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Abstract

THE LATTICE R-tors FOR PERFECT RINGS

HUGO ALBERTO RINCÓN-MEJÍA

We define ^'F in R-tors by r ^'F a iff the class of r-codivisible modules
coincides with the class of o-codivisible modules . We prove that if R is
left perfect ring (resp . semiperfect ring then every [r1 p E R-tors/-F
(resp . [X]F and KIF) is a complete sublattice of R-tors . We describe the
largest element in [r] as X(Rad R/t,(Rad R)) and the least element of [r]
as 1(t r(RadR» .

Using these results we give a necessary and sufficient condition for the
central splitting of Goldman torsion theory when R is semiperfect.
We prove that for a QF ring R the least element of [X]^'F is the Goldie

torsion theory. This can be used to prove that for a QF ring ^'F and -T
are equal, where r ^'T o iff the class of r-injective modules coincides with
the class of v-injective modules .

0. Introduction

Throughout this work R will denote an associative unital ring ; R-tors will
denote the complete brouwerian lattice of all left hereditary torsion theories ; X
(resp . 1) will denote the largest (resp . the smallest) element of R-tors .

If {Ma}aEx is a family of left R-modules, then X({Ma }) will denote the
largest torsion theory respect to which every Ma is torsion free . J({M« })
will denote the smallest torsion theory respect to which every Ma is torsion .
We consider a torsion theory r as an ordered pair r = (T r , F r ), where T,.
denotes the class of r-torsion modules, and Fr denotes the class of r-torsion
free modules . Also remember that the order in R-tors is given by : r < o, iff
Tr C To .
Remember that a left module M is r-codivisible iff ExtR(M,K) = (0) VK E

F r . Let us denote P r the class of r-codivisible modules . We define ^'F in R-
tors by r ^'F a iff Pr = Po . Obviously this is an equivalence relation in R-tors .
Our aim in this work is to study R-tors by looking at the equivalence classes
[r] E R-tors/-F . In case R is a left perfect ring, these equivalence classes are
complete sublattices of R-tors . So, in [r] there must exist a largest element
(resp . a smallest element) which will be denote r* (resp . r* ) . We describe
r* = x(Rad Rltr (Rad R)) (resp . r* = J(tr(Rad R))), where Rad R denotes the
Jacobson radical of R.
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We also obtain some generalizations of some results of Bland (see 3) .
We also prove that for a QF-ring R the smallest element of [X]-F (which

exists, since R is left perfect) is Goldie's torsion theory . In fact, it can be
proved that for a QF-ring R the equivalente relations ^'F and -T coincide,

where we define T -T Q iff the class of r-injective modules coincides with the
class of Q-injective modules .
The partition R-tors/^'T has been studied by Raggi & Ríos (see [12] and

[131) .
We will denote by ST the class of all short exact sequences 0 --> K ->

L -r M --> 0 in R-mod such that K E F T , where r E R-tors .
We will denote PT the class of R-modules that are projective with respect to

each sequence in S, .
We will denote AT the proper class of short exact sequences in R-mod which

make projective each element of Pr .
We should observe that RP is projective with respect to each short exact

sequence in ST ~? P is projective with respect to each element of A, .
Remarks .

1) (Ohtake [10], Bican, Nemec, Kepka [2]) .

	

If T = (T, F) E R-tors and
0 --> h -> P ---) M -> 0 is a short exact sequence in R-mod such that P
is projective an K E T, then M E P T .

2) R-mod has enough A,-projectives (this means that VRM E R- mod
3 0 -) K --> P -> M ---) 0 E Ar with P projective with respect to A, .

3) Let RM E R-mod. Then: M E Pr <--~ M is a direct summand of a
module of the form P/T, where P is projective and T E TT .
We should observe that in the above remark we can replace "projective" by

"free" .

Definition 1 . (r-codivisible cover, Bland [3]) . An . .4 r -projective cover of
RM is an exact sequence 0 --, L --~ P

	

M-> 0, such that
i)LEFr .
ü) P is T-codivisible (¡ .e . .~4,-projective).
iii) i(L) is small in P (i(L) « (P) .

The faci of that r-codivisible cgvers are unique except for isomorphic copies
is a known result (3J .
We will denote by 0 -> KT(M) ---> P, (M) -r M -r 0 the T-codivisible

cover of M, when it exists, and by 0 --~ K(M) --~ P(M) 3 M -> 0 the
projective cover of M, when it exists .

Definition 2. We define ^'F in R-tors by : Q ^'F T iff AQ = Ar (or equiva-
lently, if P o = Pr, i.e . if the class of Q-codivisible modules coincides with ¡he
class of r-codivisible covers) .

The relation defined above is, obviously, an equivalente relation . Under



appropiate conditions the corresponding equivalence classes [T]-F, are complete
sublattices of R-tors . This is the case when R is a left perfect ring .

