NOTE ON THE DEGREE OF C^{0}-SUFFICIENCY OF PLANE CURVES

ANTONIO F. COSTA

Abstract

Let f be a germ of plane curve, we define the ∂-degree of sufficiency of f to be the smallest integer r such that for any germ g such that $j^{(r)} f=j^{(r)} g$ then there is a set of disjoint annuli in \mathbf{S}^{3} whose boundaries consist of a component of the link of f and a component of the link of g. We establish a formula for the θ-degree of sufficiency in terms of link invariants of plane curves singularities and, as a consequence of this formula, we obtain that the ∂-degree of sufficiency is equal to the C^{0}-degree of sufficiency

0. Introduction

Let $f:\left(C^{2}, 0\right) \rightarrow(C, 0)$ be a germ of a plane curve. Given $\varepsilon>0$, we shall let S_{ε} denote the sphere of radius ε centered at the origin of C^{2}. By [M], there is $\eta>0$ such that for each $0<\varepsilon<\eta,\left(S_{\varepsilon}, S_{\varepsilon} \cap\{f=0\}\right)$ is a link ambient isotopic to $\left(S_{\eta}, S_{\eta} \cap\{f=0\}\right)$. We shall call the ambient isotopy class of the $\operatorname{link}\left(S_{\eta}, S_{\eta} \cap\{f=0\}\right)$ the link of f and write it L_{f}.

If r is an integer, we let $j^{(r)} f$ denote the r-jet determined by f. There is a classical invariant of the germ f that is called the " C^{0}-degree of sufficiency of $f^{\prime \prime}$. The definition of this invariant is the following: the integer r is the $C^{0}-$ degree of sufficiency of f if r is the smallest integer that satisfies the condition: for any germ g such that $j^{(r)} f=j^{(r)} g$, then $L_{f}=L_{g}$.

The usual definition of degree of C^{0}-sufficiency of f is given in terms of the topological type of the germ of f at 0 . Remark that the $\operatorname{link}\left(S_{\eta}, S_{\eta} \cap\{f=0\}\right)$ is ambient isotopic to the link ($S_{\varepsilon}, S_{\varepsilon} \cap\{g=0\}$) if and only if there is an orientation preserving homeomorphism $h: S_{\eta} \rightarrow S_{\varepsilon}$ which carries $S_{\eta} \cap\{f=0\}$ to $S_{z} \cap\{g=0\}$ (see for example [B-Z]). Applying the above result and the ones of [M], one can prove that $L_{f}=L_{g}$ if and only if f and g are topologically equivalent germs. Then the definition of C^{0}-degree of sufficiency that we give and the usual one are equivalent.

Suppose that r is the degree of sufficiency of f, and that g is a germ such that $j^{(r)} f=j^{(r)} g$. Let $\eta>0$ be a real number such that if $0<\varepsilon<\eta$, then $\left(S_{\varepsilon}, S_{\varepsilon} \cap\{f=0\} \cup S_{\varepsilon} \cap\{g=0\}\right)$ is a link of constant topological type. By the definition of the C^{0}-degree of sufficiency we can say that in $S_{g}, 0<\varepsilon<\eta$,
$S_{\epsilon} \cap\{f=0\}$ and $S_{\varepsilon} \cap\{g=0\}$ have the same topological type, but what can we say about the relative position of the two links,i.e., which is the topological type of the link $S_{\epsilon} \cap\{f g=0\}$? and how is $S_{\varepsilon} \cap\{f=0\}$ linked with $S_{\epsilon} \cap\{g=0\}$?.

The purpose of this paper is to describe this relative position of the two links. By one of our results (i. e. corollary 1.2), there is a set of disjoint annuli in S^{3} whose boundaries consist of a component of the link of f and a component of the link of g.

Two germs whose links are as above will be called ∂-equivalents. Accordingly we shall define the ∂-degree of sufficiency of f to be the smallest integer r such that: for any germ g such that $j^{(r)} f=j^{(r)} g$, then f is ∂-equivalent to g.

