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ERGODIC RESULTS FOR CERTAIN
CONTRACTIONS
ON ORLICZ SPACES WITH FIXED POINTS

DIEGO GALLARDO

Abstract

Let (X, M, u) be a o-finite measure space, Ly = Ly(X, M, u}) an Orlicz
space associated to an N-function ¢ and let T: Ly — Ly be a linear
operator with a fixed point k # 0 a.e., such that

[¢(|Tf|)d.uﬂf¢(|f|]d# (feLy)
Jx X

and it is either a {| ||1-contraction in Ly M L; or a|| |jes-contraction in
Ly N Loe. The main result of this paper is that for a wide class of -
functions ¢, the ergodic maximal operator associated to T is bounded in
Ls. Moreover, for every f € Ly we have the almost everywhere con-
vergence and the norm convergence of certain weighted averages which
include the Césaro averages.

1. Introduction and preliminaries

Let (X, M, pt) be a o-finite measure space and Ly = Lg(X, M, p) and Orlicz
space associated to an N-function ¢ (L may be a complex Banach space). In
this paper we will consider linear operators T such that

) [x $UTfDde € 5 $(1fDdu, f € Ly
n) T has a fixed point b, h £ 0 a.e.
i#) T is either a || |1-contraction in Ly N Ly or a || ||leo-contraction in
LN Lo

The main aim of this paper is to prove that, for a wide class of N-functions

¢, the ergodic maximel operator My defined by

1 n—1
1.1 Mrf = =N
(1.1) rf iglﬁ;ln g £l

Keywords: Almost everywhere convergence, Besicovitch sequences, Céshro-averages, Contrac-
tions, Ag-condition, Ergodic maximal operator, Ergodic theorems, Extrapolation theorems,
Tixed points, NV-functions, norm convergence, Orlicz spaces, weighted averages.
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is bounded in Ly {dominated ergodic theorem). Mareover, we shall prove that
if {by} is a bounded Besicoviich sequence, then for every f € L, there exists
f* € Ly such that

n-—1

-1
N 1 k _ =% 1 l k — =
i 03 BTH(E) = £10) me Jim |3 BT — [l =0

n—oa T

A sequence of compler numbers {b;} ts called o Besicovitch sequence if for
every £ > ( there ezists a trigonomelric polynomial o, such that

1 n—1
limsup — Z Jor — a(k)| < €.
nooo T g0

As a special case we obtain the almost everywhere convergence (individual er-
godic theorem) and the norm convergence (mean ergedic theorem) of the Césiro-

averages n” (f +Tf+---+T"1f).

" In the real L,-case, with 1 < p < 00, and (X, M, ) a finite measure space
the corresponding dominated ergodic theorem is proved by A. de la Torre in
[10]. R. Sato proved in [9] that the de la Torre's result may be extended to
the case (X, M, u) o-finite and a complex L,-space. The ergodic result for an
operator which only satisfies conditions 1) and iii) is an open problem even in
the L,y-case, 1 < p < oo.

The bounded Besicovitch sequences as weights in the averages were used by
J.H. Olsen in [8].

In order to obtain the dominated ergodic theorem we first need some ez-
trapolaiion theorems which extend the ones given by M.A. Akcogly and R.V,
Chacon in [1] and R. Sato in [9], for £,, 1 < p < o0.

Now, we shall present the basic definitions and results concerning to N-
functions and Orlicz spaces which will be used in this paper. The proofs of
most of these results can be found in [5] or in II-13 of [7].

An N-function is a continuous and convez function ¢: [0,00) — R such that
#(s)>0,8>0,5714(s) — 0 as s — 0 and s ¢(s) — 00 as s — o0,

The function ¢ is an N-function i and only if it has the representation
¢(s) = J; @ where @ {0,00) — R is continuous from the right, non decreasing
such that ¢(s) > 0, s > 0, »(0) = 0 and p(s) — 00 as s— 0o. More precisely
w is the right derivate of ¢ and will be called the density function of ¢.

Associated to ¢ we have the function p: [0,00) — R defined by p(t) =
sup{s: v(s) <t} which has the same aforementioned properties of . We will
call p the generalized tnverse of .