Theorem 1. If 0 --> K,(M) -) P,(M) -> M --> 0 is a T-codivisible
cover of M and if 0 ) K(M) )P(M) -~ M 0 is a projective cover
of M, then ker(P(M) )PT(M)) is T-torsion.

Lemma 1. Let 0 ) K ) P)M) 0 be a projective cover. Let us
Suppose T ^'F v, then K E Tr	K E To .

Proof. Straightforward .

Theorem 2 . Suppose that 0 --) K(M) -) P(M) ) M -> 0 is a
projective cover. Then 0 ) K(M)/tr(K(M)) ) P(M)/t,(K(M))
M)0 (*) is a a-codivisible cover Va E [T]F .

Proof. Direct from the definitions .
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Note that the above theorem implies that if 0 ) K,(M) ) P(M) )
M ) 0 is a T-codivisible cover, then K,(M) E Fvj,,, s. This is because
K,(M) E n[TIF,, = Fv[T]o .

Let us also note that the following implications hold for u, r E R-tors :

T<Q~FTDF,==> A,DA,~P,CP,

Remarks. For a proper class A we have:
i) A = Af -4~ A is the class of all short exact sequences in R-mod 4==>

PA = P{ .
Also note that PI, the class of J-codivisible modules is precisely the class

of all projective modules.
ii).,4=A¿ S,4={0)0)M)M 0 :MER-mod}4=>

R-mod = PA, the class of all projective modules.
Also note Ax is the class of all splitting short exact sequences in R-mod.
iii) -r E R-tors faithful ==> r E [1] : for if P is T-codivisible, then P is

a direct summand of a module R(X)/T, where T is a T-torsion submodule of
R(X) , which is in FT (being R in Fr, by hypothesis) . Then T = 0, and hence
P is a direct summand of a free module ; Le ., P is projective . So P{ = P, and
we conclude by using i) .

iv) If R is a domain (e.g . Z) every X qÉ T E R-tors is faithful and hence
is in KIF . So R-tors/^'F has only the two elements [X]F = {X}, and [fF =
R-tors\{X} .

Moreover [~] has a maximal member: X(R) = TL, Lambek's torsion theory.
v) For a stable torsion theory T the following statements are equivalent :
a) R - tr(R) x S, where S is semisimple artinian .
b) T E [X]F-
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to :

c) `dN E FT , N is an injective semisimple module .
Proof. a)

	

b) (See [111), b) t=> c) follows from Theorem 3.

vi) For a left semiartinian ring are equivalent
a) -rG E [X] ( TG denotes Goldie's torsion theory) .
b) R = TG(R) x S, where S is semisimple artinian .
c) rG centrally splits .
d) To is stable . Here -ro denotes Goldman's torsion theory ; Le ., the

torsion theory generated by the projective semisimple modules.
Proof- b)

	

c)

	

d) (See [111) . a)~! b) follows from Remark v) .

vi¡) If R is right perfect ring, then the above conditions are also equivalent

e) soc p (Rad R) = 0 (See Theorem 18) . Here socp denotes the projective
socle, and Rad R denotes the Jacobson radical .

The following is an easy generalization of a Theorem of Bland, in our context .

Theorem 3. Are equivalent for T E R-tors :
i) z E [x] .
ü) PT = Px = R-mod .
iii) AT = class of all splitting short exact sequences .
iv) VRN E FT, N is semisimple and injective .
v) The ring R/t,(R) is semisimple .
vi) All cyclic modules are ,,4 r -projective .

(Bland in (3) shows the equivalente of ii), iv) and v), the equivalente of ¡he
others follows direcily from the definitions) .

Corollary 1. R is semisimple

	

R-tors/^'F = {[l;]}(!~ 1 ^'F X) .

Proof. ==> ) If R is semisimple, then dT E R-tors, R/tr(R) is semisimple ; so
by v) ==> i) in Theorem 3 we get T E [X]F . Hence [1] = [X] = R-tors .
~ ) If R-tors/^'F = {[1]} . In particular 1 E [X] = [l;] . So by using i) ~? iv)

in the above theorem, we get N is semisimple b'RN E F{ (but F{ = R-mod) .
Then R is semisimple .

From the preceeding coróllary, we obtain immediately the following result .

Corollary 2 . (Bland ¡3J, Corollary 3 ./, proves the "if" par¡) . R is semisim-
ple <===> 3T E [X], faithful .

Proof: ===> ) If R is semisimple, then 1 has the required properties .
If T E [X] is faithful, then we get that -r E [l;] (see Rmark iii), after

Theorem 2) . Thus T E [¿] n [X] . Hence [1] = [X] .



Theorem 4 . Let T be an element of R-tors . Then [ 7- IF is elosed under finite
meets.

