll} X=t^{m_i} & & \\ & & ext{be a parametrization of } \widetilde{\varphi}_i. \end{array}
ight.
ight. Y=\widetilde{eta}_i(t)$$

Then we have: order $f(t^{m_i}, \widetilde{\beta}_i(t)) < \text{ order } g(t^{m_i}, \widetilde{\beta}_i(t)).$

There is a term, T(X, Y), of degree at least s in f(X, Y) (or in g(X, Y)) such that $T(t^{m_i}, \tilde{\beta}_i(t))$ has a term of degree equal to the order of $f(t^{m_i}, \tilde{\beta}_i(t))$. Set $T(X, Y) = X^{\alpha}Y^{\beta}$ with $\alpha + \beta \geq s$.

Then

$$I(f,\widetilde{\varphi}_i) = \text{ order } f(t^{m_i},\widetilde{\beta}_i(t)) \ge \alpha m_i + \beta(\text{ order } \widetilde{\beta}_i(t)) \ge (\alpha + \beta) m_i \ge s m_i.$$

That is:

$$s \leq \left[\frac{(f,\widetilde{\varphi}_i)}{m_i}\right] \leq r.$$

2nd case. $I(g, \widetilde{\varphi}_i) < I(f, \widetilde{\varphi}_i)$ for some $i \in I$.

Then the order of $f(t^{m_i}, \widetilde{\beta}_i(t))$ is greater than the order of $g(t^{m_i}, \widetilde{\beta}_i(t))$. There is a term, T(X, Y), of degree at least s in f(X, Y) or g(X, Y) such that $T(t^{m_i}, \widetilde{\beta}_i(t))$ has a term of degree equal to the order of $g(t^{m_i}, \widetilde{\beta}_i(t))$. Then:

$$s \leq \left[\frac{I(f, \widetilde{\varphi}_i)}{m_i}\right] < \left[\frac{I(f, \widetilde{\varphi}_i)}{m_i}\right] \leq r$$

3rd case. $I(f, \tilde{\varphi}_i) = I(g, \tilde{\varphi}_i)$ for every $i \in I$.

Let ψ be the branch given by the claim. By construction the multiplicity of ψ is equal to m_i for some $i \in I$.

Let
$$\begin{cases} X = t^{m_i} \\ & \text{be a parametrization of } \psi. \\ Y = \widetilde{\beta}(t) \end{cases}$$

As $I(g, \psi) < I(f, \psi)$ we have:

$$\pi \leq \left[\frac{I(g,\psi)}{m_i}\right] = \left[\frac{I(g,\widetilde{\varphi}_i)}{m_i}\right] = \left[\frac{I(f,\widetilde{\varphi}_i)}{m_i}\right] \leq r.$$

2. Proof that $r \leq s$.

By the remark that we made in the introduction this inequality is a consequence of the result of Kuo and Lu. Here is an easy direct argument:

Assume that s < r. Then, if $j^{(r-1)}f = j^{(r-1)}g$, we have that f and g are ∂ -equivalent, and let S be a set of disjoint annuli verifying the conditions of the definition of ∂ -equivalence. If φ_i is a branch of f we may choose $\tilde{\varphi}_i$ in such a way that the knot corresponding to $\tilde{\varphi}_i, \tilde{N}_i$, does not cut the annuli of S. Then the linking number of \tilde{N}_i with each component N_j of the link of f, is equal to the linking number of the component of the link g in the annulus which contains N_j . Then $I(f, \tilde{\varphi}_i) = I(g, \tilde{\varphi}_i)$.

In particular, if we call f_{r-1} the set of terms of degree at most r-1 in f, we have:

$$I(f_{r-1}, \widetilde{\varphi}_i) = I(f_{r-1} + aX^r, \widetilde{\varphi}_i)$$
, for all $a \in \mathbb{C} - \{0\}$, and for every $i \in I$.

Let
$$\begin{cases} X = t^{m_i} \\ & \text{be a parametrization of } \widetilde{\varphi}_i. \\ Y = \widetilde{\beta}(t) \end{cases}$$

Then: order $f_{r-1}(t^{m_i}, \widetilde{\beta}(t)) = \text{ order } (f_{r-1}(t^{m_i}, \widetilde{\beta}(t)) \text{ at}^{rm_i}) \text{ for all } a \in \mathbb{C} - \{0\}$. This implies that order $f_{r-1}(t^{m_i}, \widetilde{\beta}(t)) < rm_i$ for every $i \in I$.

Then
$$r = \max \left[\frac{I(f, \tilde{\varphi}_i)}{m_i} \right] = \max \left[\frac{I(f_{r-1}, \tilde{\varphi}_i)}{m_i} \right] < r$$
, which is a contradiction.

References

- [B-Z] BURDE G. AND ZIESCHANG H., Knots, Berlin, New York: de Gruyter (1985).
- [E-N] EISENBUD D. AND NEUMANN W., Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Studies 110 (1985), Univ. Press, Princeton, N. J..
- [K-L] KUO T.C. AND LU Y.C., On Analytic function germs of two complex variables, *Topology* 16 (1977), 299-310.
- [Lê] LÊ D \widetilde{u} NG TRÁNG, Courbes polaires et résolution des courbes planes, Géométrie algébrique et applications II, Trabaux en Cours 23 (1987), Paris: Hermann.
- [Li] LICHTIN B., Estimates and formulae for the C°-degree of sufficiency of plane curves, Proc. Simp. in Pure Maths 40 Part 2 (1983), 155-160.
- [M] MILNOR J., Singularities of complex hypersurfaces, Ann. of Math. Studies 61 (1968), Princeton Univ. Press, Princeton N.J..

- [M-W] MICHEL F. AND WEBER C., Topologie des germes de courbes planes à plusieurs branches, *Preprint* (1985).
- [T] TEISSIER B., Varietés polaires I. Invariants polaires des singularités d'hypersurfaces, Inv. Math. 40 (1977), 267-292.

Dpto. de Matemáticas Fundamentales Facultad de Ciencias, U.N.E.D. 28040 Madrid SPAIN

Rebut el 15 de gener de 1988