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THE LATTICE R-tors FOR PERFECT RINGS

HUGO ALBERTO RINCON-MEIA

Abstract

We define ~F in R-tors by 7 ~g o iff the class of r-codivisible modules
coincides with the class of o-codivisible modules. We prove that if R is
left perfect ring (resp. semiperfect ring)} then every [r]p € R-tors/~f
{resp. [x]F and [£]f) is a complete sublattice of R-tors. We describe the
largest element in [r] as x{Red R/¢, {Rad R)) and the least element of [7]
as £(t; (Rad R)).

Using these results we give a necessary and sufficient condition for the
central splitting of Goldman torsion theory when R is semiperfect.

We prove that for a QF ring R the least element of [x]~p is the Goldie
torsion theory. This can be used to prove that for a QF ring ~F and ~7
are equal, where 7 ~ ¢ iff the class of r-injective modules coincides with
the class of o-injective modules.

0. Introduction

Throughout this work R will denote an associative unital ring; R-tors will
denote the complete brouwerian lattice of all left hereditary forsion theories; x
(resp. £) will denote the largest (resp. the smallest) element of R-tors.

If {Ma}oex is a family of left R-modules, then x{{M,}) will denote the
largest torsion theory respect to which every M, is torsion free. &({A,})
will denote the smallest torsion theory respect to which every M, is torsion.
We consider a torsion theory 7 as an ordered pair 7 = (T,,F;), where T,
denotes the class of 7-torsion modules, and F, denotes the class of r-torsion
free modules, Also remember that the order in R-tors is given by: 7 < ¢ iff
T, CT,.

Remember that a left module A is T-codivisible iff Extz(3,K) = (0) VK €
F.. Let us dencte P, the class of T-codivisible modules. We define ~¢ in R-
tors by 7 ~f ¢ iff P, = P,. Obviocusly this is an equivalence relation in E-tors.
Qur aim in this work is to study R-tors by looking at the equivalence classes
[7] € R-tors/~g¢. In case R is a left perfect ring, these equivalence classes are
complete sublattices of R-tors. So, in [r] there must exist a largest element
(resp. a smallest element) which will be denote t* {resp. 7,). We describe
r* = ¥{Rad R/t.(Rad R)) (resp. 7. = £{¢.{Rad R)}}}, where Rad R denotes the

Jacobson radical of R.
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We also obtain some generalizations of some results of Bland {see 3).

We also prove that for a QF-ring R the smallest element of [x]., {which
exists, since R is left perfect} is Goldie’s torsion theory. In fact, it can be
proved that for 2 @F-ring R the equivalence relations ~g and ~v coincide,
where we define 7 ~1 ¢ iff the class of r-injective modules coincides with the
class of o-injective modules,

The partition R-tors/~t1 has been studied by Raggi & Rios (see [12] and
[13])

We will denote by &, the class of all short exact sequences 0 — K —
L — M — 0in R-mod such that K € F,, where r € R-tors.

We will denote P, the class of R-modules that are projective with respect to
each sequence in S,.

We will denote A- the proper class of short exact sequences in B-mod which
make projective each element of P,.

We should observe that gP is projective with respect to each short exact
sequence in &; <=> P is projective with respect to each element of A,.

Remarks.

1) (Ohtake [10], Bican, Nemec, Kepka [2]). If r = (T,F) € R-tors and
0-— K — P — M — (s a short exact sequence in R-mod such that P
i1s projective an K € T, then M c P_.

2) R-mod has enough A,-projectives (this means that VaM € R — mod
30— K— P — M -— 0 A, with P projective with respect to A4,.

3} Let pM € R-mod. Then: M € P, <= M is a direct summand of a
module of the form P/T, where P is projective and T' € T,

We should observe that in the above remark we can replace “projective” by
“free”.

Definition 1. (r-codivisible cover, Bland [3]}). An A,-projective cover of
rM ts an exact sequence 0 — L — P — M — 0, such ihat
) LeF,.
i} P is 7-codivisible (i.e. A -projective).
tit) (L} i3 small in P (3 L) << (P).
The fact of that 7-codivisible covers are unigue except for isomorphic copies
is @ known result [8].
We will denote by 0 — K (M) — P (M) — M — 0 the 7-codivisible
cover of M, when it ezists, and by 0 —> K(M) — P(M) — M — { the
projective cover of M, when it ezista,

Definition 2. We define ~¢ in R-tors by: 0 ~p 7 iff A, = A, (or equiva-
Clently, f P, = P, f.e. if the class of o-codivisible modules coincides with the

class of v-codivisible covers).