In this paper we establish a formula for the ∂-degree of sufficiency in terms of link invariants of plane curves. This formula takes the same values as the formula for the C^{0}-degree of sufficiency obtained in $[\mathrm{K}-\mathrm{L}]$ (see also [T] and [Li]). Consequently we have the equality:
∂-degree of sufficiency $=C^{0}$-degree of sufficiency.
The author would like to thank Professor C. Weber for helpful conversations.

1. Deffinitions and results

Let $f, g:\left(C^{2}, 0\right) \rightarrow(C, 0)$ be two germs of plane curves. We will say that " f is ∂ equivalent to $g^{\prime \prime}$ if the link of f is isotopic by disjoint annuli to the link of g. More precisely, let S_{ε} be the sphere with center the origin and radius ε. The above condition means that there is an $\eta>0$, such that for every $0<\varepsilon<\eta$ there is a set of disjoint annuli $S \subset S_{\varepsilon}$ such that for each annulus $A \in S, \partial A$ consists of a component of $\{f=0\} \cap S_{\varepsilon}$ and a component of $\{g=0\} \cap S_{\varepsilon}$ (the orientation of A does not induce the orientation of each component, see figure 1).

Figure 1

Example 1. Consider the germs at the origin given by the polynomials $y^{2}+x^{3}+x^{7}$ and $y^{2}+x^{3}+4 x^{7}$. They are ∂ equivalent and in figure 2 we show
the annulus between the two corresponding knots.

Figure 2

Example 2. Consider now the germs given by the polynomials $y^{2}+x^{3}$ and $y^{3}+x^{2}$. They have the same topological type but they are not ∂-equivalent (see figure 3).

Figure 3

The link $\{f=0\} \cap S_{\varepsilon}$ is an iterated torus link. That is to say, $\{f=0\} \cap S_{\varepsilon}$ is obtained by successive satellizations of torus links (see [M-W]). Let $\left\{T_{i}\right\}$ be the minimal collection of satellization tori (unique up isotopy by the results of Jaco-Shalen and Johannson, see $[\mathbf{E}-\mathbf{N}]$). We split along $\left\{T_{i}\right\}$ the link exterior to obtain a finite set of picces $\left\{P_{i}\right\}$. Each of one P_{i} has a Seifert fibered structure. More precisely, each piece P_{i} can be considered as S^{3} with a Seifert fibration with two exceptional fibers and where we have suppressed a finite number of fibers.

We denote the resolution tree of the germ f by $\Gamma(f)$ and we label the strict
transforms of the branches by an arrow (\uparrow). If two arrows start on a same vertex then the corresponding components of the link $\{f=0\} \cap S_{\varepsilon}$ are general fibers in a same piece P_{i}. Then there is an annulus such that its boundary consists of the two considered components. Let $\Gamma(f g)$ be the resolution tree of the product $f g$, we label the strict transforms of the branches of f with an arrow (\uparrow) and the strict transforms of the branches of g with a star (1). If the same number of arrows and stars are attached at every vertex of $\Gamma(f g)$ then f and g are ∂-equivalent (see fig. 4).

Figure 4. Exemple of $f \partial$-equivalent to g
Let φ be a branch of the germ f. If $\Gamma(f)$ is the resolution tree of f we call v the vertex of $\Gamma(f)$ where the arrow of φ start. We define $\tilde{\varphi}$ as the germ such that the resolution tree, $\Gamma(f \tilde{\varphi})$, of $f \tilde{\varphi}$ is obtained from $\Gamma(f)$ by adding a star at the vertex v (see fig. 5).

