THE LATTICE R-tors FOR PERFECT RINGS

HUGO ALBERTO RINCÓN-MEJÍA

Abstract .

We define $\sim_{\mathbf{F}}$ in *R*-tors by $\tau \sim_{\mathbf{F}} \sigma$ iff the class of τ -codivisible modules coincides with the class of σ -codivisible modules. We prove that if *R* is left perfect ring (resp. semiperfect ring) then every $[\tau]_F \in R$ -tors/ $\sim_{\mathbf{F}}$ (resp. $[\chi]_{\mathbf{F}}$ and $[\xi]_{\mathbf{F}}$) is a complete sublattice of *R*-tors. We describe the largest element in $[\tau]$ as $\chi(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R))$ and the least element of $[\tau]$ as $\xi(t_{\tau}(\operatorname{Rad} R))$.

Using these results we give a necessary and sufficient condition for the central splitting of Goldman torsion theory when R is semiperfect.

We prove that for a QF ring R the least element of χ_{r} is the Goldie torsion theory. This can be used to prove that for a QF ring $\sim_{\mathbf{F}}$ and $\sim_{\mathbf{T}}$ are equal, where $\tau \sim_{\mathbf{T}} \sigma$ iff the class of τ -injective modules coincides with the class of σ -injective modules.

0. Introduction

Throughout this work R will denote an associative unital ring; R-tors will denote the complete brouwerian lattice of all left hereditary torsion theories; χ (resp. ξ) will denote the largest (resp. the smallest) element of R-tors.

If $\{M_{\alpha}\}_{\alpha \in X}$ is a family of left *R*-modules, then $\chi(\{M_{\alpha}\})$ will denote the largest torsion theory respect to which every M_{α} is torsion free. $\xi(\{M_{\alpha}\})$ will denote the smallest torsion theory respect to which every M_{α} is torsion. We consider a torsion theory τ as an ordered pair $\tau = (T_{\tau}, F_{\tau})$, where T_{τ} denotes the class of τ -torsion modules, and F_{τ} denotes the class of τ -torsion free modules. Also remember that the order in *R*-tors is given by: $\tau \leq \sigma$ iff $T_{\tau} \subseteq T_{\sigma}$.

Remember that a left module M is τ -codivisible iff $\operatorname{Ext}_R(M, K) = (0) \forall K \in F_{\tau}$. Let us denote P_{τ} the class of τ -codivisible modules. We define \sim_{F} in R-tors by $\tau \sim_{\mathsf{F}} \sigma$ iff $\mathsf{P}_{\tau} = \mathsf{P}_{\sigma}$. Obviously this is an equivalence relation in R-tors. Our aim in this work is to study R-tors by looking at the equivalence classes $[\tau] \in R$ -tors/ \sim_{F} . In case R is a left perfect ring, these equivalence classes are complete sublattices of R-tors. So, in $[\tau]$ there must exist a largest element (resp. a smallest element) which will be denote τ^* (resp. τ_*). We describe $\tau^* = \chi(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R))$ (resp. $\tau_* = \xi(t_{\tau}(\operatorname{Rad} R))$), where $\operatorname{Rad} R$ denotes the Jacobson radical of \mathbb{R} .

We also obtain some generalizations of some results of Bland (see 3).

We also prove that for a QF-ring R the smallest element of $[\chi]_{\sim_F}$ (which exists, since R is left perfect) is Goldie's torsion theory. In fact, it can be proved that for a QF-ring R the equivalence relations \sim_F and \sim_T coincide, where we define $\tau \sim_T \sigma$ iff the class of τ -injective modules coincides with the class of σ -injective modules.

The partition R-tors/ \sim_T has been studied by Raggi & Ríos (see [12] and [13]).

We will denote by S_{τ} the class of all short exact sequences $0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0$ in *R*-mod such that $K \in \mathsf{F}_{\tau}$, where $\tau \in R$ -tors.

We will denote P_{τ} the class of R-modules that are projective with respect to each sequence in S_{τ} .

We will denote \mathcal{A}_{τ} the proper class of short exact sequences in *R*-mod which make projective each element of \mathbf{P}_{τ} .

We should observe that $_{R}P$ is projective with respect to each short exact sequence in $S_{\tau} \iff P$ is projective with respect to each element of \mathcal{A}_{τ} .

Remarks.

1) (Ohtake [10], Bican, Nemec, Kepka [2]). If $\tau = (\mathsf{T},\mathsf{F}) \in R$ -tors and $0 \longrightarrow K \longrightarrow P \longrightarrow M \longrightarrow 0$ is a short exact sequence in R-mod such that P is projective an $K \in \mathsf{T}$, then $M \in \mathsf{P}_{\tau}$.

2) R-mod has enough \mathcal{A}_r -projectives (this means that $\forall_R M \in R - mod \exists 0 \longrightarrow K \longrightarrow P \longrightarrow M \longrightarrow 0 \in \mathcal{A}_r$ with P projective with respect to \mathcal{A}_r .

3) Let $_RM \in R$ -mod. Then: $M \in P_\tau \iff M$ is a direct summand of a module of the form P/T, where P is projective and $T \in T_\tau$.

We should observe that in the above remark we can replace "projective" by "free".

Definition 1. (τ -codivisible cover, Bland [3]). An \mathcal{A}_{τ} -projective cover of _RM is an exact sequence $0 \longrightarrow L \longrightarrow P \longrightarrow M \longrightarrow 0$, such that

i) $L \in F_{\tau}$.

ii) P is τ -codivisible (i.e. A_{τ} -projective).

iii) i(L) is small in P(i(L) << (P).

The fact of that τ -codivisible covers are unique except for isomorphic copies is a known result [3].

We will denote by $0 \longrightarrow K_{\tau}(M) \longrightarrow P_{\tau}(M) \longrightarrow M \longrightarrow 0$ the τ -codivisible cover of M, when it exists, and by $0 \longrightarrow K(M) \longrightarrow P(M) \longrightarrow M \longrightarrow 0$ the projective cover of M, when it exists.

Definition 2. We define $\sim_{\rm F}$ in R-tors by: $\sigma \sim_{\rm F} \tau$ iff $\mathcal{A}_{\sigma} = \mathcal{A}_{\tau}$ (or equivalently, if $\mathbf{P}_{\sigma} = \mathbf{P}_{\tau}$, i.e. if the class of σ -codivisible modules coincides with the class of τ -codivisible covers).

The relation defined above is, obviously, an equivalence relation. Under

appropriate conditions the corresponding equivalence classes $[\tau]_{\sim_F}$, are complete sublattices of *R*-tors. This is the case when *R* is a left perfect ring.

Theorem 1. If $0 \longrightarrow K_{\tau}(M) \longrightarrow P_{\tau}(M) \longrightarrow M \longrightarrow 0$ is a τ -codivisible cover of M and if $0 \longrightarrow K(M) \longrightarrow P(M) \longrightarrow M \longrightarrow 0$ is a projective cover of M, then ker $(P(M) \longrightarrow P_{\tau}(M))$ is τ -torsion.

Lemma 1. Let $0 \longrightarrow K \longrightarrow P \longrightarrow M \longrightarrow 0$ be a projective cover. Let us suppose $\tau \sim_{\mathsf{F}} \sigma$, then $K \in \mathsf{T}_{\tau} \iff K \in \mathsf{T}_{\sigma}$.

Proof: Straightforward.