The relation defined above is, obvicusly, an equivalence relation. Under



LATTICE R-TORS 19

appropiate conditions the corresponding equivalence classes [7]~,, are complete
sublattices of R-tors. This is the case when R is a left perfect ring.

Theorem 1. If 0 — K,(M) — P {M)} — M — 0 i3 & 7-codivistble
cover of M end if 0 — K{M) — P(M) — M — 0 is g projective cover
of M, then ker(P(M) — P.(M)) is T-torsion.

Lemma 1. Let 0 — K — P — M — 0 be a projective cover. Let us
suppose T ~p o, then K € T, «— K € T,.

Proof: Straightforward. W

Theorem 2. Suppose that 0 — K{(M) — P(M) — M — 0 is ¢
projective cover. Then 0 — K{(M)/t.(K(M)) — P(M)/t.(K(M}) —
M — 0 (*) i3 a o-codivisible cover Yo € {7)g.

Proof: Direct from the definitions. W

Note that the above theorem implies that if 0 — K (M) — P(M)} —
M — 0 is a 7-codivisible cover, then K, (M) € FV[r]"' This is because

I{,(M) € ﬂ[,]Fa = Fv[r]“’
Let us also note that the following implications hold for o, 7 € R-fors:

r<e+=>F,2F, = A, DA, =P, CP,.

Remarks. For a proper class A we have:

1) A = A <= A is the class of all short exact sequences in B-mod <=
P4 =Pe.

Also note that Pg, the class of £-codivisible modules is precisely the class
of all projective modules.

A=A e=> S4={0—0— M — M — 0: M € Rmod} <
R-med = P 4, the class of all projective modules.

Alse note A, is the class of all splitting short exact sequences in R-mod.

i) 7 € R-tors faithful = + € {¢]: for if P is r-codivisible, then P is
a direct summand of 2 module R(X}/T, where T is a T-torsion submodule of
R'X), which is in F, (being R in F,, by hypothesis). Then T = 0, and hence
P is a direct summmand of a free module; i.e., P is projective. So P, = P, and
we conclude by using i).

iv) If R is a domain {e.g. Z) every x # 7 € R-tors is faithful and hence
is in [£]r. So R-tors/~g has only the two elements [x]r = {x}, and [{}r =
R-tors\{x}.

Moreover [£] has a maximal member: x{R) = 71, Lambek’s torsion theory.

v} For a stable torsion theory 7 the following statements are equivalent:

a) R ¢ (R) x 5, where § is semisimple artinian.
b) TE {X]F'
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c) YN € F,, N is an injective semisimple module.
Proof: a) &= b) {See [11]}, b) <= ¢) follows from Theorem 3. R

vi) For a left semiartinian ring are equivalent
a} 7¢ € [x] ( ¢ denotes Goldie’s torsion theory).
b) R = 7¢{R) x 5, where § is semisimple artinian.
¢) T centrally splits.
d) 1o is stable. Here rp denotes Goldman’s torsion theory; ie., the
torsion theory generated by the projective semisimple modules.

Proof: b) &= ¢} <= d) (See [11]). a)<= b} follows from Remark v).
vii} If R is right perfect ring, then the above conditions are also equivalent
to:
e) socy{Rad R) = 0 {See Theorem 18). Here soc, denotes the projective .
socle, and Rad R denotes the Jacobson radical. M

The following is an easy generalization of a Theorem of Bland, in our context.

‘Theorem 3. Are equivalent for 7 € R-tors:
)7 end
i) P, =P, = R-mod.
1t} A; = class of all splitting shovrt ezact sequences.
w) YN € Fr, N i3 semisimple and injeclive.
v} The ing Rt {R} is semisimple.
vi) Al cyclic modules are A, -projective.
(Bland tn (3} shows the equivalence of i), iv) and v), the equivalence of the
others follows direcily from the definitions).

Corollary 1. R s semisimple <= R-tors/~g = {[{]H{<= & ~F x)-

Proof: = ) If R is semisimple, then ¥r € R-tors, R/t,{R) is semisimple; so
by v) = 1) in Theorem 3 we get 7 € [x|e. Hence [¢] = [x] = R-tors.

<= ) If R-tors/~¢ = {[£]}. In particular & € [x] = [£]. So by usingi) <= iv)
in the above theorem, we get N is semisimple VN € F¢ (but F¢ = R- mod)
Then R is semisimple. M

From the preceeding corollary, we obtain immediately the following result.

Corollary 2. (Bland (8], Corcllary §.4 proves the “if ” part). R is semisim-
ple <= 37 € [x], faithful

Proof: = ) If R is semisimple, then £ has the required properties.