The N-function ¢ defined by () = f;p is called the complemeniary N-
function of ¢. Thus, if ¢(s) = p~1s#, p > 1, then ¢(t) = ¢~ 47 where
ri=ptgq
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Young’s inequality asserts that st < ¢{s) + ¢(t) for 5,1 > 0, equality holding
if and only if p(s—) < ¢ < (s) or else p(t—) < 5 < p(t) (See [3]).

If ¢y and ¢q are N-functions with complementary N-functions given by ¥
and twp respectively, then, the inequality for complementery funcitons asserts
that if ¢1(s) < ¢2(s) for s > sy, then 1¥2(¢) < ¥ (2) for £ > @2(se), where ¢, is
the density function of ¢,.

An N-function ¢ is said to satisfly the Aq-condition in [sg,00), 5o 2 0, if
there exists a constant a such that ¢{2s) < a¢(s) for every s > sp.

If  is the density function of ¢, then ¢ satisfies A; in {sp, 0} if and only if
there exists a constant o > 1 such that sp(s) < ad(s), s 2 3.

The Aj-condition for ¢ does not transfer necessarily to the complementary
N-function.

If (X, M,p) is a o-finite measure space we denote by M = M(X, M, i)
the space of M-measurable and p-a.e. finite functions from X ro R or to
C. If ¢ is an N-function we consider the Orlicz spaces Ly = Ly(X, M, p)
and Ly* = Ly*(X, M, p) defined by Ly = {f € M: [, ¢{|f])du < oo} and
Ly = {f e M: f¢g € L, forall g € Ly} where ¥ is the complementary
N-function of ¢. We have Ly C Ly* and if ¢ satisfies Aj then Ly = L™,

We have that Ly* is a linear space with the usual operations on which we
may define the norms ||flly = sup{ [y |fylde: ¢ € Sy}, where 5y = {g €
Ly: fyw(lghde €1}, and [|f|l(5) = inf{r > 0: [y (A7 f)du < 1} which
are called Orlicz norm and Luzemburg norm respectively. Both norms are
equivalent,

Holder’s inequalily asserts that for every f € Ly* and every g € L,,” we have
fgllr <11 fllisslglle where ¢ and ¢ are complementary N-functions.

If ¢(s) = o with p > Lthen Ly" = Lg = Ly, ||fll¢ey = | fllp and |lgfly = iglls
where pg = p+ 1.

The convergence f, — f in [L,",] 4] implies the mean convergence
limy oo _[,(.(Lf,1 — f)dpg = 0 but, in general, mean convergence only implies
norm convergence when ¢ satisfies /A;. Then the set § of simple functions
(with support of finite measure) is dense in [Lg, || ||s] if ¢ satisfies A,.

If ¢ verifies A;, then for every continuous linear functional F over [Lg, || [l(4))
there exists an unique function g € Ly* such that F(f) = f, fgdu, f € Lg,
and moreover | F|4) = |[g|ly, where ¥ is the complementary N-function of ¢,
but if ¢ does not satisfy A, then there exist linear functionals on Ly* which
are not represented by functions of L,*. '

If ¢ and 9 satisfy Ay then [Lg, || |(g] is reflezive.

In the following, we shall always assume that (X, M, it} is a o-finite measure
space and ¢, togeiher with its complemeniary N-funclion 3, satisfy the As-
condition in [0, 00). The Ay-condition for ¢ is a very important condition that
plays fundamental roles in many questions and the best known Orlicz spaces
are associated to functions which satisfy A;. The Aj-condition for 1 may seem
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to be a restrictive assumption. Some know Orlicz spaces as, for example, the
Zygmund Orlicz space L Log L and the LLogk L spaces, k > 0, are associated
to N-functions which satisfy As but their complementary N-functions do not;
but the above spaces do not satisfy our dominated ergodic result. In fact the
Ng-condition for the complementary N-function is necessary for sueh result,

Precisely, let {[0,1],B,A) be the Lebesgue-space and let 7 an invertible A-
measure preserving transformation from [0,1] inte itself. In [2] B. Bru and
H. Heinich characterize the Orlicz spaces, associated te Young's functions, for
which the ergodic maximal operator associated to the operator T, defined by
Tf = for!, is bounded in Ly (classical dominated ergodic theorem) (the
Young’s functions in [2] are our N-functions). The characterizing condition
given in (2] is the condition of comoderation on ¢.