Theorem 2. Suppose that $0 \longrightarrow K(M) \longrightarrow P(M) \longrightarrow M \longrightarrow 0$ is a projective cover. Then $0 \longrightarrow K(M)/t_{\tau}(K(M)) \longrightarrow P(M)/t_{\tau}(K(M)) \longrightarrow M \longrightarrow 0$ (*) is a σ -codivisible cover $\forall \sigma \in [\tau]_{\mathbf{F}}$.

Proof: Direct from the definitions.

Note that the above theorem implies that if $0 \longrightarrow K_{\tau}(M) \longrightarrow P(M) \longrightarrow M \longrightarrow 0$ is a τ -codivisible cover, then $K_{\tau}(M) \in \mathsf{F}_{v[\tau]}^{\sigma}$. This is because $K_{\tau}(M) \in \bigcap_{[\tau]} \mathsf{F}_{\sigma} = \mathsf{F}_{v[\tau]}^{\sigma}$.

Let us also note that the following implications hold for $\sigma, \tau \in R$ -tors:

 $\tau \leq \sigma \Longleftrightarrow \mathsf{F}_{\tau} \supseteq \mathsf{F}_{\sigma} \Longrightarrow \mathcal{A}_{\tau} \supseteq \mathcal{A}_{\sigma} \Longleftrightarrow \mathsf{P}_{\tau} \subseteq \mathsf{P}_{\sigma}.$

Remarks. For a proper class \mathcal{A} we have:

i) $\mathcal{A} = \mathcal{A}_{\xi} \iff \mathcal{A}$ is the class of all short exact sequences in R-mod $\iff \mathsf{P}_{\mathcal{A}} = \mathsf{P}_{\xi}$.

Also note that P_{ξ} , the class of ξ -codivisible modules is precisely the class of all projective modules.

ii) $\mathcal{A} = \mathcal{A}_{\xi} \iff S_{\mathcal{A}} = \{0 \longrightarrow 0 \longrightarrow M \longrightarrow M \longrightarrow 0 : M \in R \text{-mod}\} \iff R \text{-mod} = \mathsf{P}_{\mathcal{A}}$, the class of all projective modules.

Also note \mathcal{A}_{χ} is the class of all splitting short exact sequences in *R*-mod.

iii) $\tau \in R$ -tors faithful $\implies \tau \in [\xi]$: for if P is τ -codivisible, then P is a direct summand of a module $R^{(X)}/T$, where T is a τ -torsion submodule of $R^{(X)}$, which is in F_{τ} (being R in F_{τ} , by hypothesis). Then T = 0, and hence P is a direct summand of a free module; i.e., P is projective. So $\mathsf{P}_{\xi} = \mathsf{P}$, and we conclude by using i).

iv) If R is a domain (e.g. **Z**) every $\chi \neq \tau \in R$ -tors is faithful and hence is in $[\xi]_{\mathsf{F}}$. So R-tors/ \sim_{F} has only the two elements $[\chi]_{\mathsf{F}} = \{\chi\}$, and $[\xi]_{\mathsf{F}} = R$ -tors\ $\{\chi\}$.

Moreover [ξ] has a maximal member: $\chi(R) = \tau_L$, Lambek's torsion theory.

- v) For a stable torsion theory τ the following statements are equivalent:
 - a) $R \cong t_{\tau}(R) \times S$, where S is semisimple artinian.
 - b) $\tau \in [\chi]_{\mathsf{F}}$.

c) $\forall N \in \mathsf{F}_{\tau}$, N is an injective semisimple module.

Proof: a) \iff b) (See [11]), b) \iff c) follows from Theorem 3.

- vi) For a left semiartinian ring are equivalent
 - a) $\tau_G \in [\chi]$ (τ_G denotes Goldie's torsion theory).
 - b) $R \cong \tau_G(R) \times S$, where S is semisimple artinian.
 - c) τ_G centrally splits.
 - d) τ_0 is stable. Here τ_0 denotes Goldman's torsion theory; i.e., the torsion theory generated by the projective semisimple modules.

Proof: b) \iff c) \iff d) (See [11]). a) \iff b) follows from Remark v).

- vii) If R is right perfect ring, then the above conditions are also equivalent to:
 - e) $\operatorname{soc}_p(\operatorname{Rad} R) = 0$ (See Theorem 18). Here soc_p denotes the projective socle, and $\operatorname{Rad} R$ denotes the Jacobson radical.

The following is an easy generalization of a Theorem of Bland, in our context.

Theorem 3. Are equivalent for $\tau \in R$ -tors:

i) τ ∈ [χ].
ii) P_τ = P_χ = R-mod.
iii) A_τ = class of all splitting short exact sequences.
iv) ∀_RN ∈ F_τ, N is semisimple and injective.
v) The ring R/t_τ(R) is semisimple.
vi) All cyclic modules are A_τ-projective.

(Bland in (3) shows the equivalence of ii), iv) and v), the equivalence of the others follows directly from the definitions).

Corollary 1. R is semisimple $\iff R$ -tors/ $\sim_{\mathbf{F}} = \{[\xi]\}(\iff \xi \sim_{\mathbf{F}} \chi).$

Proof: \implies) If R is semisimple, then $\forall \tau \in R$ -tors, $R/t_{\tau}(R)$ is semisimple; so by v) \implies i) in Theorem 3 we get $\tau \in [\chi]_{\mathbf{F}}$. Hence $[\xi] = [\chi] = R$ -tors.

 \Leftarrow) If R-tors/ $\sim_{\mathsf{F}} = \{[\xi]\}$. In particular $\xi \in [\chi] = [\xi]$. So by using i) \Leftrightarrow iv) in the above theorem, we get N is semisimple $\forall_R N \in \mathsf{F}_{\xi}$ (but $\mathsf{F}_{\xi} = R$ -mod). Then R is semisimple.

From the preceeding corollary, we obtain immediately the following result.

Corollary 2. (Bland [3], Corollary 3.4 proves the "if" part). R is semisimple $\iff \exists \tau \in [\chi]$, faithful.

Proof: ⇒) If *R* is semisimple, then ξ has the required properties. ⇐) If $\tau \in [\chi]$ is faithful, then we get that $\tau \in [\xi]$ (see remark iii), after Theorem 2). Thus $\tau \in [\xi] \cap [\chi]$. Hence $[\xi] = [\chi]$. Theorem 4. Let τ be an element of R-tors. Then $[\tau]_{\mathsf{F}}$ is closed under finite meets.

Proof: Let us suppose that $\tau_1 \sim_{\mathbf{F}} \tau_2 \sim_{\mathbf{F}} \tau$. By the observation after Theorem 2 we have that $\mathcal{A}_{\tau_1} \subseteq \mathcal{A}_{\tau_1 \wedge \tau_2}$ $(\tau_1 \wedge \tau_2 \leq \tau_2)$. Now, let us consider the diagram

with $L \in F_{\tau_1 \wedge \tau_2}$, $S \in P_{\tau_1}$, and remember that S is \mathcal{A}_{τ} -projective iff S is projective with respect to each exact sequence of the form $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ with $L \in F_{\tau}$. Let us extend the above diagram to

where π is the natural epimorphism. Now $M/t_2(L) \in \mathbb{F}_{r_2}$; so $0 \longrightarrow \ker \pi \longrightarrow M/t_2(L) \xrightarrow{\pi} M/L \longrightarrow 0 \in \mathcal{A}_{r_2} = \mathcal{A}_{r_1}$. Inasmuch as S is in $\mathbb{P}_{r_1} = \mathbb{P}_{r_2}$, we have that $\exists \beta: S \longrightarrow M/t_2(L)$, such that $\pi \circ \beta = \alpha$. Now let us observe that $t_1(t_2(L)) \in \mathbb{T}_{r_2} \cap \mathbb{T}_{r_2} = \mathbb{T}_{r_1 \wedge r_2}$.