Figure 5

In other terms, assume that the Puiseux expansion of φ is the following:

$$
\begin{aligned}
& \Sigma_{i=1}^{k_{1}} a_{1 i} t^{i}+b_{1} t^{q_{2} / p_{1}}+\sum_{i=1}^{k_{2}} a_{2 i} t^{\left(q_{1}+i\right) / p_{1}}+b_{2} t^{q_{2} / p_{1} p_{2}}+\ldots \\
& \ldots+b_{g-1} t^{q_{g-1} / p_{1} p_{2} \ldots p_{g-1}}+\sum_{i=0}^{\infty} c_{i} t^{\left(q_{g}+i\right) / p_{1} \ldots p_{g}}
\end{aligned}
$$

Replacing c_{j} by $c_{j}+\varepsilon, \varepsilon>0$, we get another branch which we denote by $\varphi(j, \varepsilon)$. Then $\tilde{\varphi}$ will be the branch $\varphi(k, \varepsilon)$ where $k \geq 0$ is the minimal integer such that there exists ε such that we have $I\left(\varphi(k, \varepsilon), \varphi^{\prime}\right)=I\left(\varphi, \varphi^{\prime}\right)$ for every branch φ^{\prime} of f, where I denotes the intersection number.

In view of a topological interpretation of $\tilde{\varphi}$, let us consider the iterated torus link $L=\{f=0\} \cap S_{E}$ and let $N=\{\varphi=0\} \cap S_{E}$ be one of its components. Then the link $\{f \tilde{\varphi}=0\} \cap S_{\varepsilon}$ is obtained from L by adding a general fiber of the piece which contains N in the Jaco-Shalen-Johannson splitting (cf. [E-N] and $[\mathbf{M}-\mathbf{W}])$. For an easy example see fig. 6.

Figure 6
In this paper we establish a formula relating the ∂-degree of sufficiency of f with the intersection numbers of the $\tilde{\varphi}$ with f.

Theorem 1.1. Let $f:\left(C^{2}, 0\right) \rightarrow(C, 0)$ be a germ of plane curve with branches $\varphi_{i}, i \in I$. Let m_{i} be the multiplicity of the branch φ_{i}. Then the degree of ∂-sufficiency r is equal to:

$$
r=\max \left[\frac{1}{m_{i}} I\left(f, \widetilde{\varphi}_{i}\right)\right]
$$

In other words r is equal to the integral part of the largest polar quotient of f in the sense of Lê [Lê].

The proof will be given in section 2 .
If we apply the result of $[K-L]$, then we obtain

Corollary 1.2. Let $f:\left(C^{2}, 0\right) \rightarrow(C, 0)$ be a germ of plane curve. Then: ∂-degree of sufficiency of $f=C^{\circ}$-degree of sufficiency of f.

2. Proof of the theorem 1.1.

Let $f:\left(C^{2}, 0\right) \rightarrow(C, 0)$ be a germ of plane curve with branches $\varphi_{i}, i \in I$, and let $m_{i}, i \in I$, be the corresponding multiplicities.

We let:

$$
r=\max \left[\frac{1}{m_{i}} I\left(f, \varphi_{i}\right)\right]
$$

and

$$
s=\partial \text {-degree of sufficiency of } f
$$

By a rotation in C^{2} (that does not modify s) we may suppose that the tangent cone of f does not contain $x=0$.

1. Proof that $s \leq r$.

By definition of s there is a germ g of plane curve such that $j^{(s-1)} f=j^{(s-1)} g$ and f is not ∂-equivalent to g, therefore $j^{s} f \neq j^{s} g$.

If the multiplicity of f is different from the multiplicity of g then s is equal to the multiplicity of f and hence f is ∂-equivalent to his tangent cone. Thus $I\left(f, \tilde{\varphi}_{i}\right)=\sum_{j \in I} m_{i} m_{j}$, and

$$
r=\max _{i \in I}\left[\frac{1}{m_{i}} \sum_{j \in I} m_{i} m_{j}\right]=\sum_{j \in I} m_{j}=\text { multiplicity of } f=s
$$

Hence we may assume that the multiplicity of f is equal to the multiplicity of g.