The function ¢ is sa2id to be comoderated if there exist 55, 2 and & > 1
such that @{as} > bp(s) for s > sg, where 15 the density function of ¢ or,
equivalently, if there exist sp, @ and b > 1 such that ¢{as) > abd(s) for 5 2 s
(in [2] a function contiauous from the left is taken as density function of ¢
whereas our density function Is right continuous).

The paper [2] does not establisch the equivalence between the comoderation
of ¢ and the moderation {A;-condition in some [¢y, 00)) of the complementary
N-function % unless ¢ be continuous. However, we observe that the comode-
ration of ¢ is equivalent to the moderation of ¥. At the same time, we shall
prove another characterization of the moderation of 3, which is used in this
paper, and which appear in [2], [5] and in the rest of the literature with more
restrictive hypothesis. Exactly:

Proposition 1.2, Let ¢ be an N-function end 3 the complemeniery N-
Junction of ¢. The following conditions are equivalent:
a) ¢ s comoderaied.
b) ¥ i3 moderated.
¢) There exist so and 8 > 1 such that Bé{s) < sp(s) for s > sp.

Proof: a} =» b). If ¢ is comoderated then ¢(s} < ¢,{s) for s > sp where ¢;
is the N-function given by ¢:(s) = {(ab)"!¢{as). The complementary function
of ¢, is given by ¥(t) = {eb)~14(bt). Taking into account the inequality for
complementary N-functions we obtain that ${bt) < abyp(t) for t > tq = p1{s0),
where b > 1, which equivales to condition Ay of ¥ for t > 4.

b) = ¢). Let p be the generalized-inverse of . Since ¥ is moderated there
exist tg and a > 1 such that tp(t) £ ay(t) for every ¢ > 5. On the other
hand, it follows from the equality cases in Young's inequality that fp(t) =
#{p(t}) + (t) and therefore

$(p(t) <a”Ha = 1)tp(t), t2t.

Then, since p(¢{s)) = s and the function u —s u~1¢{u) increases for u > 0 we
obtain

sT18(s) < Blolo(s) plels)) < @ Ha = 1)p(s), s 2 plto)
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and thus we obtain c) with sy = p(#y) and g = a{a — 1)1 > 1.

¢} = a). Condition ¢) implies that there exist so and # > 1 such that the
function s — s~ ¥ ¢(s) increases for s > sy (or for s > 59 if sg = 0). Then, if
a > 1 is such that @~ > 2 we have ¢(as) > a?¢(s) > 2aé(s) for s > s¢ and
thus we obtain the comoderation of 4.

Note. Since (0) = p(0) = 0, if some of the conditions of Proposition 1.2
is satisfied for every s = 0, then the others two conditions are also valids for
every s > (1

In this way, the moderation of ¢ is necessary for the classical dominated
ergodic result and, therefore, for our dominated ergodic result since that the
operator T, defined by Tf = fot ™! satisfies conditions i}, ii) and iii), whatever
the N-function ¢ may be. On the other hand, the space ([0, 1], B, A) is of finite
measure and our spaces can be of infinite measure. For this reason we shall
assume the Aj-condition in [0, 00}, but un the case u(X) < oo the argument
which we shall use can be adapted if only we suppose the A;-condition in some
[SU,OO).

Qur results are valid, for example, for the known LP Log® L spaces, with
p>1and k > 0, since the N-functions of the form ¢(s) = s? log"(1+ s) satisfy
that 1 < p < ¢(s)/sp(s) < p+ b for every s > 0 and certain constant b.

2. Extrapolation Theorems

We first observe that the convexity theorem for positive operators given by
M.A. Akeoglu and R.V. Chacon in [1] can be easily extended to Orlicz spaces,
following the same type of arguments, as follows

Proposition 2.1. Let ¢ be an N-function sirictly conver in some interval
and let T be o conservative positive contraclion in Ly such that

(2.2) ]X (T )y < /X S0, (f€LinLy).