But in the other hand, $t_1(t_2(L)) \subseteq L \in \mathsf{F}_{\tau_1 \wedge \tau_2}$; hence $t_1(t_2(L)) = 0$. So $t_2(L) \in \mathsf{F}_{\tau_1}$, which implies that $0 \longrightarrow t_2(L) \longrightarrow M \longrightarrow M/t_2(L) \longrightarrow 0$ belongs to \mathcal{A}_{τ_1} . Hence $\exists \gamma \colon S \longrightarrow M$ such that $\bar{p} \circ \gamma = \beta$; so the following diagram is commutative:

But then $\gamma \circ p = \pi \circ \overline{p} \circ \gamma = \pi \circ \beta = \alpha$. Hence $S \in \mathsf{P}_{r_1 \wedge r_2}$, and then $\mathsf{P}_{r_1} \subseteq \mathsf{P}_{\tau_1 \wedge \tau_2}$, and from this we get $\mathcal{A}_{r_1 \wedge \tau_2} \subseteq \mathcal{A}_{\tau_1}$, (see the observation after Theorem 2).

Hence $\mathcal{A}_{\tau_1 \wedge \tau_2} = \mathcal{A}_{\tau_1}$, and so $\tau_1 \wedge \tau_2 \sim_{\mathsf{F}} \tau_1 \sim_{\mathsf{F}} \tau$.

If the ring R is left perfect we can prove much more.

Theorem 5. If R is a left perfect ring, then $[\tau]$ is closed under taking arbitrary meets, $\forall \tau \in R$ -tors.

Proof: Let $P' \in \mathbf{P}_{\tau}$ and let

$$\begin{array}{c} P' \\ & \downarrow^{\alpha} \\ 0 & \longrightarrow L \xrightarrow{i} M \xrightarrow{p} N & \longrightarrow 0 \end{array}$$

be a diagram with $L \in \mathsf{F}_{\wedge[\tau]}$. Let $0 \longrightarrow K(N) \longrightarrow P(N) \longrightarrow N \longrightarrow 0$ and $0 \longrightarrow K_{\tau}(N) \longrightarrow P_{\tau}(N) \longrightarrow N \longrightarrow 0$ be a projective and τ -codivisible covers, respectively. Then $\exists \alpha \colon P' \longrightarrow P_{\tau}(N)$ such that

commutes (because P' is τ -codivisible and $0 \longrightarrow K_{\tau}(N) \longrightarrow P_{\tau}(N) \longrightarrow N \longrightarrow 0 \in \mathcal{A}_{\tau}$), where π' is the epimorphism provided by the projectivity of P(N), and u is the morphism obtained from the universal property of kernels.

Moreover, by Theorem 1, we have that $K' \in T_{\sigma} \quad \forall \sigma \in [\tau]$. Hence we get $K' \in T_{\Lambda_{[\tau]}\sigma}$. As $L \in F_{\Lambda_{[\tau]}\sigma}$, we get u = 0. But then, given the commutativity in the first square, we get that $\exists \beta \colon P_{\tau}(N) \longrightarrow M$ such that $\beta \circ s = \pi'$.

So we have that in the diagram

$$P(N) \xrightarrow{s} P_{\tau}(N)$$

$$\downarrow_{\pi'} \xrightarrow{\beta} \qquad \downarrow_{\pi}$$

$$M \xrightarrow{p} N$$

the square and the top triangle commute; i.e., $\pi \circ s = p \circ \pi' = p \circ \beta \circ s$. But as s is epi, we have that $\pi = p \circ \beta$; i.e. the bottom triangle is also commutative.

Summarizing, we have the following commutative diagram

from which we get that $P \in \mathbf{P}_{\wedge[\tau]}$. Hence $\mathbf{P}_{\tau} \subset \mathbf{P}_{\wedge[\tau]}$ and then $\mathcal{A}_{\wedge[\tau]} \subset \mathcal{A}_{\tau}$. But $\wedge[\tau] \leq \tau \implies \mathcal{A}_{\wedge[\tau]} \subseteq \mathcal{A}_{\tau}$ (observation after Theorem 2). Hence $\mathcal{A}_{\wedge[\tau]} = \mathcal{A}_{\tau}$ and so $\wedge_{[\tau]} \sigma \sim_{\mathbf{F}} \tau$.

So we have proved $\wedge[\tau] \in [\tau]$ and this is sufficient for seeing that $[\tau]$ is closed taking under arbitrary meets $(\{\tau_{\alpha}\} \subseteq [\tau] \Longrightarrow \wedge[\tau] \leq \wedge\{\tau_{\alpha}\} \leq \tau_{\alpha}$ and hence $\mathcal{A}_{\tau_{\alpha}} \subseteq \mathcal{A}_{\wedge\{\tau_{\alpha}\}} \subseteq \mathcal{A}_{\wedge[\tau]} = \mathcal{A}_{\tau_{\alpha}}$.

Theorem 6. If R is a left perfect ring, then $[\tau]$ is closed under arbitrary joins.

Proof: It's enough to prove that $\forall [\tau] \in [\tau]$. Let

where the row is a τ -codivisible cover of M and where P' is a $V[\tau]$ -codivisible module. By Theorem 2 we have that $L \in F_{\sigma}, \forall \sigma \in [\tau]$; hence $L \in \cap_{[\tau]} F_{\sigma} = F_{v[\tau]}$. So, (*) belongs to $\mathcal{A}_{v[\tau]}$, and consequently $\exists \bar{\alpha} \colon P' \longrightarrow P_{\tau}$ such that $p \circ \bar{\alpha} = \alpha$. Hence $P' \in P_{\tau}$ and so $P_{v[\tau]} \subseteq P_{\tau}$, which is equivalent to saying that $\mathcal{A}_{\tau} \subseteq \mathcal{A}_{v[\tau]}$.

On the other hand, $\tau \leq \forall [\tau] \iff \mathcal{A}_{\tau} \supseteq \mathcal{A}_{\forall [\tau]}$. Then $\mathcal{A}_{\tau} = \mathcal{A}_{\forall [\tau]}$ and so $\forall [\tau] \in [\tau]$.

From the two preceeding theorems we get at once:

Theorem 7. R Left perfect $\implies [\tau]$ is a complete sublattice of R-tors, $\forall \tau \in R$ -tors.

By the preceeding theorem, we know that if R is a left perfect ring, then $[\tau]$ is closed under taking arbitrary joins and meets. Consequently, in $[\tau]$ must exist a largest and a smallest element, which will be denoted τ^* and τ_* , respectively. The following theorem gives us a useful description of each of them.

Theorem 8. If R is a left perfect ring, then:

i) $\tau^* = \chi \{K_\tau(M)|0 \longrightarrow K_\tau(M) \longrightarrow P_\tau(M) \longrightarrow M \longrightarrow 0$ is an \mathcal{A}_τ -codivisible cover, $M \in R$ -mod $\}$.

ii) $\tau_* = \xi\{K(P_r(M))|0 \longrightarrow K(P_r(M)) \longrightarrow P(M) \longrightarrow P_r(M) \longrightarrow 0$ is a projective cover of $P_r(M)$, where $P_r(M)$ is a τ -codivisible cover of M, $M \in R \cdot mod\}$.