Claim. If $I\left(g, \tilde{\varphi}_{i}\right)=I\left(f, \tilde{\varphi}_{i}\right)$ for every $i \in I$, there is a germ of irreducible curve ψ such that for some $i \in I$:
a.- The multiplicity of ψ is equal to m_{i}.
b. $I\left(g, \tilde{\varphi}_{i}\right)=I(g, \psi)<I(f, \psi)$.

Proof: Consider the resolution tree, $\Gamma(f g)$, of $f g$. We label the branches of f with an arrow (\uparrow) and the branches of g with a star (\mid). As f is not ∂ equivalent to g there is some vertex of $\Gamma(f g)$ where the number of arrows and stars is different. Moreover, as f and g have the same multiplicity, there is a vertex P in $\Gamma(f g)$ where there are more arrows than stars. Let φ_{i} be a branch corresponding to an arrow starting from P. If we consider now the resolution tree of $f g \tilde{\varphi}_{i}$, the arrows corresponding to φ_{i} and $\tilde{\varphi}_{i}$ start from the same vertex of $\Gamma\left(f g \tilde{\varphi}_{i}\right)$ (see figure 7). This is a consequence of the choice of P. We choose ψ to be a branch such that $\varphi_{;}$and ψ have a new common point in $\Gamma(f g \psi)$ (see figure 8). Then it is clear that $I(g, \psi)=I\left(g, \tilde{\varphi}_{i}\right)$ and $I(f, \psi)=I\left(f, \tilde{\varphi}_{i}\right)+1$.

Figure 7

Figure 8

We shall argue case by case.
1st. case: there is $i \in I$, such that $I\left(g, \tilde{\varphi}_{i}\right)>I\left(f, \tilde{\varphi}_{i}\right)$.

$$
\text { Let }\left\{\begin{array}{l}
X=t^{m_{i}} \\
Y=\tilde{\beta}_{i}(t)
\end{array} \text { be a parametrization of } \tilde{\varphi}_{i} .\right.
$$

Then we have: order $f\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)<$ order $g\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$.
There is a term, $T(X, Y)$, of degree at least s in $f(X, Y)$ (or in $g(X, Y)$) such that $T\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$ has a term of degree equal to the order of $f\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$. Set $T(X, Y)=X^{\alpha} Y^{\beta}$ with $\alpha+\beta \geq s$.

Then

$$
I\left(f, \tilde{\varphi}_{i}\right)=\operatorname{order} f\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right) \geq \alpha m_{i}+\beta\left(\text { order } \tilde{\beta}_{i}(t)\right) \geq(\alpha+\beta) m_{i} \geq s m_{i} .
$$

That is:

$$
s \leq\left[\frac{\left(f, \tilde{\varphi}_{i}\right)}{m_{i}}\right] \leq r .
$$

2nd case. $I\left(g, \tilde{\varphi}_{i}\right)<I\left(f, \tilde{\varphi}_{i}\right)$ for some $i \in I$.
Then the order of $f\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$ is greater than the order of $g\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$. There is a term, $T(X, Y)$, of degree at least s in $f(X, Y)$ or $g(X, Y)$ such that $T\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$ has a term of degree equal to the order of $g\left(t^{m_{i}}, \tilde{\beta}_{i}(t)\right)$. Then:

$$
s \leq\left[\frac{I\left(f, \tilde{\varphi}_{j}\right)}{m_{i}}\right]<\left[\frac{I\left(f, \tilde{\varphi}_{i}\right)}{m_{i}}\right] \leq r
$$

3rd case. $I\left(f, \tilde{\varphi}_{i}\right)=I\left(g, \tilde{\varphi}_{i}\right)$ for every $i \in I$.
Let ψ be the branch given by the claim. By construction the multiplicity of ψ is equal to m_{i} for some $i \in I$.

$$
\text { Let }\left\{\begin{array}{l}
X=t^{m_{i}} \\
Y=\tilde{\beta}(t)
\end{array} \text { be a parametrization of } \psi .\right.
$$