<= ) If r € [x] is faithful, then we get that 7 € [¢] (see remark iii), after
Theorem 2). Thus 7 € [£] N [x]. Hence [£] = [x]. B
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Theorem 4. Lei T be an element of R-tors. Then [7]F is closed under finite
meets.

Proof: Let us suppose that 7y ~f T ~fp 7. By the observation after
Theorem 2 we have that A, C A, ar, (11 ATz € 72). Now, let us consider the
diagram

S
0 L » M M/L —— 0

with L € Frar,, S € P, and remember that S is Ar-projective iff § is
projective with respect to each exact sequence of the form ¢ — L — M —
N — 0 with L € F,. Let us extend the above diagram to

s
|

0 —— L v M —— M/L —— 0
[ [

0 —— (L) VM — L Mt (L) —— 0

where # is the natural epimorphism. Now AM/#,(L} € F,,; 500 — kerm —
Mt,(Ly =+ M/L — 0 € A;, = A,,. Inasmuch as S is in P, = P,,, we
have that 38: 5 — M /[t,(L), such that 7 0 8 = o. Now let us observe that
fl(t'z(L)) = Tr; NTr =Trar-

But in the other hand, t;(#2{L}} € L € F, ar; hence t1(tz(L}} = 0. So
to{L} € F,, which implies that 0 ~— #,{L} — M — M/t3(L} — 0 belongs
to A,,. Hence 3v: 5§ — M such that po v = F; so the following diagram is
commutative:

S o
0 —— L LN M/L —— 0
e
AN
0 —— to(L) v M —— M[ti(L) —— 0

But then yop = nopoy = woff = a. Hence S € P, ar,, and then
P., € P, an, and from this we get Arar, C A,,, (see the observation after
Theorem 2}.

Hence Arar, = Ar,,andso g Ang~vgr~p7. 1

If the ring R is left perfect we can prove much more.
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Theorem 5. If R is a lefl perfect ring, then 7] is closed under taking arbi-
trary meels, V7 € R-tors,

Proof: Let P! € P, and let
P-‘

la
i P

¢ + L + A y NV s
be a diagram with L € Fp(;). Let 0 — K{(N) — P(N} — N — 0 and
6 — K. (N) — P{N)-— N — 0 be a projective and 7-codivisible covers,
respectively. Then 3a: P' — P, {N) such that

K' —— P(N) — P.(N)

~
lilpl4

0 + L » M —— N

commutes (because P’ is 7-codivisible and 0 — K {N} — P {N) — N —
0 € A,), where 7' is the epimorphism provided by the projectivity of P(N),
and u is the morphism obtained from the universal property of kernels.

Moreover, by Theorem 1, we have that K' € T, Vo € [r]. Hence we get
K'e TAI*’]“’ As L e F"[r]d’ we get u = 0. But then, given the commutativity

in the first square, we get that 38: P.{N) — M such that fos = #'.
So we have that in the diagram

P(N) ——» P,(N)

E / E

P

M —— N

the square and the top triangle commute; i.e., ros = pow' =pofos. Butas
s is epi, we have that # = po §; i.e. the bottom triangle is also commutative.

Summarizing, we have the following commutative diagram

PAN) — P
/ Jm /
0 v L— M 2 N — 9
from which we get that P € P,\[ I Hence P, C P,\[ ] and then A,\[ ] C A,. But
AMrl<r = .AA[ . C A; {observation after Theorem 2). Hence AA[ q= A,
and $0 Ajjo ~F 7.
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So we have proved Afr] € [7] and this is sufficient for seeing that [7] is closed
taking under arbitrary meets ({7o} C [r] = Afr] € A{ro} < 7, and hence
Ar, CApfr CAp = Ar,) B

Theorem 6. If R is o lefi perfect ring, then [r] i35 closed under arbitrary
joins,

Proof: It’s enough to prove that Vir] € [r]. Let

* | e
0 v L, — P, M ' 0

where the row is a 7-codivisible cover of M and where P’ is a V[r]-codivisible
module. By Theorem 2 we have that L € F,,Vo € [r]; hence L € OrjFe =
Fyirp So, (*) belongs to Ay, and consequently 3a: P — P, such that
ped& = . Hence P/ € P, and so P.i-) € Pr, which is equivalent to saying that
Ar g AV{T]‘

On the other hand, 7 < V[r] <= A; 2 Ayj;y. Then A, = Aypy and so
V[r]€fr]. B

From the two preceeding theorems we get at once:

Theorem 7. R Lefi perfect = 7] is o complete sublattice of R-tors, V¥r €
R-tors.

By the preceeding theorem, we know that if R is a left perfect ring, then [r] is
closed under taking arbitrary joins and meets. Consequently, in [7] must exist
a largest and a smallest element, which will be denoted 7* and 7,, respectively.
The following theorem gives us a usefu] description of each of them.