Proof: First, let us observe that the sequence

$$0 \longrightarrow K(P_{\tau}(M)) \longrightarrow P(M) \longrightarrow P_{\tau}(M) \longrightarrow 0$$

in ii) comes from the diagram

where the rows and the column are exact, the rows are the projective and the τ -codivisible covers of M, respectively, and the R-morphism $P(M) \longrightarrow P_{\tau}(M)$ is given by the projectivity of P(M).

i) By the note after Theorem 2, we have that $K_{\tau}(M) \in \mathbb{F}_{\sigma} \quad \forall \sigma \in [\tau]$; so $\chi\{K_{\tau}(M)|M \in R \text{-mod}\} \geq \tau^*$. It would be enough to see that $\chi\{K_{\tau}(M)|M \in R \text{-mod}\} \in [\tau]$ and for this it would be enough to see that $P_{\chi\{K_{\tau}(M)|M \in R \text{-mod}\}} \subseteq \mathbb{P}_{\tau^*}$.

But if $P \in \mathbb{P}_{\chi\{K_r(M)|M \in R \text{-mod}\}}$ and if the diagram

is such that $K \in F_{\tau}$, then by taking a τ -codivisible cover of M we get the diagram

Since $K_r(M) \in \mathbb{F}_{\chi\{K_r(M)|M \in R \text{-mod}\}}, \exists \bar{\alpha} : P \longrightarrow P_r(M)$ such that $\pi \circ \bar{\alpha} = \alpha$. Inasmuch as $K \in \mathbb{F}_r, \subseteq \mathbb{F}_r, \exists \bar{\alpha} : P_r(M) \longrightarrow L$ such that $p \circ \bar{\alpha} = \pi$, hence $p \circ (\bar{\alpha} \circ \bar{\alpha}) = \alpha$ and then $P \in P_{\tau^*}$. So $P_{\chi\{K_{\tau}(M)|M \in R \text{-mod}\}} \subseteq P_{\tau^*}$. Hence $\tau^* \leq \chi\{K_{\tau}(M)|M \in R \text{-mod}\}$ and hence $\tau^* = \chi\{K_{\tau}(M)|M \in R \text{-mod}\}$.

ii) By Lemma 1, we have that $K(P_{\tau}(M)) \in \mathsf{T}_{\wedge_{[\tau]}\sigma}$, hence $\xi\{K(P_{\tau}(M)|M \in R\text{-mod}\} \leq \tau_* = \wedge_{[\tau]}$.

To get the converse inclusion, it is enough to see that

$$\mathsf{P}_{\tau^*} \subseteq \mathsf{P}_{\xi\{K(P_\tau(M)|M \in R \text{-mod}\}}.$$

So, let $P \in P_{\tau}$ and

be a diagram such that $K \in F_{\xi\{K(P_r(M)|M \in R \mod \})}$. Let us take $0 \longrightarrow K(P_r(M)) \longrightarrow P(M) \longrightarrow P_r(M) \longrightarrow 0$ as in the statement. Then $K_r(P_r(M)) \in T_{\Lambda[r]}$. In the diagram

where $\bar{\pi}$ is given by projectivity of P(M), and β is the restriction of $\bar{\pi}$ to $K_r(P_r(M))$, we have that $\beta = 0$, inasmuch $K \in F_{\xi\{K(P_r(M)|M \in R \text{-mod}\}}$. Then, by the universal property of cokernels, we have that $\exists \beta \colon P_r(M) \colon \longrightarrow L$ such that

commutes. But as $P(M) \longrightarrow P_{\tau}(M)$ is epic, we have that

is commutative, too.

Now,

$$\begin{array}{cccc} & & P \\ & & \downarrow \alpha \\ 0 & \longrightarrow & K_{\tau}(M) & \longrightarrow & P_{\tau}(M) & \stackrel{\pi}{\longrightarrow} & M & \longrightarrow & 0 \end{array}$$

with $P \in \mathsf{P}_{\tau^*}$ and $K_{\tau}(M) \in \mathsf{F}_{\sigma}$ $(\forall \sigma \in [\tau])$ imply that $K_{\tau}(M) \in \mathsf{F}_{\tau^*}$, and so $\exists \gamma \colon P \longrightarrow P_{\tau}(M)$ such that $\pi \circ \gamma = \alpha$. But then

commutes.

Hence $P \in \mathsf{P}_{\xi\{K(P_{\tau}(M))|M \in R \text{-mod}\}}$ Thus, $\mathsf{P}_{\tau^*} \subseteq \mathsf{P}_{\xi\{K(P_{\tau}(M))|M \in R \text{-mod}\}}$. So we get $\tau^* = \xi\{K(P_{\tau}(M))|M \in R \text{-mod}\}$.

For the particular cases when $\tau \in \{\xi, \chi\}$ and when the ring R is left perfect, we give descriptions of τ^* and τ_* by using the Jacobson radical of R, which we will extend to arbitrary torsion theories and for semiperfect rings.

Theorem 9. For left perfect R we have that $(\mathcal{J}(R))$

i)
$$\xi^* = \chi(\mathcal{J}(R))$$

ii) $\chi_* = \xi(\mathcal{J}(R)),$

where $\mathcal{J}(R)$ denotes the Jacobson radical of R.

Proof: i) By Theorem 8,

$$\xi^* = \chi\{K_{\xi}(M) \mid 0 \longrightarrow K_{\xi}(M) \longrightarrow P_{\xi}(M) \longrightarrow M \longrightarrow 0$$

is a ξ -codivisible cover, $M \in R$ -mod}
$$= \chi\{K(M) \mid 0 \longrightarrow K(M) \longrightarrow P(M) \longrightarrow M \longrightarrow 0$$

is a projective cover, $M \in R$ -mod
$$\}$$
$$= \chi\{K \mid K \ll P \text{ and } _RP \text{ is projective }\}.$$

As R is left perfect, $\operatorname{Rad}(P) = \mathcal{J}(R)P$ (see Anderson-Fuller, [1], Remark 28.5.(3)); so $K \ll P \iff K \subseteq \mathcal{J}(R)P \subseteq \mathcal{J}(R)R^{(X)}$ for some set X. Hence $K \ll P \iff \exists K \rightarrowtail \mathcal{J}(R)^{(X)} \iff K \in \mathsf{F}_{\chi(\mathcal{J}(R))}$. Thus $\xi^* \ge \chi(\mathcal{J}(R))$.

On the other hand, $\mathcal{J}(R) \ll R$ so we have that $0 \longrightarrow \mathcal{J}(R) \longrightarrow R \longrightarrow R/\mathcal{J}(R) \longrightarrow 0$ is a projective cover (= ξ -codivisible cover). Therefore $\mathcal{J}(R) \in \mathbb{F}_{\xi^*}$ (since $\mathcal{J}(R)$ is one of the modules cogenerating the torsion theory ξ^* , see the above description of ξ^*). Hence $\xi^* \geq \chi(\mathcal{J}(R))$. And therefore $\xi^* = \chi(\mathcal{J}(R))$.

$$\chi_{*} = \xi \left\{ K_{\chi}(P_{\chi}(M)) \middle| \begin{array}{c} 0 \longrightarrow K_{\chi}(P_{\chi}(M)) \longrightarrow P(M) \longrightarrow P_{\chi}(M) \longrightarrow 0 \\ P(M) \longrightarrow P_{\chi}(M) \\ \text{is induced by } \downarrow_{\pi} \qquad \qquad \downarrow_{\pi'} \\ M \longrightarrow M \\ \text{where π and π' are projective and} \\ \tau\text{-codivisible cover, respectively.} \end{array} \right\}$$

Now $0 \longrightarrow K_{\chi}(M) \longrightarrow P_{\chi}(M) \longrightarrow M \longrightarrow 0$ is a χ -codivisible cover but $0 \longrightarrow 0 \longrightarrow M \longrightarrow M \longrightarrow 0$ is another (every left *R*-module is χ -codivisible). Thus we have that

$$0 \longrightarrow K_{\mathbf{X}}(P_{\mathbf{X}}(M)) \longrightarrow P(M) \longrightarrow P_{\mathbf{X}}(M) \longrightarrow 0$$

is a projective cover of $_{R}M$. We have then that

$$\chi_* = \xi \{ K \mid K \ll P, {}_RP \quad \text{projective} \}.$$

Again, $K \ll P$, $_RP$ projective $\iff K \subseteq \mathcal{J}(R)^{(X)}$ for some set X. Therefore $K \ll P$, P projective $\implies K \in \xi(\mathcal{J}(R))$. Hence $\chi_* \leq \xi(\mathcal{J}(R))$.