Proof.. Let us suppose that -rl -F r2 -F r . By the observation after
Theorem 2 we have that A rl C ,,4,,,\, (ri A T2 < r2 ) . Now, let us consider the
diagram

0 -~ L~M

	

3 MIL:0

with L E FT1 ,,,, S E P rl , and remember that S is A,-projective iff S is
projective with respect to each exact sequence of the form 0 ---> L ---+ M--~
N --> 0 with L E F, Let us extend the above diagram to

L

LATTICE R-TORS

	

21

S

S

0

	

) t2(L) ----+ M

	

% M/t2 (L)

	

) 0

where 7r is the natural epimorphism . Now MIt2(L) E Fr2 ; so 0 ---" ker7r -r
MIt2(L) n-r MIL ---3 0 E Are = Al,. Inasmuch as S is in P, = Pr2 , we
have that 30 : S --> MIt2(L), such that 7r o /3 = a . Now let us observe that
tl(t2(L)) E Trl n Tr2 = Trlnr2 .

But in the other hand, tl (t 2 (L)) C_ L E F Tl .T2 ; hence t l (t 2 (L)) = 0. So
t2 (L) E F rl , which implies that 0 --> t2(L) --r M -) Mlt2(L) ---> 0 belongs
to Ar1 . Hence 3 -y : S --> M such that p o -y = /i ; so the following diagram is
commutative :

But then y o p = 7r o p o y = 7r o fl = a .

	

Hence S E P T, A,,, and then
P rl C_ Pr,nr2 , and from this we get Ar,Ar2 C .,4r� (see the observation after
Theorem 2) .

Hence Ar,nr2 = A,,, and so T1 n r2 ^'F r1 -F r.

If the ring R is left perfect we can prove much more .
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Theorem 5. If R is a left perfect ring, then [r] is closed under taking arbi-
trary meets, * E R-tors .

Proof: Let P' E PT and let

K' -; P(N)

8
P(N) :: P,(N)

P'

0 :L- 1-, M -'--) N )0
be a diagram with L E FA [,] . Let 0 -) K(N) -) P(N) -) N -) 0 and
0 -) K, (N) -) P,(N) -) N -) 0 be a projective and r-codivisible covers,
respectively. Then 3 a : P' -) PT (N) such that

in the first square, we get that 30 : P,(N) ---) M such
So we have that in the diagram

commutes (because P' is r-codivisible and 0 -) K, (N) ) P, (N)

	

3 N--)
0 E A,.), where 7r' is the epimorphism provided by the projectivity of P(N),
and u is the morpHsm obtained from the universal property of kernels .

Moreover, by Theorem 1, we have that K' E T,,, Va E [-r] . Hence we get
K' E TA, ~,, . As L E FA,,,,, we get u = 0 . But then, given the commutativity

that Q o s = 7r' .

the square and the top triangle commute ; Le., ir o s = p o 7r' = p o /3 o s . But as
s is epi, we have that 7r = p o /i ; Le . the bottom triangle is also commutative .

Summarizing, we have the following commutative diagram

from which we get that P E PA,,, . Hence P r C P"IT, and then
AA,,, C .,4r. But

A[T] < -r ==> A"IT1 C ,,4T (observation after Theorem 2) . Hence A,,~, = Ar
and so Aj,]u ^'F -r .



So we have proved A [T] E [T] and this is suf~cient for seeing that [T] is closed
taking under arbitrary meets ({Ta} C_ [T] ==> n[T] < A{Tv.} < TQ and hence
Ar« C AA(ra} C AA[r] = A lj- 9

	

-

	

_

Theorem 6 . If R is a lef perfect ring, then [T] is closed under arbitrary
joins .

Proof. It's enough to prove that V[T] E [T] . Let

where the row is a T-codivisible cover ofM and where P' is a V[T]-codivisible
module . By Theorem 2 we have that L E F,,Vo, E [T] ; hence L E n[,1Fo =
Fv [r j . So, (*) belongs to Av[rj, and consequently 3« : P' -> Pr such that
po ix = a. Hence P' E Pr and so Pv[rl C Pr, which is equivalent to saying that
Ar C A,[r] .
On the other hand, T < V[T]

	

Ar D A,[rj . Then A r = Av[r] and so
V[T] E [T] .

P'

0

	

. LT ----------- Pr-
p

	

M - . 0

From the two preceeding theorems we get at once:

Theorem 8. If R is a lef perfect ring, then:
i) T* = x {K,(M)IO --> K,(M) ->

an A,-codivisible cover, M E R-mod } .
ü) T* = j{K(P.,(M))IO --) K(pr(M))

is a projective cover of P,(M), whereP,(M)
M E R-mod} .

Proof. First, let us observe that the sequence

LATTICE R-TORS
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Theorem 7. R Lef perfect ==> [T] is a complete sublattice of R-iors, VT E
R-tors .