Then, |Tflloo < [[flloc for every f € L1 N Ly

Proof: The operator T is said to be conservative when p(D) = 0, where D
is the dissipative part of X with respect to T'.

First assume that p(X) < oco. It is enough to prove that Te < ¢ almost
everywhere for some constant ¢ # 0.

We have that  increascs strictly in some interval I, where ¢ is the density
function of ¢. Let ¢ € I with ¢ #£ 0, Then, we get that

(2.3) ¢lc+s) > d(c) + sp(c) (0#s2>~c)

Since T is conservative we have -[X Tfdu = fX fdu for every f € L;.
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Let Te(z} = ¢+ g(z); then [, 9du = 0 and therefore if u{z € X:
g(z} > 0} > 0 we have

jx H{|Tel)dp > ]X #le)d,

which contradicts {2.2). This proves that Tc < c.

The general case follows from the preceding by a method similar to the one
given in [1] using the following resuit:

Lemma 2.4. Let ¢ be an N-function and T a positive contraction in L,
satisfing (2.2). Then, for every A € M there ezists a linear operator
Ta:Li(A) — Li(A) such that
a) T4 is a positive contraction in Li(A4) and

[ #TarDdn < [ 050, (F € Li(4) 0 Lota))
X X

b) For every f € LiT(A) and everyn > 1
Zka(z) < ZTﬁf(m) a.e. in A.
k=0 k=0

The proof of Lemma 2.4 can be obtained easily following the arguments of
[}
Remarks.

1. The conservative condition of T cannot be eliminated from the hypot-
hesis of Proposition 2.1 since in R with Lebesgue-measure if T7f{z) = v2f{2z)
then T is a positive contraction in L;, an isometry in Ly but ||Tf|le =
V2| flloo- :

2. There exist N-function which are strictly convex over no interval. An
example is the following. We consider the dyadic intervals I, = [2771,2") and
Ja = [27",277%1) where n is a positive integer and let i0,00) — [0, 00} be
defined by (0} =0, (1} =2""ift € J, and @{t}) = 2" 1 if t € I,. Then ¢
defined by ¢(s) = f; ¢ is an N-function. Since ¢(2s) = 4¢(s) we have that ¢, -
as well as its complementary N-function, satisfy the A,-condition. However ¢
is not strictly convex over any interval. Furthemore there is no constant ¢ # 8
. such that {2.3) holds.

However most of N-functions are strictly convex in some interval.

In the following results the operators are not necessarily positive but they
have a fixed point k with A #£ 0 a.e.
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Theorem 2.5. Let ¢ be an N-function, sirictly convez in some inferval and
let T: Ly —+ Ly be « linear operator such that
) F 0T F)u < [y #(1fDds, (f € Lo).
@) IT£ll: £ Ifllh, (F € LanLg).
tii) There exists h € Ly, h # 0 a.e., such that Th = h.
Then, [[Tflico € Ifllee for every f € Ly N Ly, and consequently for every
Fe L¢ N Lo

Proof: In this proof we follows the idea given by Sato in [9].

Let k be such that ¢{s) < s for 0 < s < k. Given f € L) N Ly let
B = {z € X: |f(s)] = k}; then u{B) < oo and therefore [, #(1fDdu <
Il + s(B)S([I I} < oo. Consequently Ly N Leo C Ly

Let T: Ly — I, be the linear extension of T: [L; N Ly, [| ;] — L; and
P the linear modulus of T. (See Theorem 4.1.1 in [6]). We shall prove that
P satisfies the hypotheses of Proposition 2.1 and therefore ||Pflloo < [[flico
f € Ly N Loo; in this way, since {T'f] < Pif|, f€ Li,and Ly N Lo C L1 N Ly
we obtain that ||Tfllee < [[fllews f € L1 N Lo, and consequently for every
f € Ly Ly, since Ly N Lo is dense in Ly N Lo with the Loo-norm.