On the other hand, $0 \longrightarrow \mathcal{J}(R) \longrightarrow R \longrightarrow R/\mathcal{J}(R) \longrightarrow 0$ is a projective cover. Therefore $\mathcal{J}(R) \in T_{\xi \{K_X P_X(M) \mid M \in R \mod \}}$ (is one of the generators of the above torsion theory). Therefore $\xi(\mathcal{J}(R)) \leq \chi_*$ and hence $\chi_* = \xi(\mathcal{J}(R))$.

We give now more "concrete" descriptions of τ^* and τ_* , in case R is left perfect.

Theorem 10. If R is left perfect, then i) $\tau^* = \chi(\mathcal{J}(R)/t_\tau(\mathcal{J}(R)))$ ii) $\tau_* = \xi(t_\tau(\mathcal{J}(R)))$, Where $\mathcal{J}(R)$ denotes the Jacobson's radical of R.

Proof: i) $0 \longrightarrow \mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)) \longrightarrow R/t_{\tau}(\mathcal{J}(R)) \longrightarrow R/\mathcal{J}(R) \longrightarrow 0$ is a projective cover, since: a) $\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)) \ll R/t_{\tau}(\mathcal{J}(R))$, b) $R/t_{\tau}(\mathcal{J}(R))$ is τ -codivisible (by Remark 3, before Definition 1) and c) $\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)) \in \mathbb{F}_{\tau}$. Thus, by the note after Theorem 2, $\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)) \in \mathbb{F}_{\tau}$; therefore $\tau \leq \tau^* \leq \chi(\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)))$.

If $\tau^* \leq \chi(\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)))$ then $\exists 0 \neq {}_{R}M \in \mathsf{T}_{\chi(\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)))} \cap \mathsf{F}_{\tau^*}$. ($\exists 0 \neq M$ that is $\chi(\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R))$ -torsion but not τ^* -torsion, and by taking $M/t_{\tau^*}(M)$ if it would be necessary, we can suppose, without loss generality, that $M \in \mathsf{F}_{\tau^*}$).

By Theorem 8, $\tau^* = \chi \{ K_\tau(M) \mid M \in R \text{-mod} \}$, so if $M \in F_{\tau^*}$, then M is cogenerated by $\{ E(K_\tau(M) \mid M \in R \text{-mod} \}$ (i.e., $\exists M \gg \prod_{N \in R \text{-mod}} E(K_\tau(N))$). Therefore, $\forall 0 \neq x \in M$, $\exists f_x : M \longrightarrow E(K_\tau(N))$ such that $f_x(x) \neq 0$ ([15]. Prop.VI.3.39). Therefore $0 \neq f_x(x) \in E(K_\tau(N))$. Because $K_\tau(N) <_e E(K_\tau(N))$ we have that $f_x(M) \cap K_\tau(N) \neq 0$. Hence $\exists 0 \neq y \in M$ such that $0 \neq f_x(y) \in K_\tau(N)$. Consequently, $Ry \stackrel{(f_x|Ry)}{\longrightarrow} K_\tau(N)$ is well defined. Now, thanks to Theorem 2, we have that the following diagram is commutative:

(Here we assume that $0 \longrightarrow K(N) \longrightarrow P(N) \longrightarrow N \longrightarrow 0$ is a projective cover of N). Thus $K(N) \ll P(N)$ and then we have that $K(N) \leq \mathcal{J}(P(N)) = \mathcal{J}(R)P(N) \leq \mathcal{J}(R)R^{(Z)} = \mathcal{J}(R)^{(Z)}$ for some set $Z(\mathcal{J}(P(N)) = \mathcal{J}(R)P(N)$ since P(N) is projective).

Therefore we have the following situation:

$$\begin{array}{cccc} Ry & \stackrel{\subseteq}{\longrightarrow} & M \\ & & \downarrow_{f_{x}} \\ K_{\tau}(N) & \stackrel{\stackrel{\alpha}{\longrightarrow}}{\longrightarrow} & K(N)/t_{\tau}(K(N)) & \stackrel{i}{\longrightarrow} & \mathcal{J}(R)^{(Z)}/t_{\tau}(K(N)) & \stackrel{\ast}{\longrightarrow} \\ & & - & \longrightarrow & \mathcal{J}(R)^{(Z)}/t_{\tau}(\mathcal{J}(R)^{(Z)}) \cong [\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R))]^{(Z)}. \end{array}$$

As we that $\operatorname{Hom}_R(M, \mathcal{J}(R)/t_\tau(\mathcal{J}(R))) = 0$, we also have that $\operatorname{Hom}_R(Ry, \mathcal{J}(R)/t_\tau(\mathcal{J}(R))) = 0$ which implies that $i \circ \alpha(f_x(y)) \in t_\tau(\mathcal{J}(R^{(Z)}))$. Therefore $\exists I \in \mathcal{F}_\tau$ such that $I \ i \circ \alpha(f_x(y)) = 0$. But as i is a monomorphism, then $I(f_x(y)) = 0$; hence $0 \neq f_x(y) \in t_\tau(K_\tau(N)) = 0$, which is a contradiction $(K_\tau(N) \cong K(N)/t_\tau(K(N)) \in \mathbb{F}_\tau)$. Therefore $\tau^* = \chi(\mathcal{J}(R)/t_\tau(\mathcal{J}(R)))$ (here \mathcal{F}_τ denotes the idempotent filter corresponding to τ).

ii) If we consider the diagram

the fact that (1) and (2) are projective and τ -codivisible covers, respectively, tells us that ker π in Column (3) is one of the modules generating the torsion theory τ_* (see Theorem 8). Therefore $t_\tau(\mathcal{J}(R)) \in T_{\tau^*}$ and $\xi(t_\tau(\mathcal{J}(R))) \leq \tau_*$.

Now, if $K(P_{\tau}(M))$ is one of the generators of τ_* ; i.e., if $0 \longrightarrow K(P_{\tau}(M)) \longrightarrow P(M) \longrightarrow P_{\tau}(M) \longrightarrow 0$ can be extended to a diagram

where the two last rows are projective and τ -codivisible covers, respectively, then we have that $K(P_{\tau}(M)) \ll K(M) \ll P(M)$.

By Theorem 2, $K(P_{\tau}(M)) = t_{\tau}(K(M))$; therefore $K(P_{\tau}(M)) \leq \operatorname{Rad}(P(M))$ = $\mathcal{J}(R)P(M) \xrightarrow{\subseteq} \mathcal{J}(R)R^{(X)} = \operatorname{Rad} R^{(X)}$ and moreover $K(P_{\tau}(M)) \xrightarrow{\subseteq} t_{\tau}(\mathcal{J}(R)^{(X)}) = (t_{\tau}(\mathcal{J}(R)))^{(X)}$. Therefore $K(P_{\tau}(M)) \in \mathsf{T}_{\xi(t_{\tau}(\mathcal{J}(R)))} \forall M \in R$ -mod. Hence $\tau_{\star} = \xi\{K(P_{\tau}(M)) \mid M \in R \text{-mod}\} \leq \xi(t_{\tau}(\mathcal{J}(R)))$ and so $\tau^{\star} = \xi(t_{\tau}(\mathcal{J}(R)))$.