By the preceeding theorem, we know that ifR is a left perfect ring, then [T] is
closed under taking arbitrary joins and meets . Consequently, in [T] must exist
a largest and a smallest element, which will be denoted T* and T* , respectively.
The following theorem gives us a useful description of each of them .

0 -> K(P'(M)) -> P(M) --> P'(M) -i 0

P,(M) -> M -> 0 is

-, P(M) ---, P'(M) -> 0
is a T-codivisible cover of M,
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in ii) comes from the diagram

0

0 K,(M)

K,(M)

0

K(PT(M))

But if P E PX{K,(M)lMER-mod} and if the diagram

P(M) : M; 0

0

where the rows and the column are exact, the rows are the projective and the
,r-codivisible covers of M, respectively, and the R-morphism P(M) --> P, (M)
is given by the projectivity of P(M).

i) By the note after Theorem 2, we have that K,(M) E F o Vo, E [r] ; so
X{K,(M)IM E R-mod} >_ r* . Hence X{KT(M)IM E R-mod} >_ r* . It would
be enough to see that X{KT(M)IM E R-mod} E [T] and for this it would be
enough to see that PX{K,(M)lMER-mod} C PT*-

P

0

	

K -1-, L

	

n
.1 M ~ 0

is such that K E F,-, then by taking a T-codivisible cover of M we get the
diagram

w
0

	

K

	

--~-+

	

L

	

M-

	

-~ 0

0

Since KT(M) E FX{K,(M)lMER-mod}, 3ú : P -~ P,(M) such that 7r o ix = a.
Inasmuch as K E FT * C F T , 3 ax : PT (M) -> L such that p o a = 7r, hence



So, let P E P T» and

is commutative, too.
Now,
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p o (ix o ix) = a and then P E P,.» .

	

So Px{K,(M)1MER-mod} C- P,. . Hence
r* <_ X{KT(M)IM E R-mod} and hence r* = X{KT (M)IM E R-mod} .

ii) By Lemma 1, we have that K(PT(M» E TA hence j{K(P,(M)IM E
R-mod} < r* = A[-r] .
To get the converse inclusion, it is enough to see that

Pr» C P¿(K(P,(M)1MER-mod} "

0

	

) K

	

) L
be a diagram such that K E FI{K(P,(M)1MER-mod} . Let us take
0 ) K(PT(M)) ---) P(M) -> P, (M) ) 0 as in the statement . Then
KT (PT(M)) E T^[Tp In the diagram

0

	

) K,-(Pr(M))

	

: P(M)

	

P,(M)

	

0

P(M) ---:: 'r(M)

L

P

M ; 0

1
where Tr is given by projectivity of P(M), and ,Q is the restriction of fr to
K,(PT(M)), we have that /l = 0, inasmuch K E Ff{K(P,(M)1MER-mod} . Then,
by the universal property of cokernels, we have that 3 P : PT(M): --+ L such
that

commutes . But as P(M) --~ P,(M) is epic, we have that

PI(M)
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with P E P,. and KT (M) E Fo (Va E [r]) imply that K,(M) E F,., and so
3-y : P -; PT (M) such that r oy = a. But then

commutes .

P

Hence P E PI{K(P* (M))IMER-mod} Thus, Pr . C P¿(K(P,(M))IMER-mod} . SO
we get T* = 1{K(PT (M))1M E R-mod}.
For the particular cases when T E {1;, x} and when the ring R is left perfect,

we give descriptions of r* and r* by using the Jacobson radical of R, which we
will extend to arbitrary torsion theories and for semiperfect rings .

Theorem 9. For left perfect R we have that
i) e* = x(J(R))
ii) x* = «J(R)),

where J(R) denotes the Jacobson radical ofR.

Proof. i) By Theorem 8,

* = x{Kj(M) 10 --~ K,(M) -> P,(M) -) M --) 0
is a J-codivisible cover, M E R-mod}

= x{K(M) 10 --; K(M) -> P(M) -+ M --> 0
is a projective cover, M E R-mod }

= x{ K 1 K « P and RP is projective } .

As R is left perfect, Rad(P) = ,7(R)P (see Anderson-Fuller, [1], Remark
28.5.(3)) ; so K « P e~ K C_ ,7(R)P C_ J(R)R(X) for some set X. Hence
K « P ~ 3K», J(R)(X) e~ K E Fx(J(R)) . Thus 1* > x(J(R)) .
On the other hand, ,%(R) K R so we have that 0 -> ,7(R) --> R

RIJ(R) ) 0 is a projective cover (= J-codivisible cover) . Therefore ,7(R) E
Ff. (since J(R) is one of the modules cogenerating the torsion theory j*, see the
above description of 1* ) . Hence 1* >_ X(J(R)) . And therefore

	

* = x(,7(R)) .
ü)

x* = 1 ~ Kx(Px(M))

0 - ) Kx(Px(M)) -' P(M) -> Px(M) ---, 0

P(M) -; Px(M)
is induced by

	

1,.