A.s $I(\xi, \psi)$ 大 $I(f, \psi)$ we have:

$$
; \leq\left[\frac{I(g, \psi)}{m_{i}}\right]=\left[\frac{I\left(g, \tilde{\varphi}_{i}\right)}{m_{i}}\right]=\left[\frac{I\left(f, \tilde{\varphi}_{i}\right)}{m_{i}}\right] \leq r .
$$

2. Proof that $r \leq s$.

By the remark that we made in the introduction this inequality is a consequence of the result of Kuo and Lu. Here is an easy direct argument:

Assume that $s<r$. Then, if $j^{(r-1)} f=j^{(r-1)} g$, we have that f and g are ∂-equivalent, and let S be a set of disjoint annuli verifying the conditions of the definition of ∂-equivalence. If φ_{i} is a branch of f we may choose $\tilde{\varphi}_{i}$ in such a way that the knot corresponding to $\tilde{\varphi}_{i}, \tilde{N}_{i}$, does not cut the annuli of S. Then the linking number of \tilde{N}_{i} with each component N_{j} of the link of f, is equal to the linking number of the component of the link g in the annulus which contains N_{j}. Then $I\left(f, \tilde{\varphi}_{i}\right)=I\left(g, \tilde{\varphi}_{j}\right)$.

In particular, if we call f_{r-1} the set of terms of degree at most $r-1$ in f, we have:
$I\left(f_{r-1}, \tilde{\varphi}_{i}\right)=I\left(f_{r-1}+a X^{r}, \tilde{\varphi}_{i}\right)$, for all $a \in \mathcal{C}-\{0\}$, and for every $i \in I$.

$$
\text { Let }\left\{\begin{array}{l}
X=t^{m_{i}} \\
Y=\tilde{\beta}(t)
\end{array} \text { be a parametrization of } \tilde{\varphi}_{i} .\right.
$$

Then: order $f_{r-1}\left(t^{m_{i}}, \tilde{\beta}(t)\right)=\operatorname{order}\left(f_{r-1}\left(t^{m_{i}}, \tilde{\beta}(t)\right)\right.$ at $\left.t^{r_{i}}\right)$ for all $a \in \mathbf{C}-$ $\{0\}$. This implies that order $f_{r-1}\left(t^{m_{i}}, \tilde{\beta}(t)\right)<r m_{i}$ for every $i \in I$.

Then $r=\max \left[\frac{I\left(f, \tilde{\varphi}_{i}\right)}{m_{i}}\right]=\max \left[\frac{I\left(f_{r-1}, \tilde{\varphi}_{i}\right)}{m_{i}}\right]<r$, which is a contradiction.

References

[B-Z] Burde G. and Zieschang H., Knots, Berlin, New York: de Gruyter (1985).
[$\mathrm{E}-\mathrm{N}$] Eisenbud D. and Neumann W., Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Studies 110 (1985), Univ. Press, Princeton, N. J..
[K-L] Kuo T.C. and Lu Y.C., On Analytic function germs of two complex variables, Topology 16 (1977), 299-310.
[Lê] Lêe Dũng Tráng, Courbes polaires et résolution des courbes planes, Géométrie algébrique et applications II, Trabaux en Cours 23 (1987), Paris: Hermann.
[Li] Lichtin B., Estimates and formulae for the C°-degree of sufficiency of plane curves, Proc. Simp. in Pure Maths 40 Part 2 (1983), 155-160.
[M] MILNOR J., Singularities of complex hypersurfaces, Ann. of Math. Studies 61 (1968), Princeton Univ. Press, Princeton N.J..
[M-W] Michel F. and Weber C., Topologie des germes de courbes planes à plusieurs branches, Preprint (1985).
[T] TEISSIER B., Varietés polaires I. Invariants polaires des singularités d'hypersurfaces, Inv. Math. 40 (1977), 267-292.

Dpto. de Matemáticas Fundamentales Facultad de Ciencias, U.N.E.D. 28040 Madrid
SPAIN

Rebut el 15 de gener de 1988