Theorem 8. If R is a left perfeci ring, then:
)t = x KM — KAM) — PA(M) — M — 0 is
an A, -codivisible cover, M € R-mod } .
i) re = {{K{P(M)})|0 — K{P.(M)) — P(M) — PA{M) — 0
is @ projective cover of P.(M), where P.{M) is ¢ 7-codivisible cover of M,
M € R-med}.

Proof: First, let us observe that the sequence

0 — K(P-(M)) — P(M) — P{M)— 0
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in ii) comes from the diagram

0

!

K(P-(M))

l

0 —— K(M) —— P(M) v M » O

l ||

0 ——s K (M) —— P(M) — M . 0

l

0

where the rows and the column are exact, the rows are the projective and the
T-codivisible covers of M, respectively, and the R-morphism P{M} — P.{M)
is given by the projectivity of P(AL).

i) By the note after Theorem 2, we have that K,.(M) € F, Vo € |[r]; so
x{K{(M)|M € R-mod} 2 7*. Hence y{K.(M)|M € R-mod} > 7*. It would
be enough to see that x{R {M)|M € R-mod} € [r] and for this it would be
enough to see that Py, (arymermoay € Pre.

Butif P& Px{Kr(MHMER—mod} and if the diagram

P

o

0 y K — S L M . 0

is such that K € F,-, then by taking a 7-codivisible cover of M we get the
diagram

Since KT(M) € Fx{K,(MHMER—mod}’ 3a: P — P,-(M) such that 7oca = a.
Inasmuch as X € F,» CF,, 3a: P(M) — L such that po a = , hence
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po(&od) = a and then P € Pre. So Pk, (M)|MeRmod} & Pre. Hence
™ < x{K(M)|M € R-mod} and hence r* = x{K,(M)|M € R-mod}.

i1) By Lemma 1, we have that K{P.(M)) € TA[TIG' hence E{K{P{(M)|M ¢
R-mod} € 7. = Al7].

To get the converse inclusion, it is enough to see that

Pre C Perk(p, (M) MeER-mod}-
So, let P € P,o and
P
0 y K ~+ L » M + O

be a diagram such that K € Fex(p, (a)(MeRmod}- Let us take
0 — K(P{M)) — P(M) — P.(M) — 0 as in the statement. Then
K (P(M}) € Tpr). In the diagram

0 —— K (P{(M)}) —— P(M) —— P, (M) —— ¢

Js I h
0 —— K - £ — M —0
where T is given by projectivity of P(M), and 8 is the restriction of 7 fo
K (P(M)), we have that 8 = 0, inasmuch K € Fyx(p,(M)|McRmod}- LheEN,
by the universal property of cokernels, we have that 35: P.(M):— L such

that
P(M) ——» P.(M)

l*%

L
commutes. But as P(M)} — P.{M} is epic, we have that

P.(M)
Pt
L — M

is comimnutative, too.

Now,

0 — s K (M) —— P.(M) —— M , 0
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with P € P« and K. (M) € F, (Vo € [7]} imply that K,(M) € F,., and so
Jv: P — P (M) such that # oy = a. But then

P
v
B PAM)
Ny
commutes,

Hence P € Peix(p (M)} |seRmod} Thus, Pre C Perg(p (an)|MeR-mod}- SO
we get 7* = £{K (P, (M)}|M € R-mod). ®
For the particular cases when t € {£, x} and when the ring R is left perfect,

we give descriptions of 7* and 7, by using the Jacobson radical of R, which we
will extend to arbitrary torsion theories and for semiperfect rings.

Theorem 9. For left perfect R we have that

i} §* = x(J(R))

i) X. = {(T(R)), _
where J(R) denotes the Jacobson radical of R.

Proof: 1) By Theorem 8,

£ = X{KeM) |0 —+ Ke(M) — Pe(M) —» M — 0
is a £-codivisible cover, M € R-mod}
=x{K(M)|0 —+ K{M) — P{M) — M —¢
is a projective cover, M € R-mod }
= x{ K| K « P and gP is projective }.

As R is left perfect, Rad{P) = J(R)P {see Anderson-Fuller, [1], Remark
28.5.(3)); so K €« P <= K C J(R)P C J(R)R) for some set X. Hence
K « P <= 3Kw J(R)™) < K € Fy(zmy- Thus & 2 x(T(R)).