Corollary 3. If R is a left perfect ring, then $\tau \leq \sigma \implies \tau_* \leq \sigma_*$.

Proof: Straightforward.

Theorem 10 is extended in [14] to the case of local rings. In that situation each $[\tau] \in R$ -tors/ \sim_{F} is closed under taking joins and meets and moreover the biggest element in $[\tau], \tau^*$ is given by $\tau^* = \chi(\mathcal{J}(R)/t_{\tau}(\mathcal{J}(R)))$ and also $\tau_* = \xi(t_{\tau}(\mathcal{J}(R))).$

However, a ring may have the property of having each $[\sigma]_{\mathsf{F}}$ closed under arbitrary joins and meets without being semiperfect. Moreover, the elements σ^* and σ_* are not given by $\chi(\mathcal{J}(R)/t_{\sigma}(\mathcal{J}(R)))$ and by $\xi(t_{\sigma}(\mathcal{J}(R)))$, in general. As we see in the following examples.

Examples. In view of Remark 3 before Definition 1, is easy to see that if R is a domain, then R-tors admits the following partition:

$$\{ [\xi] = [\chi(R)], \quad [\chi] = \{\chi\} \}.$$

It is clear that each equivalence class in R-tors/ \sim_F admits a largest and a least element.

In particular this is the situation for \mathbf{Z} , the ring of integers, which is not a perfect ring.

Moreover, let us note that for \mathbb{Z} , in spite of the fact that each element in R-tors/ $\sim_{\mathbb{F}}$ has a largest and a least element, they are not given as in Theorem 10. Explicity, $\mathcal{J}(\mathbb{Z}) = 0$, but we have that $[\chi] = \{\chi\}$, and so $\chi_* = \chi = \chi^*$. Nevertheless $\chi_* \neq \xi(t_{\chi}(\mathcal{J}(\mathbb{Z}))) = \xi(t_{\chi}(0)) = \xi(0) = \xi$.

On the other hand $[\xi] = [\tau_G = \tau_L]$ and $\xi^* = \tau_L$, but $\xi^* \neq \chi(\mathcal{J}(\mathbb{Z})/t_{\xi}(\mathcal{J}(\mathbb{Z})) = \chi(0/0) = \chi(0) = \chi$ (here τ_G denotes Goldie's torsion theory and τ_L denotes Lambek's torsion theory).

Lemma 2. The following statements are equivalent for a left perfect ring: i) $\xi^* \vee \tau = \tau^* \forall \tau \in R$ -tors. ii) $[\tau] \xrightarrow{-\Lambda \xi^*} [\xi]$ is a lattice monomorphism with left inverse $[\xi] \xrightarrow{-\vee \tau^*} [\tau]$. iii) $\sigma \leq \tau \implies [\tau] \xrightarrow{-\Lambda \sigma^*} [\sigma]$ is a lattice monomorphism with left inverse $[\sigma] \xrightarrow{-\vee \tau_*} [\tau]$. iv) $\sigma \leq \tau \implies \tau \vee \sigma^* = \tau^*$. v) $\forall \sigma, \tau \in R$ -tors $\tau \vee \sigma^* = (\tau \vee \sigma)^* = \tau^* \vee \sigma$.

Proof: Straightforward.

Theorem 11. If R is a left perfect ring, all of whose torsion free classes F_{τ} are also torsion classes (i.e. each F_{τ} is closed under taking factors), then R enjoys the properties of Lemma 2.

Proof: We will prove that $\xi^* \vee \tau = \tau^*$, $\forall \tau \in R$ -tors. As $\xi^* \leq \tau^*$, we have that $\xi^* \vee \tau \leq \tau^*$ (by Theorem 9 we have that $\xi^* = \chi(\operatorname{Rad} R)$; $\tau^* = \chi(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R))$. The hypothesis that F_{τ} is closed under factors \Longrightarrow $\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R) \in \mathsf{F}_{\xi^*}$; hence $\tau^* \geq \xi^*$).

It remains to prove that $\xi^* \vee \tau$ cannot be different from τ^* . If it was, then $\exists 0 \neq M \in T_{\tau^*} \cap F_{\xi^* \vee \tau} = T_{\tau^*} \cap F_{\xi^*} \cap F_{\tau}$. And as $\tau^* = \chi(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R))$ (Theorem 10) we have that $\operatorname{Hom}_R(M, E(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R)) = 0$ (*)

But as $M \in F_{\xi^*}$ and $\xi^* = \chi(\operatorname{Rad} R)$ (Theorem 9) we have that $\exists u: M \mapsto (E(\operatorname{Rad} R))^X$, monomorphism for some set X. Hence $\exists x \in X$ such that $p_x u(M) \neq 0$, where $p_x: (E(\operatorname{Rad} R))^X \longrightarrow E(\operatorname{Rad} R)$ is the canonical projection. Hence, in view of (*), we have that $u(M) \subseteq (t_r(E(\operatorname{Rad} R)))^X$. For if this were not true, $\exists y \in X$ such that $p_y(u(M)) \notin t_r(E(\operatorname{Rad} R))$ and hence

$$M \xrightarrow{\mu_{\Psi}} E(\operatorname{Rad} R)/t_{\tau}(E(\operatorname{Rad} R))$$

is not the zero morphism. But $E(\operatorname{Rad} R)/t_{\tau}(E(\operatorname{Rad} R)) \in F_{\tau}$ and $M \in T_{\tau}$ and so $\operatorname{Hom}_R(M, E(\operatorname{Rad} R)/t_{\tau}(E(\operatorname{Rad} R)) = 0$. This is a contradiction.

Now as $u(M) \subseteq (t_{\tau}(E(\operatorname{Rad} R)))^X$, we have that $p_x(u(m)) \subseteq t_{\tau}(E(\operatorname{Rad} R)) \in T_{\tau}$, but being also a factor of $M \in F_{\tau}$, it belongs to F_{τ} . Hence $0 \neq u(m) \in T_{\tau} \cap F_{\tau}$. This is a contradiction. Hence $\xi^* \vee \tau = \tau^*$.

The rings such that every torsion free class is closed under factors have been charaterized by Teply [16] and by Bronowitz and Teply [5]. We will call these rings BT-rings.

It is clear that for a BT-ring we have that:

$$\tau \leq \sigma \Longrightarrow t_{\tau}(\operatorname{Rad} R) \leq t_{\sigma}(\operatorname{Rad} R)$$

$$\Longrightarrow \operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R) \twoheadrightarrow \operatorname{Rad} R/t_{\sigma}(\operatorname{Rad} R)$$

$$\Longrightarrow \operatorname{Rad} R/t_{\sigma}(\operatorname{Rad} R) \in \mathsf{F}_{\chi}(\operatorname{Rad} R/t_{\tau}(\operatorname{Rad} R)) = \mathsf{F}_{\tau^*}$$

$$\Longrightarrow [\sigma^* = \chi(\operatorname{Rad} R/t_{\sigma}(\operatorname{Rad} R) \geq \tau^*]$$

$$\Longrightarrow \tau^* \geq \sigma^*.$$

Moreover, for a *BT*-ring, we have that $\xi^* \vee \tau = \tau^*$, since it is clear from the preceeding that $\xi^* \vee \tau \leq \tau^*$. And we would have, if the above inequality was estrict, that $F_{\tau^*} \subsetneq F_{\xi^* \vee \tau} = F_{\xi^*} \cap F_{\tau}$.