	

1 .1
M --> M

where 7r and 7r' are projective and
r-codivisible cover, respectively.
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Now 0 --> Kx(M) --> Px(M) -> M -) 0 is a X-codivisible cover but
0 -> 0 -> M -> M --~ 0 is another (every left R-module is X-codivisible) .
Thus we have that

0

	

+ Kx(Px(M))

	

' P(M) ; Px(M)

	

) 0

is a projective cover of RM. We have then that

M

X* = I{ K I K « P, RP

	

projective } .

Again, K « P, RP projective ~! K C_ J(R)(X) for some set X. Therefore
K « P, Pprojective ==:> K E l;(,7(R)) . Hence X* < «,7(R)) .
On the other hand, 0 -> ,J(R) -> R -> R1,7(R) -> 0 is a projective co-

ver . Therefore ,7(R) E T¿{ K>,PX (M)IMER-mod } (is one of the generators of the

above torsion theory) . Therefore «,7(R)) < X* and hence X* = «J(R)).

We give now more "concrete" descriptions of r* and r* , in case R is left
perfect .

Theorem 10. If R,is left perfect, then
i) T* = X(J(R)ltr(J(R)))

Where ,7(R) denotes ¡he Jacobson>s radical of R .

Proof: i) 0 -> 9(R)/t,(,7(R)) -) R/tr(,7(R)) -> R1,7(R) -) 0 is a
projective cover, since : a) ,7(R)/tr(,7(R)) « R/tr(J(R)), b) R/tr (J(R)) is
T-codivisible (by Remark 3, before Definition 1) and c) j(R)/tr(,7(R)) E F r .
Thus, by the note after Theorem 2, ,7(R)1t,(J(R)) E F,. ; therefore r , < r* <
X(J(R)lt,(J(R))) .

If T* x X(J(R)ltr(,7(R))) then 30 7É RM E Tx(.7(R)/t,(J(R») n F,. .
(30 :~ M that is X(,7(R)/t,(,f (R))-torsion but not r*-torsion, and by taking
M/t,. (M) if it would be necessary, we can suppose, without loss generality,
that M E F,.) .
By Theorem 8, ,r* = X{K,(M) I M E R-mod }, so if M E F,., then M is

cogenerated by { E(KT (M) I M E R-mod } (Le ., 3M»-+ IINER-modE(Kr(N))-
Therefore, t/0 x E M, 3fz : M -> E(K,(N)) such that f.,(x) :~ 0
([15] . Prop.VI.3.39) . Therefore 0 :~ fz(x) E E(K,(N)) . Because KT (N) <,
E(KT (N)) we have that f,(M) n K,(N) :~ 0 . Hence 30 :~ y E M such that
0 ~ f.,: (y) E K, (N) . Consequently, Ry .(fsIRY) K,(N) is well defined .
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Now,thanks to Theorem 2, we have that the following diagram is commuta-
tive :

(Here we assume that 0 -) K(N) ) P(N)

	

% N -> 0 is a projective
cover of N). Thus K(N) « P(N) and then we have that K(N) < j(P(N)) =
9(R)P(N) < ,j(R)R( Z) = J(R)(Z) for some set Z (j(P(N)) = j(R)P(N)
since P(N) is projective) .

Therefore we have the following situation :

Ry

a

K, (N)

	

K(N)lt,(K(N))

	

J(R)Mlt,(K(N))

	

%~

As we that HOMR(M�7(R)ft,(,7(R))) = 0, we also have that
HOMR(Ry�7(R)lt,(J(R))) = 0 which implies that 1oa(fz (y)) E t,(,7(R(Z))) .
Therefore 31 E .P, such that I i o o«,;(y» = 0 . But as i is a monomorphism,
then I (f,: (y» = 0 ; hence 0 :~ f=(y) E t,(K,(N» = 0, which is a contradiction
(K,(N) = K(N)lt,(K(N)) E F,.) . Therefore -r* = X(,7(R)ft,(,7(R)) (here
.F, denotes the idempotent filter corresponding to ~r) .

ii) If we consider the diagram

0

	

K,(N)

	

P,(N)

	

--+ N

	

r 0

0 ; K(N)ft,(N) - P(N)ft,(N) : N; 0

J(R)Mlt,(J(R)(Z» = h(R)ltr(.7(R))l(Z) .

t,(J(R)) - t,(,7(R))	0

0

	

' 9(R)ft,(J(R))

	

Rft,(J(R)) -

	

) R1,7(R) : 0(2)

- RIJ(R)

	

) 0(1)



the fact that (1) and (2) are projective and r-codivisible covers, respectively,
tells us that ker 7r in Column (3) is one of the modules generating the torsion
theory r* (see Theorem 8) . Therefore t,(J(R)) E T,. and J(t,(j(R))) < r* .
Now, if K(P,(M)) is one of the generators of r* ; Le ., if 0 --> K(P,(M)) ->