Now, we show that P satisfies the conditions of Proposition 2.1. The A,-
condition implies that Ly N Ly is dense in [Lg, [} [i(¢y]. On the other hand, it
follows from 1} that ||Tfi¢e) < I|flicey, f € Lg, and consequently given ¢ > 0
there is f, € Ly N Ly such that for every n > 1

n—1
1 k
i J— T < .
(2.6) || = g_o, fellegy S €/2

If T'is a power bounded linear operator in a reflexive Banach space V, that is,
the powers T* , k > 0, are uniformly bounded in V, then the Césaro-averages.

r—1
1 k
Rof == T*f
k=0
converge in norm to a T-invariant limit for all f € V (See Theorem 2.1.2 in
[61)-

Lef f.” be the limit in [Lyg, || litg)] of Rafe. It follows from (2.6) that for
0 < € < 1 we have ||k — f|[(4) < € and consequently

27) [ dn— g <o

On the other hand, f.*(z) = 0 for a.e. z € D, where D is the dissipative
part of X with respect to P, since (Theorem 3.1.6 in 6]} Zk‘go P¥F(z) < o0
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on D for all f € L;*. Since ¢(jhl) > 0 a.e. (2.7) shows that u{D) = 0 and thus
P is conservative.

Now, in order to prove that P satisfies condition {2.2} we consider the Akcoglu
and Brunel’s theorem related with the structure of 7° on the conservative part
C of X with respect to P {see Theorem 4.1.10 in [6]). Let F be the family of
P-absorbing subsets of C; there exists a set I' € F and a function s € L,(I),
with |s| = 1 on T, such that Tf = 3P(sf) for any f € Ly(T"), where 5 is the
complex conjugate of 5, and if A = C—T then (] —T)L;(A) is dense in Li{A).

We have that suppT{xrh) C ' and suppT{xah) C A; therefore Tg = g
where § = xah. Carryng out 2 similar reasoning to the used for A we have
that for every & > 0 there exist f, € Li(A) N Lg(A) and f,* € Ly{A) such
that |lg — fe"ll(¢) < € and limn oo |Bnfe — fe*ll(g) = 0.

Given 5 > 0 there is uy, € Li{A} such that |lu, — Tu, — fels < /2 and
therefore for every n > 1 we have ”n_l(u,, — T"uy) — RBofelli = ||Ruluy, —
Tuy — fe)lli < n/2, which proves that limp—eo |Rafells = 0 and so f.*{(z) =
0 a.e. This shows that ||gl(gy = 0 and consequently u(A) = 0. Then, we
have Tf = 5P(sf) for every f € L, and therefore it follows from i} that
Sy $PFdx = [y 6ISTGHdn < [y 6(|f)du for every f.€ Ly 1 Ly and
this finishes the proof, B

Now, our aim is to prove that the roles of L; and L, in Theorem 2.5 can be
interchanged. For this we shall considerer the adjoint operator of T

Let T': Ly — L be a bounded linear operator; more precisely, we suppose
that there is a constant C' such that [|Tf|4y < Clfll¢ey, f € Lg. Then, if
g € L,*, where 3 is the complementary N-function of ¢, the linear functional
Fover [Lg, [|ll(4)] defined by F(f) = f, ¢Tfdu is continuous since by Holder’s
inequality we have {F(f)| < C(lg||4|lfl(4y and therefore, since ¢ satisfies Ay,
there exists an unique function g* € Ly” such that fi ¢Tfdu = [, fg*du, f €
L4. Then, we can define the bounded linear operater T*: Ly* — Ly*, g —
T*g, where T*g is the function in Ly* such that

Jotsan= [ iTadu, fer,.

We shall call T* the adjoint operator of T. T* satisfies |T*¢lly < Cllg|ly. In

our case we have

Lemma 2.8. Let T: Ly — Ly be ¢ linear operator such that

] (T F)de < / s(1f1)de (f € Ly).
X X

Then, its adjoint operator T* satisfies

(29) | ]X BT gl)du < /X #ahdn (9 € Ly)
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and moreover, if T admits an inveriant funciion h with h # 0 a.c., then there
exists g € Ly with g £ 0 a.e., such that T*g = g.