On the other hand, J(R) <« R so we have that 0 — J{R) — R —
R/J{R) — 0 is a projective cover (= £-codivisible cover). Therefore J(R) €
Fg+ (since J{R) is one of the modules cogenerating the torsion theory £*, see the
above description of £* }. Hence £* > x(J(R)). And therefore £* = x(J(R)).

i}
0-— K (Px(M)) — P(M} — P (M) — 0

P(M) — P(M)
X+ =€ Ky (P (M) isinducedby |« I
M —— M
where = and «’ are projective and
7-codivisible cover, respectively.
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Now 0 — Ky (M} — P (M} — M — 0 is a x-coedivisible cover but
0 — 0 — M — M — 0 is another {every left R-module is x-codivisible).
Thus we have that

0 —— K (P (M)) —— P(M} —— P{M) — 0

M
is a projective cover of g M. We have then that

X+ =E{ K| K « P,gP projective }.

Again, K & P, P projective «= K C J(R)*? for some set X. Therefore
K « P, Pprojective => K € £{T{R)}. Bence x. < {(T(R)).

On the other hand, 0 — J(R) — R — R/J{R) — 0 is a projective co-
ver. Therefore J(R) € Té{ Ky P MERmod } (is one of the generators of the

above torsion theory). Therefore £{J(R)} € x.« and hence x,. = &(J{R)). W

We give now more “concrete” descriptions of 7* and 7., in case R is left
perfect.

Theorem 10. If R is left perfect, then
i) 7 = x(J(R)/t-(T(R)))
) . = {(t(T(R})),
Where J(R) denotes the Jacobson’s radical of R.

Proof: i) 0 — J{R)/t{T{R)) — R/t AJT{R)) — R/J(R} — Oisa
projective cover, since: a) J{R}/t {(T{R)) <« R/t.(T{R)), b) R/t (T{R)) 1s
7-codivisible {by Remark 3, before Definition 1) and ¢} J(R)/t (T(R)) € F,.
Thus, by the note after Theorem 2, J{R)/t.{T(R)) € F,; therefore 7 < 7% <

X(T(R)/ (T (R))).

- I g x(T(R)/4AT(R))) then 30 # rM € Tyymyp (s NFr.
(30 # M that is x(T(R)/t-{T{R))torsion but not 7*-torsion, and by taking
M/t (M) if it would be necessary, we can suppose, without loss generality,
that M € F..).

By Theorem 8, 7* = x{ K, (M) | M € Rmod }, so if M € F,., then M is
cogenerated by { E(K.{M) | M € Rmod } (i.e., 3M »> N yer-mod E(K,(N)).
Therefore, Y0 # = € M, 3+ M — E(K(N}) such that fi{z) # 0
([115). Prop.VI1.3.39). Therefore 0 # f.{z) € E(K.(N)). Because K. (N) <,
E(K.(N)) we have that f{M)N K,{N) # 0. Hence 30 #£ y € M such that

0 # f2(y) € K.(N). Consequently, Ry Y25 K (N} is well defined.
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Now,thanks to Theorem 2, we have that the following diagram is commuta-
tive:

0 ——  K(N) —— PAN) s N 0
I ! |
0 — s K(N)/t,(N) —— P(N)/t.(N) N » 0

{Here we assume that 0 — K{N) — P{(N} — N — 0 is a projective
cover of N}. Thus K{N) « P(N) and then we have that K(N) < J(P(N)) =
FRP(N) < J(R)RD = J(RYD for some set Z (J(P(N)) = J(R)P(N)
since P(N)} is projective).

Therefore we have the following situation:

<

By ——— M
|-
Ko (N) —— K(N)E{K(N)) —— J(R)D [t (K(N)) —»

— J(R)D [t (T(R)D) = [T (R)/t(T (R

As we that Homp(M, J{(R)/t-(TJ{R})) = 0, we also have that
Hompg(Ry, J{R)/t {J{R))) = 0 which implies that ioa( f.{¥))} € t (F(RF).
Therefore 31 € F, such that I 1 o a{f.(y))} = 0. But as ¢ is 2 monomorphism,
then I {f;{y}} = 0; hence 0 # f.(y) € {-(K-(N)} =0, which is a contradiction
(K, (N)Y =2 K(NYt.(K{N)) € F;). Therefore 7* = x(J{(R)/t-{T(R)} (here
Fr denotes the idempotent filter corresponding to 7).

11) If we consider the diagram

0 | 0

! !

tA{J(R) —— &(IJR) — O

! ! !

g — J(R) e R — R/J{R} —— 0 (1)
0 —— J(B)/t(T(R)) —— RtA(J(B)) —— R/T(R) —— 0(2)

! ! !

0 0 0
(3
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the fact that {1) and (2) are projective and 7-codivisible covers, respectively,
tells us that kerw in Column (3} is one of the modules generating the torsion
theory 1. {see Theorem 8}. Therefore t,(J(R}) € T,+ and {({-(T(R})) < 7.