P(M) -) P,(M) -> 0 can be extended to a diagram

0 % K(P,(M)) - K(M) -) K, (M)

0 ) K(P,(M)) - P(M) : PT (M)

	

0

Proof. Straightforward .
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where the two last rows are projective and r-codivisible covers, respectively,
then we have that K(P,(M)) « K(M) « P(M).
By Theorem 2, K(P,(M)) = t,(K(M)) ; therefore K(P,(M)) < Rad(P(M))

_ ,7(R)P(M)

	

C
) .7(R)R(X) = RadR(X) and moreover K(P,(M))

t,(J(R)(X)) = (tr(,7(R)))(X) . Therefore K(P,(M)) E Tj(tr(9(R))) dM E
R-mod.

	

Hence r* = j{ K(P,(M)) I M E R-mod } <_ f(t,(J(R))) and so
r* = J(tT(J(R))) . E

Corollary 3. If R is a left perfect ring, then r < v ===> r* < Q* .

Theorem 10 is extended in [14] to the case of local rings . In that situation
each [r] E R-tors/^'F is closed under taking joins and meets and moreover
the biggest element in [7-1, ,r* is given by r* = X(,7(R)/t,(J(R))) and also
r* = J(tT(J(R))) .

However, a ring may have the property of having each [Q]F closed under
arbitrary joins and meets without being semiperfect . Moreover, the elements
Q* and o* are not given by X(,7(R)/t,(J(R))) and by j(t,(J(R))), in general .
As we see in the following examples .
Examples . In view of Remark 3 before Definition 1, is easy to see that if R

is a domain, then R-tors admits the following partition :

i[j] = [X(R)I,

	

[X] = {X}}-
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It is clear that each equivalence class in R-tors/^'F admits a largest and a
least element .

In particular this is the situation for Z, the ring of integers, which is not a
perfect ring .

Moreover, let us note that for Z, in spite of the fact that each element in
R-tors/^'F has a largest and a least element, they are not given as in Theorem
10 . Explicity, ,%(Z) = 0, but we have that [X] = {X}, and so X* = X = X*.
Nevertheless X* :~ E(tx(J(Z))) = «tx (0)) = t;(0) = 1 .
On the other hand [1] = [TC = TL] and 1* = TL, but 1* :~ X(j(Z)/tj(J(Z)) _

X(0/0) = X(0) = X (here TG denotes Goldie's torsion theory and TL denotes
Lambek's torsion theory) .

Lemma 2. The following statements are equivalent for a left perfect ring :
i) 1* V T = T * VT E R-tors .

{ü) [T] -) [1] is a lattice monomorphism with left inverse [1] --) [T] .
A o.

üi) a < T ==> [T] -> [°] is a lattice monomorphism vith left inverse
T -

iv)Q<T==¿> 'rVo*=T* .
v) Vu,T E R-tors

	

T V a* = (T V u)* = T * V a .

Proof. Straightforward .

Theorem 11. If R is a left perfect ring, all of whose torsion free classes F T .
are also torsion classes (i.e. each FT is closed under taking factors), then R
enjoys ¡he properties of Lemma 2 .

Proof- We will prove that 1* V T = T*, * E R-tors .

	

As t* _< T'*, we
have that 1* V T <_ T* (by Theorem 9 we have that 1* = X(RadR) ; T* _
X(Rad R/t,(Rad R)) .

	

The hypothesis that Fr is closed under factors
RadR/tr(RadR) E F I . ; hence T * > 1* ) .

It remains to prove that 1* V T cannot be different from T* . If it was, then
30 qÉ M E TT. n F e . v, = TT. n FI. n Fr . And as T* = X(Rad R/tr(Rad R))
(Theorem 10) we have that HOMR(M, E(Rad R/t,(Rad R)) = 0

	

(*)
But as M E F¿. and 1* = X(Rad R) (Theorem 9) we have that 3ú :M»->

(E(Rad R))
X , monomorphism for some set X. Hence 3 x E X such that

pxu(M) q£ 0, where p,,: (E(Rad R))X -> E(Rad R) is the canonical projec-
tion . Hence, in view of (*), we have that u(M) C (t,(E(Rad R»)' . For if this
were not true, 3y E X such that py (u(M)) 91- t,(E(Rad R)) and hence

M NU) E(Rad R)/tr (E(Rad R))

is not the zero morphism . But E(RadR)/tr (E(RadR) E F T . and M E TT.
and so HOMR(M, E(Rad R)/t,(E(Rad R)) = 0 . -This is a contradiction .
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Now

as u(M) C (t,(E(RadRf

X, we

have that

px(u(m»

C t,(E(RadR))

E
T,, but

being also a factor of M

E F,, it

belongs to F,

.