Proof: We write sig z for z/|z] and by @ we denote the complex conjugate of
u. For g € LyT we have

(210} fx fITgldp = | /X HsigT*g)T" gdp < fx IT¢f sigT*g)lIgldp <

< L #(f)dn + ]X $(lal)ds.

Let ¢ be the density function of ¢ and p the generalized inverse of . Since ¢
satisfies A, there exists a > 1 such that sp(s) < at(s) and therefore ¢{p(s}} =
sp(s) — P{s) € (o — 1)¢(s). Therefore, for every g € Ly the function p{|T*g|)
belongs to LyT and so {2.9) follows from (2.18) for f = p(|T*g|}.

Now, let us assume that Th = h with & # 0 ae. If ¢ is not continuous
then there exists an at most countable set of positive reals s;,52,.-.,3n where
 is not continuous; in this situation, since A € Ly, it is easy to see that
{c > 0: pu{z € X:|s7 h(z)| = ¢} > 0} is at most countable and therefore
there exists A > 0 such that for every s; we have

(2.11) pfr e X: A h(z)| =5} =0

In the case ¢ continuous {2.11) holds trivially with A = 1.

Let u = A~ 'k and g = o(|u|)sigi. We have that ¢ # 0 a.e. and ¢ € L, since
¢ satisfies Aq. It follows from (2.9) that

(212) [ bolluban=| [ urgde] < [ ol gla < [ sCulidr
+ [x BT gl)du < [X $(lul)dps + /X lp(lul))du = ]X kel
and therefore
/ [T gldu = [ (800 + w75}
X X

Then, Young's inequality shows that

(2.13) Tl = o(Jul) + ¥(IT7]) 2ee.

It follows from {2.11} and (2.13) that |T*g| = ¢{Jul) a.e. On the other hand we
obtain from (2.12) that {sig #)sig T*u = 1 and therefore T*g = g which finishes
the proof of the Lemma.

Theorem 2.5 and Lemma 2.8 imply easy
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Theorem 2.14. Let ¢ be an N-function whose complementary N -function
is strictly convez in some interval and let T:Ly — Ly be o linear operator
such that

i) [y (T N < [x o(If)dp , {f € Ly).
4) [Tflloe SHflle » (f € Lo N Ly).
t1i) There exists h € Ly, h # 0 a.e., such that Th=h,

Then, §Tfl < [[flly for every f € Ly O Ly,

Proof: Let 3 be the complementary N-function of ¢, T the adjoint operator
of T and let {4, } be an increasing sequence of measurable sets with u{A4.) < oo
and X = UA,. Then, for every g € L; N Ly we have

Joimaidu= Jim | [ a7t sisT")u] < o

Consequently, [|T"glloc < |iglloo for every g € Ly N Lo and therefore for any
f€LinNLyandn > 1 we get | fy fT*(xa,sigTf)dul € [Ifil and thus
IZAll: < WAl

3. Ergodic results

Theorem 3.1. (Dominaied, individual and mean weighied ergodic theorem).
Let ¢ and T saiisfy the hypoiheses of the exirapolation theorem 2.5 or 2.14.
Then '

a} The ergodic mazimal operetor Mp-defined by (1.1) is bounded in

Loy ll lee)-
5) If {6} 13 a bounded Besicovitch sequence, then for every f € Ly there
extsts f* € Ly such that

1A ] 1= .
fim LS BTHE) = 1) e Jm TS BT - o =0

Proof: Since Ll N Lo C Ly it follows from Theorem 2.5 or 2.14 that T': LIy N
Ly — L; admits an unique extension T:L, — L, which is 2 Dunford-
Schwartz operator, that is, |Tfl) < lIfllh, f € Ly, and T flloe < [[F)loos
f € Ly N L,,. Therefore the linear modulus P of T is also a Dunfort-Schwartz
operator.