Now, if K(Pr(M)) is one of the generators of 7 i.e.,if 0 — K(P,(M}} —
P{M) — P {M} — 0 can be extended to a diagram

0 0 G

! ! !

0 —— K{P{M)) —— K(M) —— K. (M)
0 —— K(P (M)} —— P(M} —— P (M} —— 0

! ! !

—_— M — M —— 0
| |
0 0

where the two last rows are projective and r-codivisible covers, respectively,
then we have that K(P,(M)) « K(M) « P(M).

By Theorem 2, K{P,(M)) = t.(K(M)}); therefore K{P.(M)) < Rad(P(M})
= J(RPM) S J(RRX = RadR™ and moreover K(P,(M)) —=
t(T(RYX)) = (£:(T(R))O. Therefore K(Pr(M)) € Tee,(sery VM €
R-mod. Hence 7. = é{ K(P,(M)) | M € R-mod} < {(t(J(R))) and so
™ ={(E(T(R)). =

Corollary 3. If R is g left perfect ring, then 1 < ¢ =3 7a £ O

Proof: Straightforward. M

Theorem 10 is extended in [14] to the case of local rings. In that situation
each [r] € R-tors/~f is closed under taking joins and meets and moreover
the biggest element in [7],7* is given by 7 = Y{J(R)/t,(J(R})} and also
7a = {(t(T(R)))-

However, a ring may have the property of having each [o]r closed under
arbitrary joins and meets without being semiperfect. Moreover, the elements
¢* and o, are not given by x(F(R)/t,(T{R))} and by &{i,(F(R})), in general.
As we see in the following examples.

Examples. In view of Remark 3 before Definition 1, 1s easy to see that if R
is a domain, then R-tors admits the following partition:

{{]=x(R), x]={x}}
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It is clear that each equivalence class in R-tors/~f admits a largest and a
least element.

In particular this is the situation for Z, the ring of integers, which is not a
perfect ring.

Moreover, let us note that for Z, in spite of the fact that each element in
R-tors/~f has a largest and a least element, they are not given as in Theorem
18. Explicity, J(Z) = 0, but we have that [x] = {x}, and s0 x. = x = x*.
Nevertheless x. # (6 {T(Z})) = £(1,{0)) = £(0) = €.

On the other hand {£] = [re = 7.} and §* = 71, but &* # (T (Z}/t:(T (1)) =
x(0/8) = x{0) = x (here 7¢ denotes Goldie’s torsion theory and 77 denotes
Lambek’s torsion theory).

Lemma 2. The following statements are equivalent for a left perfect ring:
1} €*V 7 =1"VYr c R-tors.

it) [7) i ] ¢ a lattice monomorphism with left inverse [€) - [r].

i) 0 £ 7 = [v] — [o] is a lattice monomorphism with left inverse
[o] =171,

wie<r=71Ve =1,

v)VYo,7 € Rtors rVo*=(rVo)=1"Vo.

Proof: Straightforward. B

Theorem 11. If R is o left perfect ring, ali of whose torsion free classes F,.
are also torsion classes (1.e. each F, is closed under taking factors), then R
enjoys the properties of Lemma 2.

Proof: We will prove that £* V7 = 7%, Vr € R-tors. As £* < 77, we
have that £* V 7 < 7* (by Theorem $ we have that £* = x(RadR); r* =
x{Rad B/t.(Rad R)). The hypothesis that F, is closed under factors —>
Rad R/t-(Rad R) € F¢-; hence 7* > £* ).

It remains to prove that £* V 7 cannot be different from r*. If it was, then
WEMETNFey, =T NFe NF,. And as r* = x(Rad R/t,.{Rad R)}
(Theorem 18) we have that Homg{M, E(Rad R/t,(Rad R)) =0 {*y

But as M € F¢v and ¢* = x{Rad R) {Theorem 9) we have that Ju: M »—
(E(Rad R))*, monomorphism for some set X. Hence 3z € X such that
pzu(M) # 0, where p,:{E(Rad R))X — E(Rad R) is the canonical projec-
tion. Hence, in view of (*}, we have that (M) C (¢, (E{Rad R)})¥. For if this
were not true, 3y € X such that p (u(M)) ¢ ¢{,{E(Rad R)) and hence

M % B(Rad R)/t,(E(Rad R)

is not the zero morphism. But E(Rad R)/t.(E(RadR) € F,- and M € T,
and so Homg(M, E(Rad R)/t,(E(Rad R)) = 0. This is a contradiction.
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Now as u(M) C {t,(E(Rad R)))~, we have that p,(u(m)) € t,(E(Rad R}} €
T,, but being also a factor of M € F,, it belongs to F,. Hence 0 # u{m) €
T. O F,. This is a contradiction. Hence £*vr=7*. B

The rings such that every torsion free class is closed under factors have been
charaterized by Teply [16] and by Bronowitz and Teply [5]. We will call these
rings BT -rings.