Hence $\exists 0 \neq M \in (\mathsf{F}_{\xi^*} \cap \mathsf{F}_r) \setminus \mathsf{F}_{r^*}$, and we can assume (changing M by $t_{r^*}(M) \neq 0$ if it was necessary), that $M \in \mathsf{T}_{r^*} \cap \mathsf{F}_{\xi^*} \cap \mathsf{F}_r$ $(t_{r^*}(M) \neq 0$ because $M \notin \mathsf{F}_{r^*}$).

Inasmuch as $M \in \mathsf{F}_{\xi^*}$, $\exists 0 \neq f \in \operatorname{Hom}_R(M, E(\operatorname{Rad} R))$; hence $\exists 0 \neq m \in M$ such that $\operatorname{Hom}_R(Rm, \operatorname{Rad} R) \neq 0$. But as $M \in \mathsf{T}_{\tau^*}$, we have that $\operatorname{Hom}_R(Rm, \operatorname{Rad} R/t_\tau(\operatorname{Rad} R)) = 0$ $(Rm \subseteq M \in \mathsf{T}_{\tau^*})$. So, if we take $0 \neq g \in$ $\operatorname{Hom}_R(Rm, \operatorname{Rad} R)$, then we would have that $0 \neq g(Rm) \subseteq t_\tau(\operatorname{Rad} R) \in \mathsf{T}_{\tau}$. But on the other hand, g(Rm) is a factor of $Rm \subseteq M \in \mathsf{F}_{\tau}$, and we have F_{τ} closed under taking factors by hypothesis. So we get that $0 \neq g(Rm) \in \mathsf{T}_{\tau} \cap \mathsf{F}_{\tau}$; which is a contradiction. So, we conclude that $\xi^* \vee \tau = \tau^*$.

So, for a *BT*-ring we have that Lemma 2 applies to give a nice partition of *R*-tors via the equivalence relation $\sim_{\mathbf{F}}$, because the equivalence class $[\xi]_{\mathbf{F}}$ contains an isomorphic copy or every other $[\tau]_{\mathbf{F}} \in R$ -tors/ $\sim_{\mathbf{F}}$. So, we will have *R*-tors completely determined as a lattice if we know the lattice structure of the sublattice $[\xi]_{\mathbf{F}}$.

Theorem 12. (Bland [3, Theorem 2.8]). If R is a semiperfect ring, then

$$\tau \sim_{\mathsf{F}} \chi \iff \operatorname{Rad} R \in \mathsf{T}_{\tau}.$$

Bland's theorem is equivalent to the following result.

Theorem 13. If R is a semiperfect ring, then $[\chi]$ contains a smallest element $\chi_* = \xi(\operatorname{Rad} R)$.

Proof: \Longrightarrow) Since $0 \longrightarrow \operatorname{Rad} R \longrightarrow R \longrightarrow R/\operatorname{Rad} R \longrightarrow 0$ is a projective cover with $\operatorname{Rad} R \in T_{\chi} = R$ -mod, we have, using Bland's Theorem, that $\xi(\operatorname{Rad} R) \in [\chi]_{\mathsf{F}}$. Therefore $\xi(\operatorname{Rad} R)$ is the least element of $[\chi]_{\mathsf{F}}$.

 $\iff) \text{ Let us suppose that } \chi_* = \xi(\operatorname{Rad} R). \text{ Now we have, for } \tau \in R\text{-tors,} \\ \tau \in [\chi] \iff \tau \ge \xi(\operatorname{Rad} R) \iff \operatorname{Rad} R \in \mathsf{T}_{\tau}. \blacksquare$

The following two results can be proved (Rincón-Mejía [14]).

Theorem 14. If R is a semiperfect ring, then $\xi^* = \chi(\operatorname{Rad} R)$, where ξ^* is the biggest element of $[\xi]_{\mathbf{F}}$.

Theorem 15. Rincón-Mejía (14).

If R is a local ring, then $\forall [\tau] \in R$ -tors/ \sim_F , we have that $[\tau]_F$ has a biggest element, τ^* , given by $\tau^* = \chi(\operatorname{Rad} R/t_\tau(\operatorname{Rad} R))$, and a smallest element given by $\tau_* = \xi(t_\tau(\operatorname{Rad} R))$.

Theorem 16. Let R be a semiperfect ring, then Goldman's torsion theory centrally splits $\iff \operatorname{soc}_p(\operatorname{Rad} R) = 0.$

(Remember that M is a Goldman torsion module iff $M = \operatorname{soc}_{P}(M)$, where $\operatorname{soc}_{p}(M)$, where $\operatorname{soc}_{p}(M)$ denotes the projective socle of M).

Proof: \iff If $\operatorname{soc}_p(\operatorname{Rad} R) = (0)$, then every projective simple module ${}_RS$ is injective: for if ${}_RS$ is a simple projective module, then $S \in \mathsf{T}_{\xi(\operatorname{Rad} R)} \cup \mathsf{F}_{\xi(\operatorname{Rad} R)}$, since S is simple. But $S \in \mathsf{T}_{\xi(\operatorname{Rad} R)} \Longrightarrow \exists 0 \neq f: \operatorname{Rad} R \longrightarrow E(S)$. As $S \leq_e E(S)$, we have that $S \leq \inf f$, so we have the diagram

Rad R

$$\int f^{-1}(S) \xrightarrow{f|_{f^{-1}(S)}} S$$

where $f|_{f^{-1}(S)}$ is an epimorphism with codomain being a projective module. Therefore S is isomorphic to a submodule of $f^{-1}(S)$, which is a submodule of the projective socle of Rad R; this is contradiction.

Thus we have, that if ${}_RS$ is a projective simple module, then $S \in \mathsf{F}_{\xi(\operatorname{Rad} R)}$. But $\xi(\operatorname{Rad} R) = \chi_*$, by Bland's Theorem, from which we get that if M is a direct sum of projective simple modules, then $M \in \mathsf{F}_{\chi_*}$ and hence M is injective (by Theorem 3).

Thus we have that $\forall N \in R$ -mod, $\operatorname{soc}_p(N)$ is an injective submodule of N and hence it is also a direct summand of N; i.e., Goldman's torsion theory splits. In particular $R = \operatorname{soc}_p(R) \oplus_R K$. But now, since R is semiperfect, R is semiartinian and therefore $\operatorname{soc}(R) \leq_e R$. In particular $\operatorname{soc}(K) \leq_e K$. Let us note that every left simple submodule of K is singular (since a left simple module is either singular or projective, but $\operatorname{soc}_p(K) = \operatorname{soc}_p(R) \cap K = 0$)). Thus we have that $\operatorname{soc}(K)$ is a Goldie's torsion-module. Hence K is a Goldie's torsion-module, too (Goldie's torsion theory is closed under taking essential extentions). Thus, $K \leq t_G(R) = t_G(\operatorname{soc}_p(R)) \oplus t_G(K)$, but each simple summand of $\operatorname{soc}_p(R)$ is non singular (being projective). So, $K = t_G(R)$ and so we have that K is a bilateral ideal of R. As a result, $R = \operatorname{soc}_p(R) \oplus K$ (ring direct sum); i.e., Goldman's torsion theory centrally splits.