Consequently, for every f € L; and A > 0 we have {see Theorem 2.3.2 in {4]}

plz € X: Mpflz) > A} g A1 fx [£ldi,

where Mp is the maximal operator associated to P. Moreover, trivially,
IMe flloo < | flloo for f € L1 N Loo.
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For f € Ly N Ly set fa = fxan and fr = F— fr where AN = {z € X:
if(z)} > A/2}. We have fa € L, f* € L1 Nt L and therefore

(3.2) Lé(MPf)du = /ﬂm w(Ap{r € X: Mpf(z) > Aldr <

< 2/:0 A‘llP()\).( /x |f;id‘u)d,\ == ZL |f(z)|(/:”(z)| )\“I(P(,\)d,\)dﬂ(x) |

where  is the density function of ¢.
Integrating by parts, we obtain

(3.3) ]0 AT M)A = s é(s) + [A-?qs(,\)d)\ . (s>0).

Since the N-function complementary of ¢ satisfies A, there exists a constant
B > 1 such that 8¢{s) < sp(s},s > 0; then, if 0 < A < 1 we have that
A724(2) <€ ¢{1)3%~% and therefore f(D,s] A724(A)dXA < co. Then, {3.3) shows
that

[ Alo(dh < BB - 1) s sy, (s> 0).

Hence, it follows from (3.2) that

(3.4) ]x $(Mp Fdu < aB(B - 1)~ fx $(1fdu (f € L1 Lo),

where « 15 a constant in the A,-condition for ¢.

Since [Tf] < P|f] for f € L,, (3.4) shows that there exists a constant
Cp > 0 such that f, ¢(Mzf)du < C [y ¢(|fi)du, f € Ly N Ly, which proves
that "MTf"(qx,) < C"f"(@) , f € LiNLy, where C = max(1, Cy). Simce Ly Ly
is a dense linear subspace of [Lg, [| |l(g)) it follows that ||M7 fl[¢sy < C|ifli¢e)
for every f € L4, which proves a).

Now, let {b;} be a bounded Besicoviich sequence; then a} and the Banach
principle show that for almost everywhere convergence it is enough to prove
that the weighted averages

1 n—1
Tof=— ) bT'f
k=0

converges a.e. for all f in a dense subset of [Ly, || ()]

Let m € N and §: Ly — Ly defined by Sf = €™Tf. Since Ly is reflexive
and the powers S%, k > 0, are uniformly bounded, exactly ||5* fll¢sy < |l fllcey
for every f € Ly and k > 0, then , the Césaro averages R,f = n"1{(f + Sf +
...8™"1} converge in norm for every f € Ly. Therefore Ly is the closure of
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the direct sum of the set of fixed points of S and the space (I — S)L; (see 2.1
in [6}).

On the other hand, given # > 1 such that A¢{s} < sp(s}, s > 0, the function
s — 5 P$(s) increases for s > 0 and consequently ¢{st} < sP@(t)for 0 < s < 1
and t > 0. Therefore, if g € Ly we have

/X;Mln“lswl)du Sr;n‘_"fx¢(15“gi)dp <

oo _ﬁ -
</ ldu 3 n~? < oo

Hence n=15%¢g(z) — Q a.e. asn —s oo and thus R, f — O ae. if f = ¢— Sg¢.
Since the maximal operator Ms is bounded in {Lg, || (4] we obtain that,

for any f € Ly, n™! 2:;; e kT f converges a.e. and therefore for every
{rigonometric polynomial @ and f € Ly we have that

) 1 n—1 .
Jim ~ > alk)T* f(z)
k=0
exists and is finite a.e.

Then, for every f € Ly Lo, Ti f converges a.e. since for every € > § there
exists a trigonometric polynomial a, such that

n—]1
1
limsup — Z | — k) <€
neo B0
and consequently
1 n—1
Kmsup [T, f(z) — - > e BT (@) < ellflloo e

noeso k=40

In this way, since Ly N L is dense in Ly, we conclude that T}, f converges
almost everywhere for every f € L.

Finally, let f*(z) = imn o0 Tnf{z). It follows from a) that f* € L, and
H|Tnf — [*]) is dominated by ¢(Mrf} € L;; thus, taking into account the
Lebesgue’s dominated theorem, we get that lim, o0 [, (T f — f*}dp = 0
which proves that limy oo |T0nf — f*l(s) = 0.
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