It 1s clear that for 2 BT -ring we have that:

7 <0 = t.(Rad R) < {,(Rad R}
= Rad R/t.(Rad R) - Rad R/t,(Rad R)
= Rad R/t,(Rad R) € F,(Rad R/t,{Rad R)) = F .
= [0* = x(Rad R/t;(Rad R) 2 7°]
=7 > 5",

Moreover, for a BT-ring, we have that £* v r = 7*, since it is clear from the
preceeding that £V 7 < 7*. And we would have, if the above inequality was
estrict, that Fro & Feoyr = Fge NF,.

Hence 30 # M ¢ (Fe NF)\F,-, and we can assume (changing M by
te- (M) # 0if it was necessary), that M € T, NFg NF, {£,(M) # 0 because
M ¢F,.).

Inasmuch as M € F¢o, 30 # f € Homp(M, E(Rad R)}; hence 30 # me M
such that Homg(Rm,RadR} # 0. But as M € T,., we have that
Homg(Rm,Rad R/t (Rad R)) =0 (Rm C M € T,.}. So,fwetake 0 # g €
Homp(Rm, Rad R), then we would have that 0 # g(Rm) C {,(RadR) € T,.
But on the other hand, g{Rm) is a factor of Rm C M € F,, and we have F,
closed under taking factors by hypothesis. So we get that 0 # g{(Rm) € T.NF,,;
which is a contradiction. So, we conclude that £* vV r = r*.

So, for a BT-ring we have that Lemma 2 applies to give a nice partition
of R-tors via the equivalence rclation ~g, because the equivalence class [¢]¢
contains an isomorphic copy or every other [r]g € B-tors/~g. So, we will have
R-tors completely determined as a lattice if we know the lattice structure of
the sublattice [€]g.

Theorem 12. (Bland [, Theorem 2.8]). If R is a semiperfect ring, then
T~y <= RadReT,.

Bland’s theorem is equivalent to the following result.

Theorem 13. If R is a semiperfect ring, then [x] conlains a smallest ele-
ment x, = {{Rad R).

Proof: =) Sintce ¢ — Rad R —» R — R/Rad R — 0 is a projective
cover with RadR € T, = R-mod, we have, using Bland’s Theorem, that
£(Rad R) € [x]r. Therefore £(Rad R) is the least element of [x]e.
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<=) Let us suppose that x, = {{Rad R). Now we have, for 7 € R-tors,
r€x]<=r7>¢RadR}) < RadReT, A

The following two results can be proved (Rincén-Mejia [14]).

Theorem 14. If R is ¢ semiperfect ring, then £* = x(Rad R), where £* is
the biggest element of [€]e.

Theorem 15. Rincon-Mejia f14].
If R 13 a local ring, then V|r] € R-tors/~p, we have that [t}r has a biggest

element, 7%, given by 7 = x{Rad R/{,(Rad R)), and ¢ smallest element given
by 1. = {{t,(Rad R)).

Theorem 16. Let R be o semiperfect ring, then Goldman’s torsion theory
centrally splits < soc,(Rad R) = 0. '

(Remember that M is a Goldman torsion module iff M = socp{A}, where
socy( M), where soc,(M) denotes the projective socle of M).

Proof: <=) If socp,{Rad R) = (0), then every projective simple module g5 is
injective: for if g5 is a simple projective module, then § € Terad 7)UF ¢rad B)
since S is simple. But § € Tgraary = 30 # fiRadR — E(S). As
S <. E(S5)}, we have that § < im f, so we have the diagram

Rad R

J‘I;—!(s}

78— §

where f|¢-1(s) is an epimorphism with codomain being a projective module.
Therefore S is isomorphic to a submodule of f~'($), which is a submodule of
the projective socle of Rad K; this 1s contradiction,

Thus we have, that if g§ is a projective simple module, then § € Fgraa ry-
But £(Rad R) = ., by Bland's Theorem, from which we get that if A is
a direct sum of projective simple modules, then M € F,, and hence M is
injective {by Theorem 3).