⇒) If $\operatorname{soc}_p(\operatorname{Rad} R) \neq 0$ then $0 \longrightarrow \operatorname{soc}_p(R) \longrightarrow R \longrightarrow R/\operatorname{soc}_p(R) \longrightarrow 0$ does not split. For if it split, then taking a simple submodule S of Rad R we have that the monomorphisms $S \xrightarrow{\subseteq} \operatorname{soc}_p(\operatorname{Rad} R)$, $\operatorname{soc}_p(\operatorname{Rad} R) \xrightarrow{\subseteq} \operatorname{soc}_p(R)$ and $\operatorname{soc}_p(R) \xrightarrow{\subseteq} R$ are splitting; so its composition also splits. So we would have that $R = S \oplus K$, where $_RK$ is a maximal ideal of R, but this is impossible $(S \leq \operatorname{Rad} R \leq K \Longrightarrow S \cap K = S \neq 0)$. Hence Goldman's torsion theory does not split, and a fortiori, does not centrally split. ■

Corollary 4. If R is a commutative perfect ring, then Goldman's torsion theory centrally splits.

Proof: Raggi & Ríos ([17], Corolario 2.9) have proved in the general situation that $\operatorname{soc}_p(M) = \operatorname{soc}_p(R)M \forall M \in R$ -mod. In our particular case we have that $\operatorname{soc}_p(\operatorname{Rad} R) = \operatorname{soc}_p(R)$ Rad R = 0, since the Jacobson radical annihilates every simple module.

We should note that the preceeding proof does not apply for non commutative right perfect rings, because $\operatorname{soc}_p(\operatorname{Rad} R)$ is not necessarily a right semisimple module.

From Theorem 3.1 of Raggi & Ríos [11], we have that for a right perfect ring, Goldie's torsion theory τ_G is a *TTF* torsion theory generated by the left singular simple modules and cogenerated by the left projective simple modules (in fact the preceeding statements hold when *R* is left semiartinian ring).

In the following theorem we will denote S_I the class of the left injective simple modules and by S_P the class of left projective simple modules.

Theorem 17. If R is a right perfect ring satisfying $soc_p(\operatorname{Rad} R) = (0)$, then are equivalent:

i) $\chi_* = \tau_G$, where χ_* denotes the least element of $[\tau] \in R$ -tors/ \sim_F . ii) $S_I = S_P$.

Proof: i) \Longrightarrow ii) $S_P \subseteq S_I$ follows from the part \Leftarrow) of the proof of Theorem 16. Let $_RS$ be a left injective simple module. We want to prove that it is projective. Let us observe that since R is right perfect, then $R/\operatorname{Rad} R$ is semisimple, so that $_RM$ is semisimple iff $\operatorname{Rad} R M = 0$. Therefore every direct product of simple modules is semisimple. As a consequence, using Theorem 18, we get that $\chi(S)$ belongs to $[\chi]_{\mathsf{F}}$. For if $M \in \mathsf{F}_{\chi(S)}$, then $\exists_M \mapsto S^r$ for some set X, and as S^X is a semisimple module. But on the other hand, M is injective, as it is isomorphic to a direct summand of the injective module S^X .

Thus, $\chi(S) \in [\chi]_F$, and therefore $\chi(S) \ge \chi_* = \tau_G$. Then we have that S is Goldie torsion free, which is cogenerated by the left projective simple modules.

Hence $\exists 0 \neq f: S \longrightarrow U$, where U is a left projective simple module. Since f must be an isomorphism, we have that S is a projective module. Therefore $S_I \subseteq S_P$, and hence $S_I = S_P$.

ii) \Longrightarrow i) Since τ_G is cogenerated by the left projective simple modules, we have that every τ_G -torsion free module is semisimple, since it is (isomorphic to) a submodule of a direct product of simple modules (this product is annihilated by Rad R). But a τ_G -torsion free module is an injective module, since it is a direct summand of a product of projective simple modules, and such a product is injective by the hypothesis that all projective simple modules are injective modules. Since every τ_G -torsion free module is injective, $\tau_G \in [\chi]_F$ by Theorem 3.

Analogously, if $\tau \in [\chi]_F$ let us take E an injective module which cogenerates τ ; i.e., $\tau = \chi(E)$. By another use of Theorem 3, we get that E is semisimple. Now, if $_RS$ is a simple submodule of E, it has to be injective. Because S is an injective module, S is also projective by hypothesis. Therefore it is τ_G -torsion free. So, $E \in F_G$, since E is a direct sum of τ_G -torsion free modules. But $E \in F_G \implies \tau = \chi(E) \geq \tau_G$; so we have that $\tau_G = \chi_*$.

Corollary 5. If R is a quasifrobenius ring (QF-ring), then $\chi_* = \tau_G$.

Proof: R is right perfect and the class of projective modules coincides with the class of injective modules. Moreover, $\operatorname{soc}_p(\operatorname{Rad} R) = 0$: if $_RS \leq \operatorname{Rad} R$ was a projective simple module, then as S had to be injective, S would be a direct summand of R. Consequently, $S = Re \leq \operatorname{Rad} R$, with $e = e^2$, this is impossible. We conclude using Theorem 17.

Acknowledgements. I thank Dr. Francisco Raggi Cárdenas and M.C. José Ríos Montes for their advice, suggestions and encouragement, for without them I would not have been capable to do this work.

References

- 1. ANDERSON F. AND FULLER K., Rings and categories of modules "Springer Verlag," 1973.
- 2. BICAN L., KEPKA T. AND NEMEC P., Torsion theories and Homological dimensions, Journal of Algebra 35 (1975), 99-122.
- 3. BLAND P.E., Divisible and codivisible modules, Math. Scand. 34 (1974), 153-161.
- 4. BLAND P.E., Perfect torsion theories, Proceedings of the American Mathematical Society 41 (1973), 349-355.
- 5. BRONOWITZ R. AND TEPLY M., Torsion theories of simple type, Journal of Pure and Applied Algebra 3 (1973), 329-336.

- 6. EILENBERG S. AND MOORE J. C., Foundations of Relative Homological Algebra, Memoirs of the American Mathematical Society 55.
- EILENBERG S., Algebra Homológica, Anales del Instituto de Matemáticas U.N.A.M. 1 (1961), 117-145.
- 8. GOLAN J., Localization of noncommutative rings, Marcel Dekker (1975).
- 9. GOLAN J., Structure Sheaves over noncommutative rings, Marcel Dekker (1980).
- 10. OHTAKE K., Colocalization and Localization, Journal of Pure and Applied Algebra (1977), 217-241.
- RAGGI F. AND RÍOS J., Algunas relaciones entre anillos semiartinianos y la teoría de torsión de Goldie, Anales del Instituto de Matemáticas, U.N.A.M. 23 (1983), 41-54.
- 12. RAGGI F. AND RÍOS J., Proper classes associated to torsion theories, Comm. in Algebra 15 (1987), 575-588.
- 13. RAGGI F. AND RÍOS J., Sublattices of *R*-tors associated to proper classes,

Comm. in Algebra 15 (1987), 555-574.

- 14. RINCÓN-MEJÍA H., Un estudio de subretículas de R-tors para anillos perfectos, Tesis, Facultad de Ciencias Universidad Nacional Autónoma de México (1986).
- 15. STENSTROM B., Rings of Quotients, "Springer Verlag," 1975.
- 16. TEPLY M., Homological dimension and splitting torsion theories, Pacific Journal of Mathematics 34 (1970), 193-205.
- 17. TEPLY M., Codivisible and projective covers, Communications in Algebra 1 (1974), 23-38.

Departamento de Matemáticas de la Facultad de Ciencias de la Universidad Nacional Autónoma de México. Ciudad Universitaria, D.F., C.P. 04510 MEXICO

Rebut el 12 de gener de 1988