Hence 0

:~

u(m)

E
T, n F,. This

is a contradiction

.

Hence

1* V

-r =

,r* .
The

rings such that every torsion free class is closed under factors have been

charaterized

by Teply [16] and by Bronowitz and Teply [5]

.

We will call these

rings

BT-rings

.
It

is clear that for a BT-ring we have that

:
'r

<

u

	

t,

(Rad R) < t, (Rad R)

Rad

R/t,(Rad R) -» Rad R/t

o(Rad

R)

Rad

R/t

s(Rad

R)

E Fx(Rad

R/t,(Rad R)) =

F, "
[u*

= X(Rad R/t,(Rad R) > r*]

r * > Q*.

Moreover,

for a BT-ring, we have that

1* V T = ,r*,

since it is cleax from the

preceeding

that

1* V T <_ -r* .

And we would have, if the above inequality was

estrict,

that F,

. 5 Fj . v, = F I . n F, .
Hence 30 :~ M E (F¿ . n F,)\F,., and

we can assume (changing

M by
t,.

(M)

7É 0

if it was necessary), that

M E T,. n FI . n F, (t, . (M) 7É 0 because
M 1

F,

.) .
Inasmuch

as

M E F¿., 30 qÉ f E HOMR(M,

E(Rad R))

;

hence

30 :~

m

E M
such

that HOMR(Rm,RadR)

qÉ 0. But

as M

E T,., we have

that

HoraR(Rm,

Rad R/t,(Rad R)) = 0 (Rm

C_ M

E T,

.) .

So, if we take 0 y' g E

HOMR(Rm,

Rad R), then we would have that 0

:~

g(Rm)

C t,(Rad

R) E T,

.
But

on the other hand, g(Rm) is a factor of Rm

C_ M

E

F � and

we have

F,
closed

under taking factors by hypothesis

.

So we get that 0

:~

g(Rm) E

T,nF,;
which

is a contradiction

.

So, we conclude that

1* V

r = r*

.
So,

for a BT-ring we have that Lemma 2 applies to give a nice partition

of

R-tors via the equivalente relation ^'F, because the equivalente class [J]F

contains

an isomorphic copy or every other [r]F E R-tors/^'F

.

So, we will have

R-tors

completely determined as a lattice if we know the lattice structure of

the

sublattice [I]

F .

Theorem

12

.

(Bland (3, Theorem ,2

.81) . If R

is a semiperfect ring, then

T -F X~

RadR E T,

.

Bland's

theorem is equivalent to the following result

.

Theorem 13. If R

is a semiperfect ring, then [X] contains a smallest ele-

meni

X

*

= J(Rad R)

.

Proof..

==) Since 0 --> Rad R -) R -) R/ RadR -l 0 is a projective

cover

with Rad R E Tx = R-mod, we have, using Bland's Theorem, that

(Rad

R) E [X]F

.

Therefore j(Rad R) is the least element of [X]F

.
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-4-) Let us suppose that X, =

	

(Rad R).

	

Now we have, for r E R-tors,
T E [X]

	

T > 1(Rad R)

	

Rad R E T T . 9

The following two results can be proved (Rincón-Mejía [14]) .

Theorem 14. If R is a semiperfect ring, then 1* = X(RadR), where J* . is
the biggest element of [J]F .

Theorem 15 . Rincón-Mejía [141.

If R is a local ring, then V[r] E R-tors/-F, we have that [T]F has a biggest
element, r*, given by r* = X(RadR/t,(RadR)), and a smallest element given
by r, = «tr (Rad R)) .

Theorem 16. Le¡ R be a semiperfect ring, then Goldman's torsion theory
centrally splits t~ socp (Rad R) = 0.

(Remember that M is a Goldman torsion module iff M = socp(M), where
socp(M), where socp(M) denotes the projective socle of M) .

Proof.. ~) If soc p (Rad R) = (0), then every projective simple module RS is
injective : for if RS is a simple projective module, then S E T{(Rad R) UF£(Rad R),
since S is simple . But S E T£(Rad R) ==> 3 0 :~ f : Rad R -> E(S) . As
S <, E(S), we have that S < im f, so we have the diagram

Rad R

fh-1 (S)
f-1 (S) ; S

where f 1f-1(S) is an epimorphism with codomain being a projective module .
Therefore S is isomorphic to a submodule of f-1(S), which is a submodule of
the projective socle of Rad R; this is contradiction .
Thus we have, that if RS is a projective simple module, then S E F{(Rad R)