Thus we have that YV € R-mod, socy{N)is an injective submodule of N and
hence it 1s also a direct summand of N; i.e., Goldman’s torsion theory splits. In
particular R = soc,(R)@&p K. But now, since R is semiperfect, R is semiartinian
and therefore soc(R) <. R. In particular soc{K) €, K. Let us note that every
left simple submodule of K is singular (since a left simple module is either
singular or projective, but socy{H} = soc,(R) N K = 0)). Thus we have that
soc{ K') is a Goldie’s torsion-module. Hence K is a Goldie’s torsion-module,
too (Goldie’s torsion theory is closed under taking essential extentions). Thus,
K < t¢(R) = tg(soc,(R)) @ tc{K), but each simple summand of socp{R) is
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non singular {being projective). So, K = tg(R} and so we have that K is
a bilateral ideal of R. As a result, R = socp(R) @ K (ring direct sum); i.e.,
Goldman's torsion theory centrally splits.

= ) If sec,{Rad R) # 0 then 0 — soc,(R} — R -— R/soc,(R) — 0
does not split. For if it splif, then taking a simple submodule § of Rad R we

have that the monomorphisms § = soc,{Rad R}, soc,{Rad R} £, soc,(R)

and soc,(R) £, R are splitting; so its composition also splits. So we would
have that R = §&@ K, where g K is 2 maximal ideal of R, but this is impossible
(§<RedR< K= SNK =5 #0}). Hence Goldman's torsion theory does
not split, and a fortiori, does not centrally split. M

Corollary 4. If R is o commutative perfect ring, then Goldman’s torsion
theory cenirally splits.

Proof: Raggi & Rios ([17], Corolario 2.8) have proved in the general situation
that soc,{M) = soc,(R)M YM € R-mod. In our particular case we have that
socy(Rad R} = soc,(R) Rad R = 0, since the Jacobson radical annihilates every
simple module. B

We should note that the preceeding proof does not apply for non commutative
right perfect rings, because soc,{Rad R) is not necessarily a right semisimple
module,

From Theorem 3.1 of Raggi & Rios [11], we have that for a right perfect
ring, Goldie’s torsion theory 7¢ is a TTF torsion theory generated by the left
singular simple modules and cogenerated by the left projective simple modules
(in fact the preceeding statements hold when R is left semiartinian ring).

In the following theorem we will denote & the class of the left injective simple
modules and by Sp the class of left projective simple modules.

Theorem 17. If R is a right perfect ring satisfying soc,{Rad R) = (0}, then
are equivalent:
i) X« = 7, where x, denotes the least element of [v] € R-tors/~¢.
i} S = Sp.

Proof: 1)== ii} §p C & follows from the part <= ) of the proof of Theorem
16. Let gS be a left injective simple module. We want to prove that it is
projective. Let us observe that since R is right perfect, then R/RadR is
semisimple, so that p M is semisimple iff Rad R M = 0. Therefore every direct
product of simple modules is semisimple. As a consequence, using Theorem
18, we get that x(S)} belongs to [x]r. For if M € Fyg), then 3y »+ §7 for
some set X, and as S¥ is a semisimple module. But on the other hand, M is
injective, as it is isomorphic to 2 direct summand of the injective module §X.

Thus, x(S5) € [xir. and therefore x{5) > x. = 7¢. Then we have that S is
Goldie torsion free, which is cogenerated by the left projective simple modules.
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Hence 30 #£ f: 5 — U, where U is a left projective simple module. Since f
must be an isomorphism, we have that S is a projective module. Therefore
&1 € &p, and hence §; = Sp.

ii)== 1) Since 7¢ is cogenerated by the left projective simple modules, we
have that every rg-torsion free module is semisimple, since it is {iscmorphic to)
a submodule of a direct product of simple modules (this product is annihilated
by Rad R). But a rg-torsion free module is an injective module, since it is a
direct summand of a product of projective simmplé modules, and such a product
15 injective by the hypothesis that all projective simple modules are injective
modules. Since every rg-torsion free module is injective, T € [x]e by Theorem
3.

Analogously, if 7 € [x]r let us take F an injective module which cogenerates
7; 1.e., T = x{E}. By another use of Theorem 3, we get that E is semisimple.
Now, if g§ is a simple submaodule of E| it has to be injective. Because 5 is an
injective module, S is also projective by hypothesis. Therefore it is 7g-torsion
free. So, E € Fg, since E is a direct sum of r5-torsion free modules. But
EeFg=r1=x{E}> 7g;sowe havethat 7o = .. B

Corollary 5. If R is & quasifrobenius ring ((}F-ring), then x, = 1g.

Proof: R is right perfect and the class of projective modules coincides with
the class of injective modules. Moreover, soc,{Rad R} = &: if p§ < RadR
was a projective simple module, then as § had to be injective, S would be a
direct summand of R. Consequently, S = Re < Rad R, with e = €2, this is
impossible. We conclude using Theorem 17. W
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