But (Rad R) = X� by Bland's Theorem, from which we get that if M is
a direct sum of projective simple modules, then M E FX , and hence M is
injective (by Theorem 3) .
Thus we have that dN E R-mod, socp(N) is an injective submodule of N and

hence it is also a direct summand of N; Le., Goldman's torsion theory splits . In
particular R = socp(R)®RK. But now, since R is semiperfect, R is semiartinian
and therefore soc(R) < e R . In particular soc(K) <, K . Let us note that every
left simple submodule of K is singular (since a left simple module is either
singular or projective, but socp(K) = socp (R) fl K = 0)) . Thus we have that
soc(K) is a Goldie's torsion-module . Hence K is a Goldie's torsion-module,
too (Goldie's torsion theory is closed under taking essential extentions) . Thus,
K < tG(R) = tG(socp (R)) ® tG(K), but each simple summand of socp (R) is
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non singular (being projective) . So, K = tG(R) and so we have that K is
a bilateral ideal of R. As a result, R = socp(R) ® K (ring direct sum) ; Le .,
Goldman's torsion theory centrally splits .
==> ) If socp(Rad R) 7É 0 then 0 -> socp (R) -~ R ---~ R/ socp(R) -~ 0

does not split . For if it split, then taking a simple submodule S of Rad R we
have that the monomorphisms S

	

C ) socp(Rad R), socp(Rad R)

	

C ) socp (R)

and socp(R)

	

C- 3 R are splitting ; so its composition also splits . So we would
have that R = SED K, where RK is a maximal ideal of R, but this is impossible
(S <_ Rad R <_ K ==> S n K = S Y 0) . Hence Goldman's torsion theory does
not split, and a fortiori, does not centrally split .

Corollary 4. If R is a commutatíve perfect ring, then Goldman's torsion
theory centrally splits .

Proof: Raggi & Ríos ([17], Corolario 2.9) have proved in the general situation
that socp(M) = socp (R)M VM E R-mod. In our particular case we have that
socp(Rad R) = socp (R) Rad R = 0, since the Jacobson radical annihilates every
simple module.

We should note that the preceeding proof does not apply for non commutative
right perfect rings, because socp(Rad R) is not necessarily a right semisimple
module .
From Theorem 3.1 of Raggi & Ríos [11], we have that for a right perfect

ring, Goldie's torsion theory rG is a TTF torsion theory generated by the left
singular simple modules and cogenerated by the left projective simple modules
(in fact the preceeding statements hold when R is left semiartinian ring) .

In the following theorem we will denote SI the class of the left injective simple
modules and by Sp the class of left projective simple modules .

Theorem 17. IfR is a right perfect ring satisfying socp(RadR) = (0), then
are equivalent :

i) X, = TG, where X, denotes the least element of [T] E R-tors/^'F .
ii) SI = Sp.

Proof. i)==> ii) Sp C SI follows from the part

	

) of the proof of Theorem
16 . Let RS be a left injective simple module . We want to prove that it is
projective .

	

Let us observe that since R is right perfect, then R/ RadR is
semisimple, so that RM is semisimple iíf Rad RM = 0. Therefore every direct
product of simple modules is semisimple . As a consequence, using Theorem
18, we get that X(S) belongs to [X]F . For ifM E FX(s), then 3m >-+ Sx for
some set X, and as SX is a semisimple module. But on the other hand, M is
injective, as it is isomorphic to a direct summand of the injective module SX .

Thus, X(S) E [X]F, and therefore X(S) > X, = rG . Then we have that S is
Goldie torsion free, which is cogenerated by the left projective simple modules .
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Hence 3 0 :~ f : S -+ U, where U is a left projective simple module . Since f
must he an isomorphism, we have that S is a projective module . Therefore
SI C Sp, and hence SI = Sp .

ii)==> i) Since TG is cogenerated by the left projective simple modules, we
have that every TG-torsion free module is semisimple, since it is (isomorphic to)
a submodule of a direct product of simple modules (this product is annihilated
by Rad R). But a -rG-torsion free module is an injective module, since it is a
direct summand of a product of projective simple modules, and such a product
is injective by the hypothesis that all projective simple modules are injective
modules . Since every TG-torsion free module is injective, TG E [X)F by Theorem
3 .

Analogously, if T C- [X]F let us take E an injective module which cogenerates
T; Le., T = X(E). By another use of Theorem 3, we get that E is semisimple .
Now, if RS is a simple submodule of E, it has to be injective . Because S is an
injective module, S is also projective by hypothesis . Therefore it is TG-torsion
free . So, E E FG, since E is a direct sum of TG-torsion free modules . But
E E F G ==:> T= X(E) > TG; so we have that TG = X= .

Corollary 5. If R is a quasifrobenius ring (QF-ring , then X= = rG .

Proof: R is right perfect and the class of projective modules coincides with
the class of injective modules . Moreover, socp(RadR) = 0 : if RS _< RadR
was a projective simple module, then as S had to be injective, S would be a
direct summand of R. Consequently, S = Re _< Rad R, with e = e2 , this is
impossible . We conclude using Theorem 17 .
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